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The heat shock proteins (HSPs) represent a class of proteins
which are induced under physiologic stress to promote cell
survival in the face of endogenous or exogenous injury. HSPs
function predominantly as molecular chaperones, maintaining
their “client” proteins in the correct conformational state in
order to withstand a biologic stressor. Elevated HSP expression
is also found in a range of pathologic conditions, notably
malignancy. Cancer cells exploit the pro-survival phenotype
endowed by HSPs to bolster their proliferative potential.
Consequently, developing means of abrogating HSP
expression may provide a way to render cancer cells more
susceptible to radiation or chemotherapy. Here, we review the
members of the HSP class and their roles in malignancy. We
focus on attempts to target these proteins, particularly the
small HSPs, in developing potent radiation and chemotherapy
sensitizers, as well as proposed mechanisms for this
sensitization effect.

The Heat Shock Proteins—Overview

In the face of physiologic stress, cells are equipped with a range
of mechanisms to successfully withstand such insults. A classic
example of one such mechanism is the heat shock response, first
described in Drosophila in 1962.1 The heat shock response was
found to be orchestrated by a protein class later termed the Heat
Shock Proteins (HSPs), whose synthesis, unlike the majority of
cellular proteins, increased under conditions of heat shock.2 It
was later shown that the HSPs allow cells to survive a wide range
of both endogenous and exogenous insults including cytotoxic
agents, oxidants, heavy metals and infection.3,4 In response to
these stressors, the transcriptional regulator HSF1, in concert with
family member HSF2, mediates heat shock gene transcription to
enact the stress response and increase cellular HSP levels.5

The HSPs are categorized by molecular weight and include
members Hsp100 (this HSP has no mammalian homolog, though
is characterized in bacteria and yeast), Hsp90, Hsp70, Hsp60,
HSP40 and the small HSPs, which range between 13–42 kDa3,6-8

(Table 1). The HSPs serve predominantly as molecular chaper-
ones for other cellular proteins; high molecular weight HSPs
require ATP as well, whereas low molecular weight HSPs are
ATP-independent.4 Because they interact with a wide range of
proteins in their role as molecular chaperones, HSPs have not
only been implicated in a variety of cellular functions, but are also
regarded as important actors in a range of pathological conditions.

Molecular chaperones function by providing a sequestered
folding chamber in which a target or “client” protein can assume
its native conformation. Client proteins therefore appropriately
mature without risk of forming aggregates or non-specifically
associating with unwanted cellular proteins.3 While chaperones
are important for cellular physiology even under basal conditions,
their role obviously assumes increased importance under stress,4

particularly because such adverse conditions can precipitate
protein misfolding or aggregation. Such aberrant proteins can,
in turn, disrupt important regulatory complexes. Therefore, HSPs
function to restore cellular homeostasis by ensuring proper for-
mation of new proteins, preserving existing complexes, restoring
function of denatured proteins, and solubilizing protein aggre-
gates.3,9,10 Their chaperone activity also allows HSPs to prevent
inappropriate activation of a client protein’s downstream targets,
a function referred to as protein “holding.”3,11 This process occurs
predominantly in the cytoplasm and ought to be distinguished
from that of the glucose-regulated proteins (GRPs). GRPs are a
related class of proteins also induced by cellular stress and
associated protein damage in the endoplasmic reticulum. They are
induced by similar stressors, but act principally on secretory poly-
peptides such as immunoglobulins and various glycoproteins.12,13

While GRPs have also been studied in relation to tumorigenesis,
this review will focus only on the cytoplasmic chaperones.

