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MethLAB

A graphical user interface package for the analysis
of array-based DNA methylation data

Varun Kilaru,' Richard T. Barfield,? James W. Schroeder,? Alicia K. Smith'* and Karen N. Conneely?*#*

'Department of Psychiatry and Behavioral Sciences; Emory University; Atlanta, GA USA; 2Department of Biostatistics and Bioinformatics; Emory University; Atlanta, GA USA;

3Genetics and Molecular Biology Program; Emory University; Atlanta, GA USA; “Department of Human Genetics; Emory University; Atlanta, GA USA

Key words: DNA methylation, software, genome-wide, microarrays, Infinium 450K array

Recent evidence suggests that DNA methylation changes may underlie numerous complex traits and diseases. The
advent of commercial, array-based methods to interrogate DNA methylation has led to a profusion of epigenetic studies
in the literature. Array-based methods, such as the popular lllumina GoldenGate and Infinium platforms, estimate the
proportion of DNA methylated at single-base resolution for thousands of CpG sites across the genome. These arrays
generate enormous amounts of data, but few software resources exist for efficient and flexible analysis of these data.
We developed a software package called MethLAB (http:/genetics.emory.edu/conneely/MethLAB) using R, an open
source statistical language that can be edited to suit the needs of the user. MethLAB features a graphical user interface
(GUI) with a menu-driven format designed to efficiently read in and manipulate array-based methylation data in a user-
friendly manner. MethLAB tests for association between methylation and relevant phenotypes by fitting a separate linear
model for each CpG site. These models can incorporate both continuous and categorical phenotypes and covariates, as
well as fixed or random batch or chip effects. MethLAB accounts for multiple testing by controlling the false discovery
rate (FDR) at a user-specified level. Standard output includes a spreadsheet-ready text file and an array of publication-
quality figures. Considering the growing interest in and availability of DNA methylation data, there is a great need for
user-friendly open source analytical tools. With MethLAB, we present a timely resource that will allow users with no
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programming experience to implement flexible and powerful analyses of DNA methylation data.

DNA methylation is an important epigenetic modification that
plays a crucial role in the development of higher organisms.
Recent evidence has also linked methylation changes to numer-
ous complex traits and diseases.'* Although a variety of methods
are currently available to assay DNA methylation, array-based
methods such as Illumina’s GoldenGate and Infinium platforms
have gained immense popularity among the scientific commu-
nity. Despite the advent of methods based on next generation
sequencing, it has been predicted that projects involving large
numbers of samples will rely heavily on array-based methods
for years to come.” However, the lack of user-friendly tools to
analyze the data generated by array-based methods is likely to
impede advancement of the field, as arrays become increasingly
dense and analyses increasingly complex. Here we present an easy
to use graphical user interface (GUI) coupled with an efficient
algorithm to perform powerful statistical analyses of array-based
methylation data.

MethLAB has been developed using R, a powerful, open-
source statistical language.® It can be run on any machine capa-
ble of running R and, like other R packages, can be edited by
the end user. MethLAB integrates the tcltk, widgetTools, nlme’
and qvalue® packages, as well as native R functions into a GUI,
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similar in design to R Commander.” The menu-driven format of
MethLAB (Fig. 1A), along with its ease of use and automation
of complex analyses, makes it highly accessible to those with no
programming experience, in contrast to other open source pack-
ages such as Methylumi'® and ComBat."! A detailed tutorial with
sample data sets is also provided to aid new users.

MethLAB reads in a user-supplied file of methylation 8 val-
ues (estimates of the proportion of DNA methylated), in which
each row represents a CpG site and each column represents an
individual sample, as well as a phenotype file, in which each
row represents a phenotype or covariate and each column repre-
sents a sample. Users may restrict the analysis to a subset of CpG
sites, which is useful for the testing of candidate genes or the
exclusion of specific sites based on quality control parameters.
Additionally, subsets of samples may be selected for analysis
based on user-defined exclusion or inclusion criteria. For exam-
ple, users may wish to exclude samples of low quality or to per-
form separate analyses by variables such as gender or tissue type.

