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Introduction

Previously, we identified a loss of stromal Cav-1 as a predictive 
biomarker of early tumor recurrence, metastasis, tamoxifen-resis-
tance and decreased survival in human breast cancer patients.1,2 
The predictive value of a loss of stromal Cav-1 was independent of 
epithelial marker status, as a loss of stromal Cav-1 was predictive 
in ER+, PR+, HER2+ and triple-negative breast cancer patients.1,2 
Similarly, in DCIS-patients, a loss of stromal Cav-1 predicts 
invasive progression.3 Importantly, the prognostic value of a loss 

We have recently proposed a new model of cancer metabolism to explain the role of aerobic glycolysis and L-lactate 
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fibroblasts. Secreted L-lactate then fuels oxidative mitochondrial metabolism (OXPHOS) in epithelial cancer cells, by 
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the “reverse Warburg effect,” as aerobic glycolysis takes place in stromal fibroblasts, rather than epithelial cancer cells. 
Here, we used MCT4 immunostaining of human breast cancer tissue microarrays (TMAs; >180 triple-negative patients) to 
directly assess the prognostic value of the “reverse Warburg effect.” MCT4 expression is a functional marker of hypoxia, 
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of stromal Cav-1 in breast cancers has now been independently 
validated by six other groups world-wide (Australia, Argentina, 
Korea, Japan, Egypt and Leeds, UK)4-8 and has been extended to 
other types of human cancers, such as advanced prostate cancer9 
and metastatic melanoma.10

To mechanistically understand the prognostic basis of a loss 
of stromal Cav-1, we studied Cav-1-deficient-mice. Metabolomic, 
proteomic and genomic profiling established that fibroblasts and 
the mammary fat pads from Cav-1-deficient mice are highly 
catabolic and show strong metabolic shifts toward autophagy/
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(TN) breast cancer patients and (2) stromal MCT4 can be used 
in conjunction with stromal Cav-1 to further stratify the inter-
mediate-risk group into high-risk and low-risk patients.

As MCT4 is a new druggable target, we suggest that MCT4 
inhibitors should be developed for the treatment of aggressive 
breast cancers, and possibly other types of human cancers.

Results

Predicting overall survival in triple-negative (TN) breast can-
cer patients: Assessing the prognostic value of stromal MCT4. 
Here, we investigated the predictive value of stromal MCT4 as 
a new candidate biomarker for determining clinical outcome 
in TN breast cancer patients. More specifically, we used anti-
MCT4 isoform-specific polyclonal antibodies to immunostain 
a tumor tissue microarray (TMA) containing paraffin sections 
taken from TN breast cancer patients at surgical resection. This 
TMA cohort is well-annotated and contains 181 patients seen 
at Thomas Jefferson University Hospital (TJUH), with up to 
250 months (> 20 years) of follow-up. In this TN breast cancer 
population, our main outcome of interest was overall survival. 
For comparison, the expression of MCT4 was scored in both the 
epithelial and stromal compartments. Also, the same TN-TMA 
was immunostained for stromal Cav-1 expression. Table 1 shows 
the descriptive statistics (age, race, tumor size, histologic grade, 
stage and lymph-node status) for the entire patient population.

Stromal MCT4 and stromal Cav-1 levels are inversely 
related. Representative images of MCT4 staining are shown in 
Figure 1, highlighting MCT4 expression in the stromal compart-
ment. Of the 181 TN breast cancer cases examined, 164 could 
be effectively scored for stromal MCT4 staining (0 = no staining; 
1 = mild-or-moderate staining; 2 = strong staining). Similarly, 159 
patients could be effectively scored for stromal Cav-1 staining.

Interestingly, the expression levels of stromal MCT4 and stro-
mal Cav-1 were inversely related. High levels of stromal MCT4 
directly correlated with a loss of stromal Cav-1 immunostaining, 
with a p-value of 5 x 10-15. Table 2 shows the joint frequency 
distribution of stromal MCT4 and stromal Cav-1, and Figure 2 
presents a mosaic plot of the data.