Although the HSPs have been characterized predominantly
as chaperones, they have also been invoked in other cellular
processes including apoptosis and the immune response. Like the
Bcl-2 protein family, the HSPs include both pro-apoptotic and
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anti-apoptotic family members and function at a variety of steps
in the apoptotic signaling cascade. For example, Hsp27 and
Hsp70 have been implicated in anti-apoptotic roles, whereas
Hsp60 can have pro-apoptotic function (see detailed discussion to
follow). While HSPs’ chaperone activity may play some role
in their ability to modulate the apoptotic response, studies have
also demonstrated effects on apoptosis independent of chaperon-
ing activity. This holds true both for pro-apoptotic and anti-
apoptotic effects.14 With regard to their immune-modulatory role,
HSP members such as Hsp70 and Hsp90 have been found
extracellularly to elicit an immune response under conditions of
cell necrosis.4,15

The Large HSPs

Hsp90. Hsp90 is the most abundantly expressed HSP. Even
under basal conditions, Hsp90 can represent as much as 2% of
the total cellular protein content.10,16 While its high basal expres-
sion suggests its importance in cellular homeostasis, Hsp90 has
also been heavily studied with regard to its anti-apoptotic func-
tion and association with oncogenesis.2 Hsp90’s principle func-
tion is as molecular chaperone, and it acts in concert with several
co-chaperone proteins, namely Hsp70, Hsp40, Hip, Hop, p23,
and Cdc37 in an ATP-dependent manner. The Hsp90 complex
binds immature client proteins to help them assume their native
conformation. Many of Hsp90’s client proteins are conforma-
tionally-unstable proteins involved in signal transduction path-
ways important in cell development, growth, and survival. They
include transmembrane tyrosine kinases (such as HER-2/neu,
EGFR, IGF-1R), signaling proteins (Akt, Raf-1 and IKK), tumor
suppressors, (p53, Kit), chimeric signaling proteins (Bcr-Abl),
steroid hormone receptors, and cell-cycle regulators (see review
by Kamal et al.).17 Therefore, Hsp90 can alter protein activity,

participate in cell cycle regulation, influence cell growth, and in
so doing, alter cellular behavior to favor proliferation.4

Hsp90 can also promote cell survival through its anti-apoptotic
activity, the majority of which relates to its influence on the
NF-kB pathway.7 Hsp90 stabilizes RIP, which associates with
the TNF-a receptor when it binds its ligand, thereby promoting
NF-kB activity.18,19 Downstream in the NF-kB pathway, Hsp90
and its co-chaperone Cdc37 promote proper folding of the IKK
and Akt protein complexes, which each enhance I-kB dissocia-
tion from NF-kB and subsequently enhance its activity.19 Hsp90
also inhibits the dephosphorylation of Akt to promote cell
growth.20,21 Finally, Hsp90 can influence the intrinsic apoptotic
pathway as well by inhibiting oligomerization of Apaf-1, thereby
preventing the apoptosome complex from forming and conse-
quently, prevent downstream caspase activation.22

Hsp70. Hsp70 is actually a class of several proteins unto itself.
It is the most highly conserved and most strongly induced HSP
in all organisms from E. coli to man.3,11,23 Hsp70 helps preserve
a number of cellular activities in stress conditions including
mitosis, meiosis, and cellular differentiation. Similar to Hsp90,
Hsp70 acts as a chaperone to maintain unfolded proteins in
an intermediate state to prevent inappropriate aggregation, and
then promotes refolding to their native conformation.24 This
process also depends on ATP as well as other co-chaperones.23

Unlike Hsp90, however, Hsp70 family members are generally
expressed at low levels under basal conditions, though are highly
inducible. Several members of the Hsp70 sub-family, however,
are constitutively expressed.4,7

The Hsp70s promote cell survival by interfering with apop-
tosis25 and inhibiting permeabilization of the lysosomal mem-
brane.26 This function is in contrast to that of Hsp90, whose
predominant role is as a molecular chaperone. As anti-apoptotic
molecules, Hsp70s are considered the prototypical inhibitors of

Table 1. Major heat shock proteins involved in radiosensitization and chemosensitization

Heat shock
protein

Sub-family ATP dependence Effect Inhibitors of HSP function
in radiosensitization and
chemosensitization

References

Hsp90 Large ATP dependent •Stabilizes cell growth signaling molecules through
chaperone activity
•Antiapoptotic
•Promotes endothelial cell proliferation and mobility

Small molecule-17-AAG,
17-DMAG, geldanamycin,
radicicol

3, 4, 7, 11,
18–22, 55,
56

Hsp70 Large ATP dependent •Stabilizes cell growth signaling molecules through
chaperone activity
•Antiapoptotic
•Antinecrotic
•Promotes endothelial cell proliferation and mobility

None in clinical use, though
several small molecule
inhibitors have been
identified (review in
Powers et al.)

