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Early stage endometrial cancer is generally curable. However,
progress in the treatment of advanced and recurrent
endometrial cancer has been limited. This has led to a shift
from the use of traditional chemotherapeutic agents and
radiotherapy regimens to the promising area of targeted
therapy, given the large number of druggable molecular
alterations found in endometrial cancer. To maximize the
effects of directed targeted therapy, careful molecular
characterization of the endometrial tumor is necessary. This
represents an important difference in the use of targeted
therapy vs. traditional chemotherapy or radiation treatment.
This review will discuss relevant pathways to target in
endometrial cancer as well as the challenges that arise
during development of a personalized oncology approach.

Introduction

In the United States, endometrial cancer remains the most
common gynecologic malignancy. In 2011, the American Cancer
Society estimated there would be 46,470 new cases and 8,120
deaths from endometrial cancer. In contrary to the progress
observed in many other cancer types, the incidence of endometrial
cancer has increased over the past 30 y.1 This is in part related to
the current epidemic of obesity, which is tightly linked to risk of
endometrial cancer.2 Fortunately, the majority of women with
endometrial cancer are diagnosed at an early stage and may be
cured by surgery with or without adjuvant radiotherapy.3

However, the subset of patients with either advanced stage
endometrial cancer at diagnosis or recurrent disease following
surgery presents a significant therapeutic challenge. The use of
chemotherapy has been well-studied in this group, with only
modest outcomes among those patients that respond to front-line
therapy. The optimal treatment approaches yield response rates
from 40–78% in the primary advanced setting and 15–30% in
the recurrent setting. Furthermore, among the optimal chemo-
therapy regimens for this group, median progression-free survival
is only 6 mo and median overall survival reaches 12 mo.4 Clearly,
this is a population of cancer patients in great need for the
development of novel approaches for therapy.

Opportunities for Targeted Therapy in Advanced
and Recurrent Endometrial Cancer

As the era of targeted therapy and personalized cancer treatments
dawns, endometrial cancer has great potential to benefit from
novel agents currently under development. These therapies hold
the potential for reduction in mortality from endometrial cancer,
and perhaps reduction in morbidity associated with traditional
cancer treatment by selectively targeting cancer cells. Targeted
therapy may be achieved both through combination with
traditional cytotoxic agents and through combinations of novel
biologic agents which hit multiple relevant targets.

The molecular alterations of endometrial cancer are well
documented in the literature and appear to directly relate to the
histologic type. This knowledge has significantly helped advance
the development of targeted therapy for endometrial cancer. In
general, endometrioid carcinoma is the most common histology
(80%) compared with non-endometrioid carcinomas (20%)
which include serous carcinoma, clear cell carcinoma, and
carcinosarcoma. Table 1 summarizes the known molecular
changes in both endometrioid and non-endometrioid endometrial
carcinomas. Note that from this table there are a number of
molecular alterations that represent potentially druggable targets.
As our depth of understanding of the molecular pathways critical
to the development and progression of endometrial cancer
expands, so to will the list of potential targets. Undoubtedly,
the NIH-sponsored The Cancer Genome Atlas (TCGA) will
contribute to the identification of additional endometrial cancer
molecular alterations that may be exploited therapeutically.

As the role of targeted therapy continues to grow in oncology,
there are several unmet needs which must be addressed in endo-
metrial cancer clinical trials. Arguably, the most pressing need is
the selection of appropriate patients for treatment with a given
specific targeted agent. The use of biologic agents in an unselected
patient population has the potential to lead to incorrect classifica-
tion of a drug as inactive, dooming it to be classified as a failure.
The reasons for this are myriad, including lack of expression of the
relevant target or presence of a mutation which confers resistance
to the agent.5 Furthermore, use of markers to predict unique
toxicities and optimal drug dosing will also be important.6 Such
pre-selection of patients for treatment is a relatively new concept
in oncology clinical trials, as most previously completed chemo-
therapy and radiation treatment trials used unselected patient
populations. In the targeted therapy era, these issues and trial
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designs must be considered to maximize effective and timely drug
development. The objective for this review is to provide an over-
view of current relevant pathways and the potential for biomarker
driven trials in advanced and recurrent endometrial cancer.