In this joint frequency distribution analysis, 55 patients 
showed high levels of MCT4 stromal staining, 72 showed mod-
erate staining and 32 showed an absence of MCT4 stromal stain-
ing. Similarly, 58 patients showed high levels of Cav-1 stromal 

mitophagy and aerobic glycolysis, due to increased oxidative 
stress.11-15 Virtually identical catabolic processes and associations 
with aerobic glycolysis were identified via analysis of laser-cap-
tured tumor stroma from human breast cancer patients lacking 
stromal Cav-1.16 This led to the proposal of a novel two-compart-
ment model of tumor metabolism, termed the “reverse Warburg 
effect.”11,17-24 In this model, the glycolytic tumor stroma transfers 
energy-rich nutrients (such as, L-lactate and ketone bodies) to 
anabolic tumor cells, which then “fuels” mitochondrial metabo-
lism in epithelial cancer cells.18

Thus, we searched for new biomarker(s) of clinical outcome, by 
analyzing breast cancer cells co-cultured with human fibroblasts. 
In this co-culture system, Cav-1 is degraded by oxidative stress-
induced autophagy in cancer-associated fibroblasts, resulting in a 
loss of stromal Cav-1 expression,25-28 mirroring what we observe 
in high-risk breast cancer patients. Under the same conditions, 
we demonstrated that breast cancer cells induce MCT4 overex-
pression in stromal fibroblasts, and that MCT4-induction can 
be prevented by antioxidants.29 Importantly, MCT4 is the major 
transporter directly responsible for L-lactate efflux/export from 
glycolytic cells. As such, MCT4 is a functional biological marker 
of oxidative stress (pseudo-hypoxia) and aerobic glycolysis in the 
tumor stroma.29

However, it remains unknown if MCT4 levels are controlled 
by Cav-1 and/or if stromal MCT4 has any prognostic value as a 
biomarker in breast cancer patients. To address this issue, we eval-
uated the prognostic value of stromal Cav-1 and stromal MCT4 
in parallel in the same triple-negative breast cancer patient cohort.

Here, we show that stromal MCT4 is (1) a new biomarker that 
independently predicts poor overall survival in triple-negative 

Table 1. Descriptive statistics for the TN Cohort

Variable N Values

Age (years) 179 55.5 ± 13.7

Race 178

White 76% (135)

African American 24% (43)

Tumor size (cm) 164 2.34 ± 1.80

Histologic grade 168

1–2 26% (43)

3 74% (125)

Stage 171

0 1% (1)

1 36% (62)

2 46% (78)

3 12% (21)

4 5% (9)

Lymph node status 146

Negative 58% (85)

Positive 42% (61)

Numbers in brackets are frequencies. m ± s denotes mean ± standard 
deviation. N denotes number of non-missing observations. Total num-
ber of subjects in this study is 181.

Table 2. Joint frequency distribution of stromal Cav-1 and stromal MCT4

MCT4 p value

0 1 2 Total

Cav-1 0 0 12 39 51 5 x 10-15

1 8 29 13 50

2 24 31 3 58

Total 32 72 55 159

There is evidence of a strong negative relationship between Cav-1 and 
MCT4 expression. The p-value is for the Fisher’s exact test of indepen-
dence between Cav-1 and MCT4 expression. The table includes only 
those records for which both Cav-1 and MCT4 are present (n = 159).
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Kaplan-Meier survival curves, plotting percent survival (%) vs. 
time since diagnosis (in months) (Fig. 3). The results of this 
analysis were highly statistically significant (with p-values in the 
range of 10-12 to 10-16).

This univariate analysis identified the two high-risk groups as 
patients with (1) absent stromal Cav-1 (score = 0; n = 51 patients) 
and (2) high stromal MCT4 (score = 2; n = 55 patients). Notably, 
the intersection of these two high-risk groups shows considerable 
overlap, with n = 39 patients in common (Table 2).

Hazard ratios are shown in Tables 3 and 4, with stromal 
Cav-1 and stromal MCT4 showing 14-fold and 50-fold differ-
ences in relative risk stratification, respectively.

In addition, 10-year survival rates are shown in Tables 5 and 
6. For example, if stromal MCT4 = 0, the 10-year survival rate 
was ~97% vs. < 20% for stromal MCT4 = 2. Conversely, if stro-
mal Cav-1 = 2, the 10-year survival rate was ~91% vs. ~25% for 
stromal Cav-1 = 0.

Combining stromal Cav-1 with stromal MCT4 allows 
further stratification of the intermediate risk group. Notably, 
the two intermediate risk groups identified by stromal Cav-1 
(score = 1) and stromal MCT4 (score = 1) could be further strati-
fied by combining both stromal markers, allowing the unambigu-
ous identification of high-risk and low-risk patients (Fig. 4 and 5 
and Tables 5 and 6).