3, 4, 7, 9 11,
24, 25, 27,
28, 30, 55,
56

Hsp60 Large ATP dependent •Proapoptotic
•Antiapoptotic

None identified to date 7, 29, 30, 32,
33

Hsp27 Small ATP independent •Stabilizes cell growth signaling molecules through
chaperone activity
•Antiapoptotic
•Antinecrotic
•Promotes endothelial cell proliferation and mobility
•Antioxidant
•Actin stabilization
•Proteasome activation

•Small molecule- Zerumbone
•Nucleic acid–Antisense
oligonucleotide, siRNA,
others in development
•Protein aptamer

4, 7, 9, 14,
22, 36, 37,
42, 44–53,
55, 56
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apoptosis, blocking both intrinsic and extrinsic pathways.4,9,27,28

They can safeguard cells from death induced by TNFa, monocyte
signaling, oxidative damage, chemotherapeutics, radiation, NO,
and heat stress (reviewed by Arya et al.).7 Hsp70 also inhibits
apoptosome formation through interactions with Apaf-129 and
can impede events downstream of caspase activation such as
changes in nuclear morphology and phospholipase A2 activation.30

Moreover, Hsp70s prevent nuclear translocation of apoptosis
inducing factor (AIF) by binding the protein upon its release from
mitochondria.28 Lastly, Hsp70 prevents cell death through a
caspase-independant cell death pathway, preventing lysosomal per-
meabilization and subsequent release of cathepsin into the cytosol.26

Hsp60. Hsp60 is less well-characterized than other heat shock
proteins. Interestingly, it harbors both pro-apoptotic and anti-
apoptotic functions.7 For instance, Hsp60 has been investigated
in cardiac myocytes as an inhibitor of apoptosis. It works
alongside Hsp10 to maintain mitochondrial integrity and binds
Bak to prevent downstream activation of apoptotic pathways.31,32

As an apoptosis activator, Hsp60 is found in esophageal carci-
noma cells to be highly expressed in correlation with high
apoptotic index.33 Hsp60 was also found to be necessary for
caspase-mediated apoptosis in Drosophila melanogaster.34

The Small HSPs

The small HSPs are comprised of 10 members including, most
notably, Hsp27 (also known as Hsp25 and HspB1), but also
MKBP, HspB3, aA-crystallin, aB-crystallin, Hsp20, cvHsp,
Hsp22, HspB9, and HspB10. They have been studied in
connection to smooth muscle function, platelet regulation,
cardiovascular disease, mycobacterial disease, neurological disease,
and cancer.35-37 Hsp27 in particular has received attention due to
its association with a wide range of malignancies. It consists of a
C-terminal domain structurally similar to the a-crystallin proteins
found in the lens of the eye. It also harbors an N-terminal
hydrophobic WDPF motif required for oligomerization.38 In vivo,
Hsp27 is found in 100–800 kDa oligomeric complexes39 which
dissociate upon phosphorylation at important regulatory sites
S15, S78, and S82.38,40 Hsp27 oligomerization is regulated by
MAPKAP kinases 2 and 3, which are themselves induced by
various stressors including mitogens, inflammatory cytokines,
and a variety of oxidants.38 Hsp27’s quaternary structure helps
determine its function with various oligomeric forms each
performing a different specific role in the cell.41 For example,
the protein was found to bind cytochrome c or DAXX only in its
hypophosphorylated, oligomeric form.42,43 In fact, some attempts
to modulate the activity of Hsp27 as a therapeutic modality in
cancer have focused on interfering with its oligomerization,44 the
details of which will be discussed in subsequent sections.