Pathways of Interest in Endometrial Cancer

As our understanding of endometrial cancer grows, we begin to
identify more potential pathways to target therapeutically.
Figure 1 demonstrates a simplified schematic of select relevant
pathways and sites of interaction and cross talk. The overlapping
nature of these pathways in endometrial cancer makes the com-
bination of multiple targeted agents or agents which target more
than one pathway very attractive and feasible. At the time of this
review, however, the majority of clinical investigations employing
targeted agents in endometrial cancer consist primarily of single
agent trials.

Phosphatidylinositol-3-kinase (PI3K)/AKT. The PI3K/AKT
pathway is well-known to play a central role in cell survival,
growth, and avoidance of apoptosis in many different cancer
types.7,8 Stimulation of the PI3K/AKT pathway occurs through
the activity of myriad receptors including epidermal growth factor
receptor (EGFR), insulin-like growth factor I receptor (IGFIR),
and fibroblast growth factor receptor 2 (FGFR2). Furthermore,
the tight linkage of the PI3K/AKT pathway to other key survival

pathways such as the RAS/RAF/MEK pathway holds significant
clinical implications for trial design.

In general, constitutive activation of the PI3K/AKT pathway in
endometrial cancer occurs most commonly through loss of PTEN
tumor suppressor activity or activating mutations in PIK3CA,
which codes for the a catalytic subunit of PI3K. In addition,
activating mutations in AKT and overexpression of tyrosine kinase
receptors that stimulate the pathway are known to be important
in subsequent PI3K/AKT dysregulation.9-21 The mammalian
target of rapamycin (mTOR), a serine/threonine kinase, is a
critical downstream target of the PI3K/AKT pathway. mTOR
upregulation through AKT leads to subsequent activation of the
protein S6 kinase (pS6K) which regulates protein translation and
cell cycle progression.7

Given the frequency of abnormalities in the PI3K/AKT
pathway, this signaling pathway arguably presents one of the
most promising targets for endometrial cancer. Furthermore, the
known alterations in the pathway providing potential targets also
present opportunities for patient selection and monitoring therapy
response. At present, agents under exploration consist primarily of
small molecule inhibitors of critical mediators of the pathway. As
seen in the discussion that follows, it appears the inhibition of
only one pathway node may not be sufficient to impact tumor
growth. This is in part due to the significant pathway feedback
loops as well as crosstalk between pathways. For example, the
downstream proteins activated by mTOR also participate in a
feedback loop that can lead to subsequent upregulation of AKT
phosphorylation.22 Thus, after confirmation of safety in the single
agent setting, exploration of combination therapies is critical.

Potential biomarkers to predict response to therapy and guide
eligibility for trials are extensive for this pathway. As shown in
Table 1, many of the relevant molecular abnormalities in endo-
metrial cancer are directly or indirectly related to the PI3K/AKT
pathway. Primary candidates include mutations in PIK3CA,
PTEN, AKT, as well as overexpression of phosphorylated mTOR
and phosphorylated AKT (pAKT).23-25 Preliminary results from a
group of patients with advanced solid tumors, including endo-
metrial cancer, harboring PIK3CA mutations that were treated
with PI3K/AKT/mTOR inhibitors alone or in combination with
other agents, reveals higher than expected response rates (35%) in
a highly pretreated group of patients.26

Interestingly, the presence of KRAS mutations appeared to
confer resistance in certain tumor types in the retrospective study
by Janku and colleagues.26 The importance of the possible
interaction between PIK3CA and KRAS mutations has also been
demonstrated in human cancer cells in response to treatment with
everolimus in vitro. Cells harboring PIK3CA mutations were quite
sensitive to everolimus, while those cells with concurrent PIK3CA
and KRAS mutations were resistant.27 This resistance may be
explained by a negative feedback loop with the RAS/RAF/MEK
pathway as suggested by Carracedo and colleagues. In a molecular
analysis of patients with advanced cancer, they found upregulation
of phospho-ERK in tumor samples obtained after treatment
with everolimus on a Phase I trial. In subsequent cell line studies,
MEK activation was discovered after everolimus treatment
through a feedback loop involving pS6K. Further, inhibition of