For example, patients with stromal Cav-1 (score = 1) could be 
further sub-divided into high- and low-risk groups using stromal 
MCT4 (Fig. 4 and Table 5). Remarkably, in this intermediate risk 
group (Cav-1 = 1), the 10-year survival rates sharply declined from 
88% (MCT4 = 0) and 78% (MCT4 = 1), to < 1% (MCT4 = 2).

MCT4 expression in tumor epithelial cells has no prognos-
tic value. Finally, in a parallel analysis performed on the same 
exact patient TMAs, the levels of tumor epithelial MCT4 were 

staining, 50 showed an intermediate level of staining and 51 
showed an absence of Cav-1 stromal staining.

Most notably, patients with stromal Cav-1 = 0 are most 
likely to be stromal MCT4 = 2. Conversely, patients with stro-
mal Cav-1  =  2 are most likely to be stromal MCT4 = 0 or 1. 
Interestingly, we could not detect any patients with concomi-
tant loss of both stromal Cav-1 (Cav-1 = 0) and stromal MCT4 
(MCT4 = 0), indicating that a loss of stromal Cav-1 is strictly 
correlated with increased MCT4 expression. Conversely, only 
very few cases (3 out of 159 = 2%) had high stromal expression of 
both MCT4 and Cav-1, indicating that high stromal MCT4 and 
high stromal Cav-1 are nearly mutually exclusive events.

High stromal MCT4 predicts poor overall survival. Stromal 
Cav-1 and stromal MCT4 levels were also used to generate 

Figure 1. Cav-1 and MCT4: stromal staining in human breast cancer 
patients. Note the high expression of MCT4 in the tumor stroma and 
cancer-associated fibroblasts in a subset of TN breast cancer patients, 
which is associated with a loss of stromal Cav-1 (Table 2). Represen-
tative images of patients in the stromal high-risk groups are shown 
(Cav‑1 = 0 and MCT4 = 2). Despite a loss of stromal Cav-1 immunos-
taining, blood vessels remain Cav-1-positive, as endothelial cells are 
resistant to oxidative stress. Original magnification, 40x.

Figure 2. The levels of stromal MCT4 and stromal Cav-1 are inversely 
related in human breast cancer. A mosaic plot of the joint distribution 
of stromal Cav-1 and stromal MCT4 is shown. Note that there is clearly 
a negative relationship between the two biomarkers. For example, 
if stromal Cav-1 = 0, you are mostly likely observe stromal MCT4 = 2. 
Conversely, if stromal Cav-1 = 2, you are most likely to observe stromal 
MCT4 = 0 or 1. For specific numbers, see Table 2.
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Tumor cells secrete hydrogen peroxide (H
2
O

2
) to induce oxida-

tive stress (pseudo-hypoxia), “fertilizing” the tumor stroma.28 As 
a consequence, oxidative stress initiated by tumor cells is trans-
ferred to cancer-associated fibroblasts.28

Oxidative stress in cancer-associated fibroblasts then results in 
increased stromal ROS production and the activation of NFκB 
and HIF1-α transcription factors, inducing autophagy/mitoph-
agy, inflammation and aerobic glycolysis. Mitophagy (mitochon-
drial autophagy) then increases L-lactate and ketone production, 
due to mitochondrial dysfunction or deficiency.26,27,40

As a consequence, tumor-associated fibroblasts release high-
energy metabolites (L-lactate and ketones) and chemical building 
blocks (nucleotides, fatty acids and amino acids, such as gluta-
mine). These catabolites stimulate mitochondrial biogenesis, 
OXPHOS and autophagy-resistance in epithelial cancer cells, and 
protect cancer cells against chemotherapy-induced apoptosis.17,41,42

scored (Fig. 6). However, they showed no prognostic significance 
(p =  0.97). Thus, the prognostic value of MCT4 expression is 
highly compartment-specific and restricted to the tumor stroma.

