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DNA methylation is an important epigenetic modification that 
plays a crucial role in the development of higher organisms. 
Recent evidence has also linked methylation changes to numer-
ous complex traits and diseases.1-4 Although a variety of methods 
are currently available to assay DNA methylation, array-based 
methods such as Illumina’s GoldenGate and Infinium platforms 
have gained immense popularity among the scientific commu-
nity. Despite the advent of methods based on next generation 
sequencing, it has been predicted that projects involving large 
numbers of samples will rely heavily on array-based methods 
for years to come.5 However, the lack of user-friendly tools to 
analyze the data generated by array-based methods is likely to 
impede advancement of the field, as arrays become increasingly 
dense and analyses increasingly complex. Here we present an easy 
to use graphical user interface (GUI) coupled with an efficient 
algorithm to perform powerful statistical analyses of array-based 
methylation data.

MethLAB has been developed using R, a powerful, open-
source statistical language.6 It can be run on any machine capa-
ble of running R and, like other R packages, can be edited by 
the end user. MethLAB integrates the tcltk, widgetTools, nlme7 
and qvalue8 packages, as well as native R functions into a GUI, 
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similar in design to R Commander.9 The menu-driven format of 
MethLAB (Fig. 1A), along with its ease of use and automation 
of complex analyses, makes it highly accessible to those with no 
programming experience, in contrast to other open source pack-
ages such as Methylumi10 and ComBat.11 A detailed tutorial with 
sample data sets is also provided to aid new users.

MethLAB reads in a user-supplied file of methylation β val-
ues (estimates of the proportion of DNA methylated), in which 
each row represents a CpG site and each column represents an 
individual sample, as well as a phenotype file, in which each 
row represents a phenotype or covariate and each column repre-
sents a sample. Users may restrict the analysis to a subset of CpG 
sites, which is useful for the testing of candidate genes or the 
exclusion of specific sites based on quality control parameters. 
Additionally, subsets of samples may be selected for analysis 
based on user-defined exclusion or inclusion criteria. For exam-
ple, users may wish to exclude samples of low quality or to per-
form separate analyses by variables such as gender or tissue type.

For each CpG site, MethLAB models methylation as a func-
tion of a categorical or continuous phenotype and other covari-
ates. MethLAB provides the user with options not available in 
other packages for analysis of methylation or expression data. 
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in a mixed model regression framework that allows users to adjust 
for any reasonable number of categorical and continuous covari-
ates. To account for possible technical differences between sam-
ples, the user has the option to adjust for batch or chip effects 
through inclusion of either fixed or random effects. Fixed effects 

Users may choose to model methylation via β values or logit-
transformed β values (i.e., log(β/(1 - β)) or M-values); β values 
are easier to interpret biologically but M values may perform bet-
ter in differential methylation analyses due to their stabilized vari-
ance.12 Methylation is modeled as a linear function of phenotype 

Figure 1. (A) A menu-driven Graphical User Interface (GUI) is used for loading methylation and phenotype files, selecting inclusion criteria and speci-
fying the analytical model. (B) Analysis results are summarized in a spreadsheet-ready text file.
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models run extremely fast in MethLAB due to our algorithm for 
partitioning large data sets. Random effects analyses are slower 
but may yield increased power to detect associations. MethLAB 
accounts for multiple testing by controlling the false discovery 
rate (FDR) at a user-specified level; users may select from the 
Benjamini-Hochberg,13 Benjamini-Yekutieli,14 and Storey8 meth-
ods to control the FDR.

To provide a case study exemplifying a typical MethLAB anal-
ysis, we re-analyzed data from a published study of DNA meth-
ylation in an urban cohort of African American adult subjects 
with a history of chronic stress.15 For 27,578 CpG sites from the 
Illumina HumanMethylation27 BeadChip, we tested for associa-
tion between methylation and a continuous measure of total life 
stress (TLS) in 110 subjects. We modeled the logit-transformed 
β values (M values) as a linear function of TLS, adjusting for sex 
and age as covariates (Fig. 1A). We also included a chip-specific 
random effect term to account for potential differences between 
chips and selected to control the FDR at 0.05 via the Storey q 
value method8 (Fig. 1A). This random effects analysis took 12.5 
min on a computer with 8 GB RAM and a quad core 2.93 Ghz 
processor; a similar fixed effects analysis took 4 sec on the same 
machine.