The functions of Hsp27 are wide and varied, though the
protein is recognized predominantly for its role as a molecular
chaperone.45 Of the HSPs, Hsp27 is the most strongly induced
chaperone besides Hsp70. Heat, oxidative stress, irradiation, and
anti-cancer drugs all promote increased Hsp27 expression.9

Unlike its larger family members, Hsp27 is ATP-independent
and its chaperone activity is regulated by its oligomerization

state. The large multimer has the highest affinity for client
proteins and its level of chaperone activity can thus be tailored by
modifying the extent of oligomerization.4,46

Hsp27 also displays strong anti-apoptotic behavior. It has
been found to antagonize a range of anti-apoptotic pathways
including that induced by staurosporine, the Fas death receptor
pathway, deprivation of growth factors, oxidative damage, hyper-
thermia, UV radiation, and chemotherapeutics.14 Hsp27 interacts
with procaspase-9 and procaspase-3, inhibiting upstream cleavage
events in the apoptotic cascade.22,43,45 It is also thought to bind
and sequester cytochrome c released into the cytoplasm in
response to death signals. Consequently, apoptosis is inhibited as
the apoptosome cannot associate with Apaf-1.7,37,38,43 Hsp27 also
interacts with Daxx, preventing its translocation to the plasma
membrane and subsequent Fas-mediated apoptosis.42 Lastly,
Hsp27 has been tightly linked to activation of Akt, which further
promotes cell survival. An early study of Hsp27 demonstrated
a direct interaction of Hsp27 and Akt in neutrophils, the dis-
sociation of which resulted in enhanced neutrophil apoptosis.47

Later, Hsp27 was found to upregulate Akt indirectly through
a PI3K-dependent mechanism. This resulted in prevention of
Bax-mediated mitochondrial permeabilization and apoptosis.48

Interestingly, in addition to protecting against apoptosis, Hsp27
was shown to prevent cell necrosis, demonstrated in an early study
in a murine fibrosarcoma model in which necrosis was induced
by TNFa.49

Hsp27 has been investigated as an anti-oxidant, endowed
with two mechanisms of preventing oxidative stress. Besides its
ability to repair oxidized protein damage through its chaperone
activity, it also appears to enhance a cell’s ability to withstand
oxidative damage by increasing cellular glutathione.45,50 Although
the precise mechanism for this cytoprotective role of Hsp27 is
currently unclear, it has been postulated that Hsp27 increases
glucose-6-phosphate dehydrogenase, glutathione reductase, and
glutathione transferase in L929 cells, allowing for a greater store
of reduced glutathione with which the cell can ward off oxida-
tive damage.51 Additionally, small oligomers of Hsp27 stabilize
polymerized, or F-actin, exerting a protective effect through
the cytoskeleton.52-54 The small oligomers have also been found
to play a role in protein degradation through the ubiquitin-
proteasome pathway under cellular stress.4,55 Lastly, small Hsp27
oligomers, which favor the degradation of I-kB and consequently
enhance NF-kB activity, contribute to its anti-apoptotic qualities
as well.37

Heat Shock Proteins and Cancer

The Role of the Large HSPs. Given their pro-proliferative
and anti-apoptotic properties, as well as their interaction with a
wide variety of cell signaling pathways, HSPs have been heavily
studied in the context of cancinogenesis. Several members of the
HSP class have shown high correlation to tumor cell expansion,
differentiation, and apoptosis.2 Hsp90 in particular has been
extensively investigated and studies have identified a variety of
its client proteins to be associated with cancer including
steroid hormone receptors, tyrosine kinases, SRC family kinases,
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serine/threonine kinases, cell-cycle regulators, telomerase, tran-
scription factors, and mutant chimeric oncogenes, such as Bcr-Abl
(reviewed in Didelot et al.).4 Hsp90 also stabilizes mutant, inac-
tive forms of tumor suppressors and DNA repair proteins such as
p53 and MSH2.3 Hsp70’s anti-apoptotic effect, impact on lyso-
somal enzymes, and effect on tumor suppressor proteins such
as p53 have implicated a carcinogenic role for this protein as
well. Moreover, Hsp70 has been found to inhibit p21- and p53-
dependent senescence pathways, thereby further promoting cell
proliferation.56