Similarly, we have previously shown that tumor epithelial 
Cav-1 levels have no prognostic value in two different breast can-
cer cohorts.1,2

Discussion

Two-compartment tumor metabolism: The reverse Warburg 
effect. In 1889, Dr. Paget proposed the “seed and soil hypoth-
esis,” suggesting that cancer cells (the seeds) require a permissive 
microenvironment (the soil) to facilitate tumor growth, progres-
sion and metastatic dissemination.34-36

Recently, it has been proposed that oxidative stress in the 
tumor microenvironment may function as “fertilizer,” driving 
DNA-damage, inflammation and metabolic alterations.24,37-39 

Figure 3. Kalplan-Meier analysis reveals the prognostic value of stromal MCT4: Comparison with stromal Cav-1. Stromal Cav-1 and stromal MCT4 
levels were used to generate Kaplan-Meier survival curves, plotting percent overall survival (%) vs. time since diagnosis (in months). The results of this 
analysis were highly statistically significant (with p-values in the range of 10-12 to 10-16). This analysis identified the two high-risk groups as patients with 
absent stromal Cav-1 (score = 0; n = 51 patients) and high stromal MCT4 (score = 2; n = 55 patients).

Table 3. Hazard ratios for stromal Cav-1

Hazard Ratio 95% Confidence Interval

Stromal Cav-1 0 14.17 (5.53, 36.35)

1 4.82 (1.78, 13.08)

2 (ref) 1

Table 4. Hazard ratios for stromal MCT4

Hazard Ratio 95% Confidence Interval

Stromal MCT4 0 0.02 (0.00, 0.16)

1 0.20 (0.11, 0.35)

2 (ref) 1

Table 5. 10-year survival by stromal MCT4 expression

Stromal MCT4

MCT4 = 0 MCT4 = 1 MCT4 = 2

Overall 10-y survival 96.9% 75.5% 17.7%

MCT4 = 0 3.9 x 10-4 4.2 x 10-33

MCT4 = 1 1.5 x 10-13

Cav-1 = 1 10-y survival 87.5% 77.9% 0%

MCT4 = 0 0.50 7.3 x 10-14

MCT4 = 1 2.14 x 10–22

Overall 10-year survival and conditional on stromal Cav-1 expression. 
The survival estimates and the pairwise p-values testing equality of 10-y 
survival between strata are shown
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We have termed this new model of cancer metabolism the 
“reverse Warburg effect,” as aerobic glycolysis takes place in stro-
mal fibroblasts and not in epithelial tumor cells11,17,18 (Fig. 7).

In this two-compartment system, oxidative cancer cells and 
glycolytic fibroblasts are metabolically coupled in a host-parasite 
relationship.17 Tumor cells directly “feed” off the glycolytic host 
microenvironment, behaving like an infectious parasite.18 Thus, 
two-compartment tumor metabolism may be the basis of che-
moresistance or therapy-failure in cancer patients.17 We have also 
demonstrated that ROS produced in cancer-associated fibro-
blasts, has a “bystander effect” on adjacent epithelial cancer cells, 
leading to DNA-damage, genomic instability and aneuploidy.26

In summary, we believe that a critical biological function of 
the tumor stroma is to produce L-lactate and other high-energy 
catabolites (such as ketones and glutamine) to “fuel” oxidative 
mitochondrial metabolism (OXPHOS) in adjacent epithelial 
cancer cells.43-47

MCT4 and normal lactate transport. Specialized transport-
ers, termed monocarboxylate transporters (MCTs), function as 
“shuttles” to transfer L-lactate from one cell type to another.48,49 
For example, MCT4 is primarily a transporter that extrudes 
L-lactate from cells that utilize aerobic glycolysis for energy 
metabolism and lack functional mitochondria.50 Ketones are 
thought to be transported by the same MCT transporters that 
handle lactate transport. Physiologically, MCT4 expression 
is induced by hypoxia and/or oxidative stress, and MCT4 is a 
known HIF1-α target gene.48,51 Thus, MCT4 is a functional 
marker of oxidative stress and aerobic glycolysis, also known as 
the “Warburg effect.”29

Figure 5. Combined use of stromal MCT4 and stromal Cav-1 for stratifi-
cation of the intermediate risk group (stromal MCT4 = 1). The intermedi-
ate risk group identified by stromal MCT4 (score = 1) could be further 
stratified using stromal Cav-1, allowing the unambiguous identification 
of high-risk and low-risk patients. More specifically, patients with stro-
mal MCT4 (score = 1) could be further divided into high- and low-risk 
groups using stromal Cav-1, yielding 10-year survival rates of ~78–87% 
vs. <45% survival.