For each CpG site, MethLAB models methylation as a func-
tion of a categorical or continuous phenotype and other covari-
ates. MethLAB provides the user with options not available in
other packages for analysis of methylation or expression data.
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Bonferroni Significant? Holm Significant? FDR significant? CHR MAPINFO SYMBOL

F G H | J

TRUE TRUE 4 73116145 NPFFR2
FALSE FALSE 1 111571797 CHI3L2
FALSE FALSE 7 128257127 FLNC
FALSE FALSE 17 36890851 KRTHAS
FALSE FALSE 6 183130338 TPBEG
FALSE FALSE 16 36014393 BTBD12
FALSE FALSE 14 60022491 Cl4orf3s
FALSE FALSE 3 187309056 ETVS
FALSE FALSE 2 230989718 SP100
FALSE FALSE 16 56616822 MMPLS
FALSE FALSE 1 100589629 CDC144
FALSE FALSE 2 175207359 WASPIP
FALSE FALSE 14 73556065 ENTPDS
FALSE FALSE 2 208103802 CREB1
FALSE FALSE 19 6837962 EMR1
FALSE FALSE 17 18702456 PRPSAP2
FALSE FALSE X 153280173 RPL10
FALSE FALSE 7 27102002 HOXAL
FALSE FALSE 1 185054473 CFHR1
FALSE FALSE X 153261050 EMD
FALSE FALSE 14 23852374 LTB4R
FALSE FALSE 14 63830961 ESR2
FALSE FALSE 17 38532148 BRCAL
FALSE FALSE 3 57179570 IL17RD
FALSE FALSE 4 170915581 FLI20534

Figure 1. (A) A menu-driven Graphical User Interface (GUI) is used for loading methylation and phenotype files, selecting inclusion criteria and speci-
fying the analytical model. (B) Analysis results are summarized in a spreadsheet-ready text file.

Users may choose to model methylation via B values or logit-
transformed B values (i.e., log(3/(1 - B)) or M-values); 3 values
are easier to interpret biologically but M values may perform bet-
ter in differential methylation analyses due to their stabilized vari-
ance.'” Methylation is modeled as a linear function of phenotype
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in a mixed model regression framework that allows users to adjust
for any reasonable number of categorical and continuous covari-
ates. To account for possible technical differences between sam-
ples, the user has the option to adjust for batch or chip effects
through inclusion of either fixed or random effects. Fixed effects
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Figure 2. Manhattan plot of the negative log p values for each CpG site (vertical axis) by chromosome number and genomic position (horizontal axis).

Dotted line indicates Holm significance.
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Figure 3. Automated quantile-quantile (Q-Q) plots based on (A) nega-
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tive log p values from analysis of methylation and TLS and (B) ordered t
statistics from analysis of sex-differential methylation.

models run extremely fast in MethLAB due to our algorithm for
partitioning large data sets. Random effects analyses are slower
but may yield increased power to detect associations. MethLAB
accounts for multiple testing by controlling the false discovery
rate (FDR) at a user-specified level; users may select from the
Benjamini-Hochberg,"® Benjamini-Yekutieli,' and Storey® meth-
ods to control the FDR.

To provide a case study exemplifying a typical MethLAB anal-
ysis, we re-analyzed data from a published study of DNA meth-
ylation in an urban cohort of African American adult subjects
with a history of chronic stress.”® For 27,578 CpG sites from the
[lumina HumanMethylation27 BeadChip, we tested for associa-

Expected -logso(p)

tion between methylation and a continuous measure of total life
5 stress (TLS) in 110 subjects. We modeled the logit-transformed
B values (M values) as a linear function of TLS, adjusting for sex

Quantile-Quantile plot for t-statistics

and age as covariates (Fig. 1A). We also included a chip-specific
random effect term to account for potential differences between
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chips and selected to control the FDR at 0.05 via the Storey q
value method® (Fig. 1A). This random effects analysis took 12.5
min on a computer with 8 GB RAM and a quad core 2.93 Ghz
processor; a similar fixed effects analysis took 4 sec on the same
machine.

After completion of the specified analysis, MethLAB creates a
folder containing output files in a user-specified location. These
files include a log that stores the specified model and descriptive
statistics, and a spreadsheet-ready text file (Fig. 1B) containing,

for each CpG site, the t or F statistics, p values and indicators
for FDR, Bonferroni and Holm (a step-down version of the
Bonferroni approach that is less conservative'®) significance. As
demonstrated in Figure 1B, the MethLAB analysis is consistent
with the published report, indicating that TLS associates with
a single CpG site, cg03017946 in NPFFR2, after adjustment

-4

T T
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Expected t

for multiple testing (t = -5.3; p = 6.6 x 107). If positional infor-
mation for the CpG sites is provided, MethLAB automatically
generates a Manhattan plot showing the genome-wide pattern of
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association between DNA methylation and the given phenotype;
Figure 2 demonstrates that for the TLS analysis, a single CpG
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Figure 4. MethLAB automates (A) scatter or (B) box plots depicting
methylation of specific CpG sites by continuous or categorical trait
values. CpG probe and gene names are indicated in the plot titles.