After completion of the specified analysis, MethLAB creates a 
folder containing output files in a user-specified location. These 
files include a log that stores the specified model and descriptive 
statistics, and a spreadsheet-ready text file (Fig. 1B) containing, 
for each CpG site, the t or F statistics, p values and indicators 
for FDR, Bonferroni and Holm (a step-down version of the 
Bonferroni approach that is less conservative16) significance. As 
demonstrated in Figure 1B, the MethLAB analysis is consistent 
with the published report, indicating that TLS associates with 
a single CpG site, cg03017946 in NPFFR2, after adjustment 
for multiple testing (t = -5.3; p = 6.6 x 10-7). If positional infor-
mation for the CpG sites is provided, MethLAB automatically 
generates a Manhattan plot showing the genome-wide pattern of 
association between DNA methylation and the given phenotype; 
Figure 2 demonstrates that for the TLS analysis, a single CpG 

Figure 2. Manhattan plot of the negative log p values for each CpG site (vertical axis) by chromosome number and genomic position (horizontal axis). 
Dotted line indicates Holm significance.

Figure 3. Automated quantile-quantile (Q-Q) plots based on (A) nega-
tive log p values from analysis of methylation and TLS and (B) ordered t 
statistics from analysis of sex-differential methylation.
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Figure 4. MethLAB automates (A) scatter or (B) box plots depicting 
methylation of specific CpG sites by continuous or categorical trait 
values. CpG probe and gene names are indicated in the plot titles.

Table 1. Analysis times for fixed and random effects modeling

No missing data, 
Seconds

6% missing data, 
Seconds

Random effects analysis, 
Minutes

27k, n = 200 2.9 12.6 32.1

27k, n = 1,000 12.6 33.3 40.2

450k, n = 200 46.2 164.5 600.4

450k, n = 1,000* 112.3 846.7 700.8

*This analysis was conducted using an 8 GB machine because a 4 GB machine does not have suffi-
cient memory to load a data set of this size. All other analyses were conducted on a 4 GB machine.

site on chromosome 4 achieves genome-wide Holm significance. 
Q-Q plots for the negative log p values (Fig. 3A) and ordered t 
statistics (Fig. 3B) are also created automatically for each analy-
sis. Figure 3A plots the negative log p values observed in the TLS 
analysis against their expected quantiles under the null hypoth-
esis, demonstrating a small amount of genomic inflation and 
the single genome-wide significant CpG site, cg03017946. For 
contrast, Figure 3B plots the t statistics obtained in an analysis 
of methylation differences by sex against their expected quan-
tiles under the null hypothesis. As expected in an analysis that 
includes the X chromosome, thousands of CpG sites are sig-
nificantly associated with sex (FDR < 0.05). The Q-Q plot of 
t-statistics allows visualization of the number of CpG sites dem-
onstrating significant positive (red points) and negative (green 
points) correlation with a phenotype. In addition to the auto-
mated plots, a dialog box will offer users the option to create any 
number of CpG-specific plots, starting from the most signifi-
cant site. For a continuous phenotype, the β values for a specific 
CpG site will be plotted against the phenotype; Figure 4A plots 
the β values of cg03017946 against TLS, demonstrating the 
inverse association between TLS and methylation of this CpG 
site. For categorical phenotypes boxplots are generated; Figure 
4B displays methylation differences of an X chromosome CpG 
site by sex, demonstrating a pattern of hemi-methylation due to 
imprinting in females and no methylation in males. Finally, in 
addition to the single-CpG analyses described here, MethLAB 
can test for trends in global DNA methylation, measured as aver-
age methylation across all analyzed CpG sites. In the case study 
data set, global methylation was significantly greater for females 
than for males (t = 9.3, p = 2.6 x 10-15) but, consistent with the 
published report in reference 15, did not vary significantly with 
TLS (t = -0.29; p = 0.77).

MethLAB has been designed to optimize memory use dur-
ing analyses. Upon recognizing that the memory requirements of 
an analysis exceed the available memory on a machine, it auto-
matically partitions the analysis into smaller data sets to enable 
efficient processing. MethLAB then combines the partitioned 
analyses and outputs results for the complete data set. Thus, large 
data sets such as the HumanMethylation450 BeadChip can be 
accommodated even on machines with less-than-optimal con-
figurations. Table 1 shows the comparative run times for fixed 

and random effects analyses in several 
common situations. Note that analysis 
time for fixed effects analyses depends 
on the number of CpG sites with missing 
data; this is because our algorithm makes 
efficient use of matrix multiplication to 
rapidly analyze CpG sites with no miss-
ing data, while for the other CpG sites the 
analysis must be performed site by site. On 
a computer having 4 GB RAM and oper-
ating with a dual core 1.33 Ghz processor, 
a fixed effects analysis with 27,578 CpG 
sites and 1,000 individuals takes <40 sec 

to complete whereas a random effects analysis takes ~40 min. 
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MethLAB, we present a user-friendly software tool to perform 
efficient and powerful analyses of array-based DNA methyla-
tion data. The MethLAB software, along with sample data sets 
and a detailed tutorial, is available at http://genetics.emory.edu/
conneely/MethLAB.
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