Figure 4. Combined use of stromal Cav-1 and stromal MCT4 for stratifi-
cation of the intermediate risk group (stromal Cav-1 = 1). The intermedi-
ate risk group identified by stromal Cav-1 (score = 1) could be further 
stratified using stromal MCT4, allowing the unambiguous identification 
of high-risk and low-risk patients. More specifically, patients with stro-
mal Cav-1 (score = 1) could be further divided into high- and low-risk 
groups using stromal MCT4, yielding 10-year survival rates of ~78–88% 
vs. <1% survival.

Two physiological examples of cells that normally undergo 
aerobic glycolysis are fast-twitch fibers in skeletal muscle and 
astrocytes in the brain.52-56 In skeletal muscle, MCT4 is selec-
tively expressed in fast-twitch fibers that are glycolytic and 
extrude lactate, which is then taken up by slow-twitch fibers.48,49 
In the brain, MCT4 is selectively expressed in astrocytes that are 
glycolytic and export lactate, which is used as an energy source by 
adjacent neurons.48,49 In skeletal muscle, such metabolic coupling 
is known as the “lactate shuttle,” and in the brain, it is called 
“neuron-glia metabolic coupling”.52-56

These normal physiologic forms of metabolic coupling are 
analogous to the “reverse Warburg effect,” which is observed in 
tumor tissue.29

MCT4 and the reverse Warburg effect. Here, we investi-
gated the compartment-specific expression of MCT4 in human 
breast cancer patients and determined its potential association 
with overall clinical outcome. As MCT4 is a marker of oxida-
tive stress and aerobic glycolysis as well as L-lactate extrusion, it 
should allow us to determine if the “Warburg effect” shows any 
prognostic value in epithelial cancer cells or the tumor stroma or, 
possibly, in both tumor compartments.

In the conventional Warburg effect, epithelial cancer cells 
undergo aerobic glycolysis, likely due to mitochondrial dys-
function,57-60 and are predicted to express high levels of MCT4. 
Conversely, in the “reverse Warburg effect,” stromal fibroblasts 
undergo aerobic glycolysis due to oxidative stress and autophagy/
mitophagy in the tumor stroma, resulting in a functional mito-
chondrial deficiency. As such, in the “reverse Warburg effect,” 
cancer-associated fibroblasts and the tumor stroma should 
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Consistent with our current observations, increased serum 
and tumor L-lactate is a specific marker of poor clinical outcome 
in variety of cancer types,61-64 and lactic acidosis is a life-threat-
ening complication in patients with metastatic breast cancer.65-70 
Thus, these previous results may have been due to L-lactate over-
production in the tumor microenvironment, rather than in epi-
thelial tumor cells.

Stromal MCT4: Implications for treatment stratification. 
Here, we also show that stromal Cav-1 can be used in combi-
nation with stromal MCT4 to further stratify the intermedi-
ate risk group into high-risk and low-risk subgroups, effectively 
increasing the prognostic power of stromal Cav-1 as a biomarker 
(Fig.  8). Now that we believe we can unambiguously identify 
high-risk breast cancer patients (stromal Cav-1 = 0 and stromal 
MCT4 = 2) with the “reverse Warburg effect,” this new biomarker 
combination could be used to initiate a series of prospective clini-
cal trials to effectively predict prognosis and reduce mortality in 
this high-risk patient population.

Based on our mechanistic studies, this high-risk patient 
population should be more responsive to certain FDA-approved 

overexpress MCT4.29 In both scenarios, glycolytic MCT4(+) 
cells would be metabolically coupled with oxidative mitochon-
drial metabolism (OXPHOS) in adjacent MCT1(+) cells: MCT4 
functions in L-lactate efflux, while MCT1 functions in L-lactate 
uptake (Fig. 7).

Thus, we directly compared the prognostic value of stromal 
and epithelial MCT4 expression in triple-negative breast cancer 
patients within the same patient cohort. Our results show that 
high stromal MCT4 levels are specifically associated with poor 
overall survival. In contrast, expression of MCT4 in epithelial 
tumor cells had no prognostic value. As a result, it appears that 
high expression of MCT4 in the tumor stroma (the “reverse 
Warburg effect”) is specifically associated with a “lethal tumor 
microenvironment” (Fig. 7).

Figure 6. MCT4 levels in tumor epithelial cells have no prognostic 
value. In a parallel analysis performed on the same patient TMAs, the 
levels of tumor epithelial MCT4 were scored. However, they showed no 
prognostic significance (p = 0.97). Thus, the prognostic value of MCT4 
expression is restricted to the tumor stroma.