The large HSPs can also contribute to tumorigenesis outside
of their cell growth regulatory functions. For instance, Hsp90
and Hsp70 stimulate angiogenesis by promoting endothelial cell
mobility and proliferation. This effect is mediated through
chaperoning activity with HIF1a and stimulation of nitric oxide
synthase and VEGF.3,56,57 Hsp90 can also stimulate tumor
metastasis through interaction with MMP-2 to facilitate tumor
cell migration. Lastly, extracellular release of Hsp70 stimulates
an inflammatory environment in which tumors thrive.3,56

The association between HSPs and cancer is further supported
by clinical evidence as well. Hsp90 is overexpressed in human
tissue from a range of cancers including breast tumors, lung
cancer, leukemia, and Hodgkins and non-Hodgkins B-cell
lymphoma.58 Hsp90 expression is also associated with poor
prognostic markers in breast cancer such HER-2/neu and estrogen
receptor.59 Hsp70 is associated with a poor prognosis in human
cancer as well, showing high expression in endometrial cancer,
osteosarcoma, renal tumors, breast cancer, gastric cancer, and
leukemia.4,9,60,61 One study investigated serum Hsp70 compared
with serum PSA in detecting early stage prostate cancer, and
demonstrated a significant correlation between serum protein
levels and disease.62 Further, patients with CML expressing the
chimeric oncogene Bcr-Abl were also found to harbor high levels
of Hsp70,63 suggesting a role for the chaperone in the stability of
the protein in vivo. Such a finding was particularly striking in
patients with imatinib-resistant CML.64

The small HSPs in cancer: Focus on Hsp27. Hsp27 has been
emerging recently as an important player in cancer develop-
ment. Multiple in vitro experiments have lent support to Hsp27’s
pro-oncogenic role. Hsp27 expression is particularly high even
under basal culture conditions of transformed cells. For example,
SQ20B, a radio-resistant head and neck squamous cell carcinoma
cell line, exhibits a remarkably elevated cellular concentration of
Hsp27.45 Additionally, lung cancer stem cells in culture with
elevated Hsp27 demonstrate apoptotic resistance in response to
superoxide, cisplatin, gemcitabine, and combination treatments.65

These findings agree with known mechanisms of action of Hsp27
including inactivation of caspase-9 and caspase-3.65 Additionally,
confluent cells demonstrate especially high levels of Hsp27 and
have proven more resistant than proliferating cells to chemother-
apeutic agents, and harbor dramatically lower levels of ROS.66

Lastly, one study comparing primary and metastatic head and
neck cancer cell lines showed that the cells proliferate at similar
rates, but the latter shows enhanced migration activity. This
phenotype correlates with a 22.4-fold higher Hsp27 mRNA level
and 25-fold higher protein level.67

The in vitro findings on Hsp27’s behavior in transformed
cells have paralleled in vivo observations. For instance, the pro-
tein is reportedly overexpressed in clinical specimens from oral
squamous cell carcinoma, oropharyngial and laryngial cancers.53

Hsp27 has also been shown to provide useful prognostic infor-
mation for cancer patients.37 For example, high Hsp27 expres-
sion was related to poor prognosis following surgery as well as
resistance to adjuvant therapy across several cancer types includ-
ing breast cancer, gastric cancer, osteosarcoma, prostate cancer,
head and neck, and colon cancer.45,53 Hsp27 expression can yield
prognostic information about chemotherapy response as well.
For example, high Hsp27 expression in childhood leukemia can
predict a poor response to vincristine.45,68 Hsp27 is also thought
to play a role in chemotherapy resistance in breast cancer
patients.69