Table 1. Molecular characterization of endometrial cancers by histologic
subtype

Alteration Endometrioid
(%)

Non-endometrioid
(%)

PTEN protein loss18,19 80 5

PTEN mutation15-17,25 30–50 0–11

PIK3CA mutation20,21,25 30–40 20

PIK3R1 mutation157 43 12

AKT mutation10,13,14 2–3 0

KRAS mutation54-57 10–30 0–10

IGFIR overexpression69,70 78 Unknown

FGFR2 mutation11,87,88 12–16 1

EGFR overexpression9,111 46 34

EGFR mutation113,114 Unknown 0

HER-2 overexpression9,111,124-126 3–10 32

HER-2 amplification124,126 1 17

b-catenin mutation133,134 15–50 0

p53 mutation158 20 90

E-cadherin loss129,130,133 5–50 60–90

Microsatellite instability159,160 15–25 0–5

Abbreviations: PTEN, phosphatase and tensin homolog deleted on
chromosome 10; PIK3CA, phosphatidylinositol 3 kinase, catalytic, a

polypeptide; PIK3RI, phosphatidylinositol 3 kinase, regulatory polypeptide;
AKT, v-akt murine thymoma viral oncogene homolog 1; KRAS, V-Ki-ras2
Kirsten rat sarcoma viral oncogene homolog; IGFR1, insulin-like growth
factor receptor 1; FGFR2, fibroblast growth factor receptor 2; EGFR,
epidermal growth factor receptor; HER, human epidermal growth factor
receptor
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the RAS/RAF/MEK pathway enhanced the antitumor effect
of everolimus in cell lines and in vitro.28 Thus, it appears that
consideration of both pathways will likely prove useful in future
trial design.

mTOR inhibition. The protein kinase mTOR is composed of
two potential complexes to target, mTORC1 and mTORC2,
which have different downstream effectors.29 Thus far, the
majority of studies in advanced and recurrent endometrial
cancer have focused on rapalogs, which primarily inhibit
MTORC1. Newer agents which target mTORC2 or both
complexes appear to have greater activity but the data are still

emerging. Temsirolimus (CC1-779), a parenterally administered
ester of rapamycin, was evaluated in a phase II trial of recurrent or
metastatic endometrial cancer patients. Response rates were
favorable in the chemotherapy naïve arm (n = 29), with 14%
partial response (PR) and 69% stable disease (SD). Interestingly,
response in the patients treated with one prior chemotherapy
regimen (n = 25) had less dramatic results, with only 4% PR and
28% SD. Response occurred independent of PTEN mutation,
PTEN loss, phosphorylated mTOR (p-mTOR), pAKT, or pS6K
status in archival tumor specimens from original diagnosis. Of
note, the study was not powered to determine the association

Figure 1. Druggable signaling pathways in endometrial cancer. Abbreviations: EGF, epidermal growth factor; IGF, insulin-like growth factor;
TGFa, transforming growth factor a; FGF, fibroblast growth factor; HER, human epidermal growth factor receptor; EGFR,epidermal growth factor receptor;
IGFR1, insulin-like growth factor receptor 1; FGFR2, fibroblast growth factor receptor 2; ATP, adenosine triphosphate; AMP, adenosine monophosphate;
VEGF, vascular endothelial growth factor, PDGF, platelet-derived growth factor; VEGFR, vascular endothelial growth factor receptor; PDGFR, platelet-
derived growth factor receptor; GRB2, growth factor receptor-bound protein 2; RAS, rat sarcoma gene; Raf, V-raf-1 murine leukemia viral oncogene
homolog 1; MEK, mitogen activated protein kinase kinase; ERK, mitogen activate protein kinase; SRC, V-src sarcoma (Schmidt-Ruppin A-2) viral oncogene
homolog; IRS, insulin receptor substrate; PI3K, phosphatidylinositol 3 Kinase; PTEN, phosphatase and tensin homolog deleted on chromosome 10;
PIP2, phosphatidylinositol 4,5-bisphosphate; PIP3, phosphatidylinositol (3,4,5)-triphosphate; AKT, v-akt murine thymoma viral oncogene homolog 1;
PKA, protein kinase A; LKB1, liver kinase B1; AMPK, adenosine monophosphate kinase; mTORc, mammalian target of rapamycin Complex.
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between molecular status and response, so these results must be
interpreted with caution.30 These favorable response outcomes
were also demonstrated in a single agent trial of temsirolimus in
heavily pre-treated patients without any molecular correlates. Of
27 patients treated, 2 achieved PR and 12 SD.31 Given this
apparent activity, the Gynecologic Oncology Group (GOG) has
included temsirolimus combined with carboplatin and paclitaxel
as a treatment arm in an ongoing three arm trial exploring com-
bination therapies in advanced endometrial cancer (GOG0086P;
NCT:00977574).