Figure 7. Two-compartment tumor metabolism: MCT4 expression and 
the Warburg effect. Here, we directly compared the prognostic value of 
stromal and epithelial MCT4 expression in triple-negative breast cancer 
patients within the same patient cohort. MCT4 expression is a specific 
marker of aerobic glycolysis (with enhanced L-lactate and ketone 
production), also known as the Warburg effect. Our results directly show 
that high stromal MCT4 levels are specifically associated with poor over-
all survival (A). In contrast, expression of MCT4 in epithelial tumor cells 
had no prognostic value (B). Thus, only induction of the Warburg effect 
in the tumor stroma has prognostic value. In both (A and B), note that 
glycolytic MCT4(+) cells would be metabolically coupled with oxidative 
mitochondrial metabolism (OXPHOS) in adjacent MCT1(+) cells, resulting 
net energy transfer (red arrows). MCT4 normally functions in L-lactate 
efflux/export, while MCT1 functions in L-lactate uptake/import.

Table 6. 10-year survival by stromal Cav-1 expression

Stromal Cav-1

Cav-1 = 0 Cav-1 = 1 Cav-1 = 2

Overall 10-y survival 25.2% 58.9% 90.8%

Cav-1 = 0 0.001 5.9 x 10-18

Cav-1 = 1 4.6 x 10-4

MCT4 = 1 10-y survival 43.8% 77.9% 86.7%

Cav-1 = 0 0.05 0.01

Cav-1 = 1 0.39

Overall 10-year survival  and conditional on stromal MCT4 expression. 
The survival estimates and the pairwise p-values testing equality of 10-y 
survival between strata are shown
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Immunostaining. Cav-1 and MCT4 expression levels were 
assessed using a standard three-step avidin-biotin immunoper-
oxidase method, with a rabbit polyclonal anti-Cav-1 antibody 
(Santa Cruz Biotech, Inc. (N-20; sc-894, Santa Cruz Biotech, 
diluted 1:1,000) or a rabbit polyclonal anti-MCT4 antibody 
(diluted  1:250) a three-step avidin biotin immunoperoxidase 
method. TMA sections were de-paraffinized and re-hydrated 
through graded alcohols. Antigen retrieval was performed in 
10 mM citrate buffer, pH 6.0, for 10 min in a pressure cooker. 
Sections were cooled to room temperature, rinsed in PBS, 
blocked with 3% (v/v) H

2
O

2
 for 15 min, followed by blocking for 

endogenous biotin using the DakoCytomation Biotin Blocking 
System (#X0590). Slides were then incubated for 1 h with 10% 
goat serum and incubated with primary antibody overnight at 
4°C. Antibody binding was detected using a biotinylated second-
ary antibody (Vector Labs, #BA-1000) followed by streptavidin-
HRP (Dako #K1016). Immunoreactivity was detected using 
Dako Liquid DAB + Substrate-Chromogen Solution.

Stromal scoring. Stromal Cav-1 staining was scored semi-
quantitatively as negative (0, no staining), weak (1, either diffuse 
weak staining or strong staining in less than 30% of stromal cells 
per core) or strong (2, defined as strong staining of 30% or more 
of the stromal cells).1-3 MCT4 expression in the stroma was per-
formed using same criteria as those we applied for scoring Cav-1 
expression.

Epithelial scoring. For evaluating MCT4 expression in 
tumor epithelial cells, we used a previously developed scoring 
system.31 Sections were scored semi-quantitatively as follows: 0, 
0% immuno-reactive cells; 1, <  5% immuno-reactive cells; 2, 
5–50% immuno-reactive cells; and 3, > 50% immuno-reactive 
cells. Similarly, intensity of staining was evaluated semi-quan-
titatively on a scale 0–3, with 0 representing negative; 1, weak; 

therapeutics, such as antioxidants [N-acetyl-cysteine 
(NAC)], autophagy inhibitors (chloroquine and hydroxy-
chloroquine), mitochondrial “poisons” (metformin) as 
well as authophagy inducers (rapamycin and its deriva-
tives).20 All of these therapies would uncouple anabolic 
cancer cells from their catabolic hosts, by interrupting 
energy-transfer, effectively cutting off the fuel supply 
or preventing cancer cells from using the fuel supply 
(L-lactate, ketones and/or glutamine) (Table 7). For 
example, they could be used synergistically, in combina-
tion with conventional therapies or during remission after 
conventional therapy, to prevent recurrence, or even as 
single agents in patients with advanced metastatic disease.