HSPs as Targets for Sensitization to Radiotherapy
and Chemotherapy

Radiation and chemotherapy are cornerstones of therapy for
many human cancers. As tumors continue to grow in individuals
undergoing treatment, genetic and epigenetic alterations within
cancer cells promote resistance to these modalities. Moreover,
normal tissues can be damaged by these treatments and pose
a dose-limiting barrier to complete cure of malignancies.
Therefore, significant effort has been invested toward identifica-
tion of potent means of sensitizing cancer cells to radiation and
chemotherapy.70 It stands to reason that HSPs, with their
cytoprotective function in the face of stress, may endow tumors
with a therapy-resistant phenotype. Thus, these proteins may
serve as an “Achilles heel” in cancer cells that can be exploited
to sensitize them to radiation or chemotherapy.45 Investigators
have probed ways to attack cancer cells by impairing the activity
of the HSPs through a variety of means, including small molecule
inhibitors, antisense oligonucleotides, and protein aptamers.

HSPs as targets in chemosensitization. Small molecule
inhibitors of HSPs have shown promise in rendering cancer cells
more sensitive to chemotherapy. Several Hsp90 inhibitors have
been characterized, the most noteworthy being 17-allylamino-
geldanamycin (17-AAG), 17-(dimethylaminoethylamino)-17-
demethoxygeldanamycin (17-DMAG), geldanamycin, and
radicicol.71 The latter two have shown potent antitumor activity
in preliminary experiments, but expose patients to excessive
hepatotoxicity.70 For example, in leukemia, the Hsp90 inhibitor
geldanamycin combined with doxorubicin increases apoptosis of
cancer cells. The Hsp90 inhibitor 17-AAG has shown tumor
growth-inhibitory activity in preclinical studies across a range of
cancer types including breast cancer, melanoma, lung cancer,
myeloma, and prostate cancer.2 In breast cancer, tumors regress
when treated with 17-AAG and angiogenesis inhibitors.3,10 17-
AAG was also found to induce Her-2 degradation in breast
tumor xenographs with Her-2 overexpression.72 Interestingly,
several current chemotherapeutic agents such as taxol, cisplatin,
and trichostatin-A possess intrinsic anti-Hsp90 qualities which
may contribute to their mechanisms of action (reviewed in Soti
et al.).10
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The recent development of antisense oligonucleotide and
siRNA technology to selectively knock down the expression of
target genes has also shown promise in altering HSP expression
for cancer cell chemosensitization. In cultured colorectal cancer
cells, downregulation of Hsp27 with siRNA enhanced irinotecan
sensitivity and high Hsp27 expression correlated with irinotecan
resistance. In mouse xenograft prostate cancer studies, systemic
administration of Hsp27 siRNA not only decreased tumor
progression, but also rendered these tumors more sensitive to
paclitaxel,22,73,74 as well as to the Hsp90 inhibitor 17-AAG.45,75

Similarly, the efficacy of antisense oligonucleotides in orthotopic
mouse models of bladder cancer, known to harbor elevated Hsp27
expression, have shown promise. Intravesical administration of
antisense Hsp27 oligonucleotides to mice with bladder cancer
yielded enhanced tumor cell toxicity under concurrent admin-
istration of paclitaxel, cisplatin, and gemcitibine.76

Lastly, chemosensitization through HSPs with the peptide
aptamer approach has been attempted as well. Aptamers are
short peptide sequences mounted on a scaffold protein which
force the peptide to maintain a specific conformation. Libraries
of aptamers with random peptide sequences can be screened
for interaction with a protein of interest. Cancer cell lines
treated with protein aptamers that bind Hsp27 showed enhanced
cell death in response to chemotherapeutics doxorubicin and
cisplatin.41 Protein aptamers represent a novel approach to
abrogating Hsp27 activity to radiosensitize tumors. However,
only early studies have been reported with this technique.