Oral mTOR inhibition by everolimus (RAD001) in recurrent
endometrial cancer achieved encouraging short and long-term
clinical benefit with 43% of patients at 8 weeks and 21% of
patients at 16 weeks achieving SD.32 Meyer and colleagues
recently reported attempts to correlate response on this trial to
molecular status of the primary tumor, including PTEN protein
expression, pS6K expression and KRAS mutation. Among the 28
patients with available tissue, none of these markers successfully
predicted response, although there was a trend for KRAS mutation
correlation with therapy resistance.33 Ridaforolimus (AP23573),
an mTOR inhibitor given parenterally or orally, yielded a 33%
clinical benefit rate including two patients with a PR among
patients with recurrent endometrial cancer.34 An additional study
of oral ridaforolimus in chemotherapy naïve endometrial cancer
achieved a PR rate of 7.7% and SD rate of 58%. This study has
correlative endpoints, including PTEN and PI3K, ongoing.35 A
randomized Phase II trial comparing oral ridaforolimus to
traditional hormonal or chemotherapy revealed improvement in
PFS of 2 mo among patients in the experimental arm.36

The combination of mTOR inhibition with hormonal agents is
actively being explored secondary to known activity of both agents
in endometrial cancer. Furthermore, there are recent data that
indicate the importance of the PI3K/AKT/mTOR pathway in
mediating resistance to endocrine therapy in breast cancer.37,38 A
study of everolimus and letrozole in recurrent endometrial cancer
with less than two prior chemotherapeutic regimens achieved a
response rate of 21% with one complete response (CR) and three
PRs. Furthermore, four patients had SD and seven still remain on
treatment.39 A recently reported GOG study combining temsiro-
limus with alternating hormones, megestrol acetate and tamoxi-
fen, was closed secondary to high levels of venous thrombosis and
insufficient additional activity to warrant further study.40

AKT inhibition. There are numerous small molecule inhibitors of
AKT currently in development for endometrial cancer and solid
tumors. MK-2206 is an allosteric AKT inhibitor which is currently
under active investigation in multiple clinical trials, alone and in
combination with chemotherapy or other targeted agents.41 This
agent is currently employed in a biomarker driven Phase II trial of
recurrent endometrial cancer with less than two prior therapies.
Patients are stratified based on presence or absence of a PIK3CA
mutation prior to the initiation of therapy (NCT01312753).

PI3K inhibition. The inhibition of PI3K is an area of great
interest in endometrial cancers and solid tumors. There are
myriad agents currently in development in Phase I trials of
advanced solid tumors. This includes agents which specifically
target PI3K as well as dual inhibitors which target mTOR

in combination with PI3K.42 A Phase I trial of XL147
(SAR245408), a selective oral PI3K inhibitor, demonstrated
durable clinical benefit among multiple solid tumors. XL147 is in
Phase II trial for advanced and recurrent endometrial cancer
(NCT01013324). Furthermore, a phase I trial combining this
agent with carboplatin and paclitaxel is currently under dose
expansion for endometrial cancer secondary to promising tumor
response (NCT00756847). Other agents in this class have also
demonstrated promising toxicity and early clinical response
among endometrial cancer patients in Phase I trials,43,44 and
many Phase II studies are in progress (clinicaltrials.gov).