Table 1. Analysis times for fixed and random effects modeling

No missing data, 6% missing data,

Seconds Seconds
27k, n =200 29 12.6
27k, n = 1,000 12.6 333
450k, n =200 46.2 164.5
450k, n = 1,000* 112.3 846.7

*This analysis was conducted using an 8 GB machine because a 4 GB machine does not have suffi-
cient memory to load a data set of this size. All other analyses were conducted on a 4 GB machine.

228 Epigenetics

Random effects analysis,

site on chromosome 4 achieves genome-wide Holm significance.
Q-Q plots for the negative log p values (Fig. 3A) and ordered t
statistics (Fig. 3B) are also created automatically for each analy-
sis. Figure 3A plots the negative log p values observed in the TLS
analysis against their expected quantiles under the null hypoth-
esis, demonstrating a small amount of genomic inflation and
the single genome-wide significant CpG site, cg03017946. For
contrast, Figure 3B plots the t statistics obtained in an analysis
of methylation differences by sex against their expected quan-
tiles under the null hypothesis. As expected in an analysis that
includes the X chromosome, thousands of CpG sites are sig-
nificantly associated with sex (FDR < 0.05). The Q-Q plot of
t-statistics allows visualization of the number of CpG sites dem-
onstrating significant positive (red points) and negative (green
points) correlation with a phenotype. In addition to the auto-
mated plots, a dialog box will offer users the option to create any
number of CpG-specific plots, starting from the most signifi-
cant site. For a continuous phenotype, the 8 values for a specific
CpG site will be plotted against the phenotype; Figure 4A plots
the B values of ¢g03017946 against TLS, demonstrating the
inverse association between TLS and methylation of this CpG
site. For categorical phenotypes boxplots are generated; Figure
4B displays methylation differences of an X chromosome CpG
site by sex, demonstrating a pattern of hemi-methylation due to
imprinting in females and no methylation in males. Finally, in
addition to the single-CpG analyses described here, MethLAB
can test for trends in global DNA methylation, measured as aver-
age methylation across all analyzed CpG sites. In the case study
data set, global methylation was significantly greater for females
than for males (t = 9.3, p = 2.6 x 10"®) but, consistent with the
published report in reference 15, did not vary significantly with
TLS (t=-0.29; p=0.77).

MethLAB has been designed to optimize memory use dur-
ing analyses. Upon recognizing that the memory requirements of
an analysis exceed the available memory on a machine, it auto-
matically partitions the analysis into smaller data sets to enable
efficient processing. MethLAB then combines the partitioned
analyses and outputs results for the complete data set. Thus, large
data sets such as the HumanMethylation450 BeadChip can be
accommodated even on machines with less-than-optimal con-
figurations. Table 1 shows the comparative run times for fixed
and random effects analyses in several
common situations. Note that analysis
time for fixed effects analyses depends
on the number of CpG sites with missing

Minutes
391 data; this is because our algorithm makes
' efficient use of matrix multiplication to
202 rapidly analyze CpG sites with no miss-
600.4 ing data, while for the other CpG sites the
700.8 analysis must be performed site by site. On

a computer having 4 GB RAM and oper-
ating with a dual core 1.33 Ghz processor,
a fixed effects analysis with 27,578 CpG
sites and 1,000 individuals takes <40 sec
to complete whereas a random effects analysis takes ~40 min.
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A fixed effects analysis of 450K CpG sites and 1,000 individu-
als can be performed on an 8 GB machine in <2 min for a fixed
effects analysis with no missing data and <15 min if 6% of CpG
sites have missing data.

With continuing technological advances, data produc-
tion is becoming less of an obstacle while analysis is becom-
ing more arduous. The amount of genomic information
available will only increase, as exemplified by the release of the
HumanMethylation450 BeadChip. Development of computa-
tionally efficient and standardized methods to analyze the large
data sets is vital for the continued growth of the field. With

MethLAB, we present a user-friendly software tool to perform
efficient and powerful analyses of array-based DNA methyla-
tion data. The MethLAB software, along with sample data sets

and a detailed tutorial, is available at http://genetics.emory.edu/
conneely/MethLAB.
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