HSPs as targets in radiosensitization. Small molecules to
impede HSP function represent one heavily-investigated approach
to radiosensitize cancer cells. 17-AAG possesses promising in
vitro and in vivo radiosensitization activity and shows clinical
promise across several cancer types, including cervical, lung, and
colon cancers.2,7717-AAG has 100-fold higher affinity for Hsp90
in cancer cells compared with normal cells. This phenomenon
seems to be related to Hsp90’s high chaperoning activity in
cancer cells, forcing it to adopt a conformation that favors 17-
AAG binding.70,78 Small molecule inhibitors for Hsp70 have
also been tested, the most effective of which are quercetin and
related chemical derivatives,79 as well as triptolide.80 However,
these molecules inhibit the expression of the protein rather than
its function, and do not appear to be highly specific for Hsp70.4

Another small molecule approach involves zerumbone, an extract
from a subtype of ginger that polymerizes Hsp27 monomers. This
compound was shown to sensitize pre-treated cancer cells to
radiation in vitro and in a mouse xenograft tumor model by
inhibiting Hsp27’s anti-apoptotic activity.44

The oligonucletide/RNAi strategy has also been exploited for
radiosensitization. For example, RNAi targeting Hsp27 in head
and neck cancer cells has made them more radiosensitive in
clonogenic survival assays, increases TUNEL positivity and
caspase activation after irradiation, increases ROS production,
lowers cellular glutathione content, and increases mitochondrial
membrane permeability.45 Additionally, downregulating Hsp27
expression using antisense cDNA enhances prostate cancer cells’
sensitivity to radiation.81 In vivo, mice treated with Hsp27 anti-
sense oligonucleotides and radiation showed tumor regression and

enhanced survival in a xenograft tumor model. Additionally, these
investigators noted decreased tumor angiogenesis, a high rate of
tumor cell apoptosis, and decreased cellular glutathione in the
tumors as well.82

Recently, two protein aptamers that interfere with Hsp27
activity in SQ20B cells also acted as radiosensitizers, increasing
clonogenic cell death after irradiation. In the same study, aptamers
slowed tumor growth in SQ20B squamous cell carcinoma
xenografts in mice. This effect was mediated through cell cycle
arrest.41

Mechanisms for radio-sensitization through HSPs. Clearly,
HSPs show potential as targets for radiosensitization and chemo-
sensitization. However, the mechanism by which abrogating
expression of HSPs achieves such an effect appears to be com-
plex and multifactorial (Fig. 1). One straightforward hypothesis
argues that HSPs simply stabilize signaling molecules that speci-
fically protect cells from radiation- or chemotherapy-induced cell
death.71 Studies investigating this mechanism have shown that
tumor cell radiosensitization from Hsp90 inhibition was able to
cause reduced expression of client proteins Akt, EGFR, Raf-1,
ErbB2, IGF-1R and an increase in their ubiquitin-mediated
proteasomal degradation.70 Many of these proteins have been
specifically linked not only to cell proliferation and survival, but
also to protection from cell death induced by radiation.20,83,84

Such a finding fits in nicely with the established role HSPs play
in the cell’s stress response.

HSP inhibitors may also contribute to cancer therapy sensi-
tization through their antioxidant properties. Ionizing radiation
causes DNA damage by generating reactive oxygen species that
can cause single or double strand breaks, either by interacting
with DNA directly or by exciting other molecules in the vicinity
such as H2O.85,86 However, different cell lines may exhibit
differential capacity to handling of ROS, leading to a range of
levels of ROS in response to radiation. The level of ROS
generated in response to radiation in a given cell line, in turn,
may dictate the extent to which that cell line is radio-sensitive.87

Hsp27 was first described to play a role in lowering ROS
generated in cancer cells in response to TNFa.88 Further work
led to the hypothesis that Hsp27 decreases production of ROS
in cancer cells by raising intracellular glutathione via glucose-6-
phosphate dehydrogenase and glutathione reductase.50 Further-
more, studies in Jurkat cells revealed Hsp27 expression levels
to be correlated with a high tolerance for oxidative damage
following irradiation and as well as high glutathione content.45

Therefore, HSPs may serve a role in impairing the fundamental
mechanisms on of radiation therapy in targeting cancer cells.