Metformin. Metformin (N’-N’ dimethylguanide) is a well
tolerated oral anti-diabetic agent that has recently demonstrated
promising findings in reduction of cancer risk and antitumor
activity.45,46 The theoretical mechanisms for the anticancer activity
of metformin include activation of the AMPK pathway through
LKB1 as well as reduction of circulating insulin levels47,48 (Fig. 1).
Given the role of obesity and a high prevalence of insulin resis-
tance among women with endometrial cancer, metformin is of
considerable interest.49 Furthermore, this agent has been shown
to induce cell cycle arrest and apoptosis,50 as well as reverse pro-
gesterone resistance and induce progesterone receptor expression
in endometrial cancer cell lines.51,52 Metformin has potential for
use in early as well as advanced endometrial cancer in combina-
tion with hormonal therapy and as a single agent. A current
Phase 0 study is ongoing to explore pharmacodynamic markers of
metformin activity in endometrial cancer patients treated prior to
primary surgical resection. Markers for proliferation, apoptosis,
the insulin-like growth factor signaling pathway, and the PI3K/
AKT pathway will be assessed in baseline (pre-treatment) and
after a short course of metformin (NCT01205672).

RAS/RAF/MEK. The RAS/RAF/MEK pathway shown in
Figure 1 is involved in a variety of essential tumorigenic functions
including angiogenesis, cell cycle regulation, proliferation, and
survival.53 As noted in Table 1, there is a relatively high
prevalence of KRAS mutations in endometrial cancer, especially
the endometrioid carcinomas, as well as other solid tumors.54-57

This has lead to the exploration of therapeutic agents to target key
nodes of this pathway.58,59 MEK inhibitors are the most clinically
developed, with emerging applications in melanoma and papillary
thyroid carcinoma secondary to activating BRAF mutation rates of
20–80%60 and 29–83%,61 respectively. In addition, RAF kinase
small molecule inhibitors are in clinical development alone and
in combination for the treatment of advanced solid tumors,
especially melanoma.62

The GOG has opened a Phase II trial of the oral MEK
inhibitor, AZD6244, in patients with endometrial cancer treated
with 1–2 prior therapies (NCT 01011933). This trial has
achieved an adequate response rate to proceed to the second stage
of accrual and results are eagerly anticipated. The knowledge that
RAS/RAF/MEK pathway activation in the presence of AKT
blockade can promote cell survival63 is leading to development of
trials that combine PI3K/AKT inhibition and MEK inhibition in
endometrial cancer. This combination is further supported by the
apparent negative feedback loop involving pS6K and MEK as
previously discussed in the section on the PI3K/AKT pathway.28
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Based on data regarding successful MEK inhibition in
melanoma and other solid tumors, there are several key
biomarkers that should be assessed in trials incorporating these
agents. Activating mutations in BRAF render tumors highly
sensitive to MEK inhibition based on work in cell lines and in
early clinical trials of melanoma.64,65 Interestingly, BRAF muta-
tions are rare in endometrial cancers,66,67 so it will be relevant
to identify alternative mutations that can be used to identify
endometrial tumors as being potentially sensitive to MEK
inhibitors. In addition, the presence of KRAS or NRAS mutation
has the potential to affect response to MEK inhibition, although
the data here are less clear.58,59 Demonstrating evidence of
pathway activation (presence of phospho-ERK and phospho-
EGFR62) in the tumor may also be relevant.