New targeted therapies would include MCT4 
inhibitors, which have yet to be developed, to inhibit 
L-lactate/ketone efflux from glycolytic cancer-asso-
ciated fibroblasts. MCT1/2 inhibitors may also be a 
rational approach, as they would likely prevent epithe-
lial cancer cells from “siphoning-off” L-lactate/ketones 
from the MCT4(+) tumor microenvironment. MCT1 is 
highly expressed in epithelial tumor cells and is involved 
in L-lactate/ketone uptake.29

So, high-risk patients (defined as, stromal Cav-1 = 0 
and stromal MCT4 = 2) could be selected for treatment 
with MCT1-inhibitors (such as, AR-C155858, AR-C117977 
and AZD-3965 71,72), which have recently been developed by 
AstraZeneca and are now undergoing Phase I/II clinical trials.

Materials and Methods

Materials. Anti-MCT4 isoform-specific rabbit polyclonal anti-
bodies were previously generated and characterized by Dr. Nancy 
Philp.30 Isoform-specific antibodies were produced against the 
18-mer synthetic oligopeptide corresponding to the C-terminal 
amino acids of MCT4.30

The study population and tumor microarray construction. 
Cases for the study were obtained from the Surgical Pathology 
files at Thomas Jefferson University with Institutional Review 
Board approval. The tissue microarray (TMA) contained tumor 
samples derived from 181 largely consecutive patients with triple-
negative breast carcinoma (with follow-up information) treated 
at the Thomas Jefferson University. For inclusion in this study 
as TN breast cancer, expression of estrogen, progesterone recep-
tors was not detected or present in < 1% of tumor cells, with a 
satisfactory positive control. HER2 was scored 0–1+ or 2+, and 
an absence of HER2 amplification by fluorescent in situ hybrid-
ization was required for negativity. All cases were invasive ductal 
carcinomas (IDC). Clinical and pathological variables were deter-
mined following well-established criteria. All TN breast cancers 
were graded according to the method described by Elston and 
Ellis; lymphovascular invasion was classified as either present or 
absent. The tumor tissue-microarrays (TMAs) were constructed 
using a tissue arrayer (Veridiam). Two tissue cores (0.6 μm diam-
eter) were sampled from each block to account for tumor and tis-
sue heterogeneity and transferred to the recipient block. Clinical 
and treatment information was extracted by chart review.

Figure 8. Combining stromal Cav-1 with stromal MCT4 allows for more powerful 
prognostic stratification. Based on our current studies, patients would first be 
stratified into high-, intermediate- and low-risk groups, based on the levels of 
stromal Cav-1 (as a primary biomarker). Then, patients in the intermediate-risk 
group (with stromal Cav-1 = 1) could be further stratified into high- and low-risk 
groups, using stromal MCT4 (as a secondary biomarker). High-risk patients, with 
stromal MCT4 = 2, could be treated differently than lower-risk patients, with stro-
mal MCT4 = 0 and 1, allowing for more personalized cancer care.
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2, moderate and 3, strong staining. Then, the final score was cal-
culated, reflecting both the percent of immuno-reactive cells and 
staining intensity.

Statistical analysis. As noted, we scored stromal Cav-1 and 
MCT4 expression in the TMAs as 0 (none), 1 (low) and 2 (high). 
Epithelial MCT4 was scored as 0 (none), 1 (low), 2 (medium) 
and 3 (high). The outcome of interest here is overall survival, i.e., 
death can occur for any cause. Survival curves were computed 
by expression strata using the Kaplan-Meier method, and dif-
ferences between survival curves was assessed using the log-rank 
test. Hazard ratios for the biomarkers were computed using Cox 
proportional hazards regression, using the biomarker as predictor 
and adjusting for age and race. Agreement with the proportional 
hazards assumption was verified. Differences in 10-year survival 
were assessed based on two-sample z-tests, using estimates and 
standard errors from the Kaplan-Meier curves. All analyses were 
done using the statistical analysis package R version 2.13,32 along 
with the R package survival version 2.36–9.33 Associations were 
assessed using the χ2-test for independence.

See the following MCT1 inhibitor trial-related information. 
www.pharmaceutical-technology.com/news/news95840.html and 
http://drugdiscoverynews.com/index.php?pg=77&articleid=4235
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