Mechanistic studies in HSP-antagonist mediated radiosensiti-
zation have raised the possibility that DNA damage response
may be a key target of anti-HSP27 modalities. DNA damage
induced by ionizing radiation may not kill a target cell if the
cell can activate appropriate DNA repair pathways to withstand
the damage.87 Hsp90 inhibitors have been studied in particular
for their properties inhibiting DNA repair pathways.2 In one
study, tumor cells exposed to Hsp90 inhibitor 17-DMAG
showed inhibition of DNA double stand break repair and were
radiosensitized by this agent. Inhibition of repair was proposed
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to be caused by DNA-PK phosphorylation as well as suppression
of DNA repair protein ATM.71 17-DMAG was shown in another
study in non-small cell lung cancer to inhibit base excision repair
enzymes apurinic/apyrimidinic endonuclease and DNA polymer-
ase-β, resulting in radiosensitization.89 Lastly, the Hsp90 inhibitor
17-AAG was effective in inhibiting DNA homologous recom-
bination through via Rad51 and BRCA2.86,90 Interestingly, this
effect was seen specifically in human prostate and lung cancer
cells, but not in normal fibroblasts.90

Still other studies on the radiosensitizing properties of HSP
antagonists focus on their effect on tumor angiogenesis. Radia-
tion has been shown to cause elevated expression of HIF-1a
in irradiated cells91 which subsequently upregulates VEGF and
promotes angiogenesis and enhanced tumor survival. This effect
is partially mediated by Hsp90, which has been shown to stabilize
HIF-1a.92 In one study, 17-AAG and 17-DMAG suppressed
tumor vascularization by disrupting Hsp90-mediated stabiliza-
tion of HIF-1a.93,94 A similar effect was shown in irradiated
head and neck cancer cells, though the mechanism appeared to
proceed through the HSP family member Hsp27. In this study,
antisense oligonucleotides to Hsp27 sensitized SQ20B head and
neck cancer cells to radiation, an effect attributed to Hsp27’s
stabilization of Akt, which in turn, stabilizes VEGF as well.82

Lastly, 17-AAG was shown to radiosensitize tumor endothelial
cells, rendering the whole tumor less vascularized.70 However,
one caveat to these models is that the relationship between
angiogenesis, tumor survival, and radiation is a complex one. On
one hand, angiogenesis can contribute to tumor survival by
shunting a much-needed blood supply to a growing mass, thereby
contributing to its growth. Paradoxically, such uncontrolled

angiogenesis can create tumor hypoxia as well, as these newly
formed vessels lack structural integrity and become leaky, ineffec-
tive delivery sources for oxygen. Thus, they may dramatically
raise tumor interstitial pressure and consequently decrease perfu-
sion.95,96 Obviously the role of angiogenesis in HSP-mediated
radio-resistance requires further elucidation.

Conclusion

The HSPs represent a promising target for cancer therapy owing
to their increased levels and/or enhanced activity in cancer cells,
as well as their potent and multi-factorial pro-survival and pro-
liferative properties. Inhibiting their activity, particularly in the
context of chemosensitization and radiosensitization, represents
an attractive approach to cancer therapy. Such a strategy makes
biologic sense given the physiologic stress that such treatment
modalities place on cancer cells and the variety of ways that the
HSPs enable cells to survive under stress. While Hsp90 inhibitors
have already received extensive attention in the clinic as adjuncts
to radiation and chemotherapy, recent studies demonstrating
radio/chemosensitization of transformed cells through modifying
the activity of the small HSPs have opened new avenues for
therapeutic intervention. A major challenge for targeting small
HSPs (especially those which do not utilize ATP), is the deve-
lopment of competitive small molecule inhibitors. Additional
challenges in integrating HSP antagonists into cancer treat-
ment in the clinic include more carefully understanding their
mechanisms of action, as well as determining means of selectively
inhibiting their function without toxicity to the host or off-target
effects.

Figure 1. Proposed mechanisms of action for HSP inhibitors in radiosensitization and chemosensitization.
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