IGF-IR. As seen in Figure 1, through the activation of IGF-IR,
Insulin-like Growth Factor (IGF) is a mitogen for PI3K/AKT and
RAS/RAF/MEK pathway activation.68 IGF-IR is overexpressed in
the precursor to endometrial cancer, endometrial hyperplasia, as
well as in endometrial carcinoma.69,70 In vitro studies of the IGF-
IR inhibitor, NVP-AEW541, demonstrated inhibition of pro-
liferation and increase in apoptosis among treated endometrial
cancer cell lines.71 Due to the known activation of the IGF-IR
pathway with inhibition of mTOR, there exists a rationale for
combination of IGF-IR inhibitors and drugs targeting mTOR.72

There are several IGF-IR inhibitors in clinical investigation,
including IMC-A12, AMG479, H10H5, and OSI-906. These
agents are very well tolerated, with the most common adverse
events consisting of hyperglycemia, fatigue, nausea, and changes
in body weight.73,74 As yet, there are no clinical trials that have
explored this promising pathway in endometrial cancer. Potential
biomarkers for this pathway may include IGF-I, IGF-BP1, IGF-
BP2 and insulin receptor substrates-1 (IRS1) and -2 (IRS2).75,76

Angiogenesis. The formation of new blood vessels through
angiogenesis is a key factor in tumorigenesis. Angiogenesis allows
for the supply of nutrients, oxygen and growth factors to the
tumor and promotes tumor dissemination and metastasis.77,78

Regulation of angiogenesis occurs though a complex set of
stimulatory and inhibitory factors that act on the endothelial cells
lining the vessel (Table 2). When pro-angiogenic factors such as
Vascular Endothelial Growth Factor (VEGF) are found in tumors,
there is a resulting increase in unregulated division and growth of
the endothelial cells.79,80 Furthermore, overexpression of VEGF is
associated with poor prognostic factors in endometrial cancer such as
deep myometrial invasion and lymph node metastasis.81,82

Targeting VEGF and related molecules. Despite the numerous
potential targets for inhibition of angiogenesis shown (Table 2),
the most significant developments of clinical agents in this field
are those that target the VEGF ligands and receptors.
Bevacizumab, a monoclonal antibody targeting VEGF-A, has
been studied in a Phase II trial of recurrent endometrial cancer.
This agent had favorable single agent activity demonstrating
13.5% response durable for a median of 6 mo and a median
overall survival of 10.5 mo.83 Multiple trials are ongoing of
bevacizumab as a single agent or in combination in uterine cancer,
including a trial combining bevacizumab with cisplatin for
chemosensitization (NCT01005329).

VEGF-Trap is a decoy receptor for all VEGF isoforms that
demonstrates high affinity VEGF binding and prevention of
VEGF pathway activation. This agent is manufactured utilizing
the ligand-binding domains from two VEGF receptors with a
constant region of IgG1.84 There is a Phase II trial of VEGF-Trap
in recurrent endometrial cancer currently accruing through the
GOG. This trial incorporates a number of translational endpoints
to predict disease response which will be discussed at the end of
this section (NCT004682826).

Small molecule inhibitors targeting one or more components of
the VEGF pathway are of great interest in the treatment of
recurrent or persistent endometrial cancer. Sunitinib targets
VEGF receptor (VEGFR), platelet-derived growth factor receptor
(PDGFR), epidermal growth factor (EGF), and the stem cell
factor (KIT) receptor.85 This agent is under study as a single agent
in endometrial cancer.

Targeting fibroblast growth factors (FGF). FGFs are involved
with angiogenesis as well as other mechanisms important to
tumorigenesis.86 The discovery of activating mutations in the gene
that encodes FGFR-2 in endometrial cancers makes this a rational
target. One factor that may dampen enthusiasm for targeting
FGFR-2 is that mutations only occur in approximately 16% of
endometrial cancers.11,87,88 It is not known if endometrial cancer
metastases/recurrences have a greater percentage of these
mutations. There are several agents which target FGFR-2 which
are under development, although only two are being explored in
endometrial cancer. Cedirinib, a small molecule inhibitor of
VEGFR-2 and VEGFR-3, PDGFR, as well as FGFR-2,89 has
been active in multiple Phase II trials and is to undergo study in
endometrial cancer by the GOG. Brivanib is a dual inhibitor of
VEGFR2 and FGFR90 that is also undergoing phase II evaluation
for endometrial cancer in the GOG (NCT00888173). In
addition, FP-1039 is a FGF1R:Fc soluble fusion protein that

Table 2. Molecules of importance in angiogenesis

Stimulatory Inhibitory

VEGF/VEGFR Angiostatin

FGF/FGFR Endostatin

PDGF/PDGFR Interferon a

PLGF TP53

Ang1/Ang2 Thrombospondin

TNF-a, TGF-b Tumstatin

Integrins

VE Cadherin/CD31

Ephrins

HIF-1a

IL-6, IL-8

Pleiotropin

Abbreviations: VEGF, vascular endothelial growth factor; VEGFR, vascular
endothelial growth factor receptor; FGF, fibroblast growth factor; FGFR,
fibroblast growth factor receptor 2; PDGF, platelet-derived growth factor;
PDGFR, platelet-derived growth factor receptor; PLGF, placental growth factor;
Ang, angiogenin; TGFa, transforming growth factor a; TGFb, transforming
growth factor b; HIF-1a, hypoxia-inducible factor 1a; IL, interleukin
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binds multiple FGF ligands.91 This agent is under evaluation in a
Phase II pilot study in patients with FGFR2 mutated endometrial
cancer (NCT01244438).

Unique anti-angiogenic agents. Thalidomide is an anti-
angiogenic agent acting through a variety of different mecha-
nisms including inhibition of FGF-2. This agent demonstrated
only a 25% clinical benefit rate with two PR and four SD among
patients with recurrent endometrial cancer treated with less than
two prior chemotherapeutic regimens. There was no correlation
found between serum VEGF levels and response to thalidomide.92

Thus far, measurements of biomarkers to predict response to
anti-angiogenic agents have been unsuccessful. Tissue and/or
serum expression of relevant ligands and receptors is a rational
option to predict response, but the sheer number of potential
markers to monitor is overwhelming (Table 2). Given the
importance of VEGF, this ligand has been the most commonly
studied in attempting to predict response. In most studies, VEGF
expression in tissue or serum has not correlated with response to
anti-angiogenic agents.92-95 The GOG performed an analysis of
biomarkers to predict response to single agent bevacizumab in
ovarian cancer and found a correlation between high CD31/
microvessel density (MVD) count and lack of response.96 This has
not been confirmed in other tumor types.94,97 Assessing VEGF
polymorphisms holds promise for appropriately targeting therapy,
but published studies are limited by small numbers of patients.98

Poly (ADP-ribose) polymerase (PARP) pathway. The cell has
a variety of mechanisms to repair DNA damage including direct
repair, base excision, mismatch repair, and nucleotide excision
repair. Resistance to cytotoxic chemotherapy is typically found in
cancer cells with a high activity of DNA damage repair pathways.
PARP participates in single-strand DNA damage repair through
the base excision pathway.99,100 PARP inhibition results in cellular
inability to repair DNA damage caused by single strand breaks.
Further, when single strand breaks remain unrepaired, this
leads to double strand breaks after the process of replication.
Homologous recombination is the mechanism involved in the
repair of these double strand breaks. In patients with defects in the
homologous recombination pathway, PARP inhibition leaves
the cells unable to repair DNA effectively, leading to genetic
instability and cell death. Thus, PARP inhibition has been
developed for use in anti-cancer therapy, especially in patients
with impaired DNA repair mechanisms, such as breast and
ovarian cancer patients with BRCA mutations.100-102 This
concept, known as synthetic lethality, is currently being employed
in a number of cancer types. Interestingly, PTEN loss leads to
dysfunctional homologous recombination DNA repair, creating
cellular susceptibility to PARP inhibition in vitro and in vivo in a
variety of cell lines, including endometrial cancer.100,103-105 Fifteen
to twenty percent of endometrial cancers have high levels of
microsatellite instability due to methylation and subsequent gene
silencing of the promoter for MLH1, a gene that encodes a
protein involved in DNA mismatch repair. The influence, if any,
of such microsatellite instability on targeted therapy of endo-
metrial cancer is currently unknown.

There are a variety of PARP inhibitors in clinical development,
including olaparib, veliparib, and iniparib. These agents have been

primarily explored in malignancies that harbor BRCA mutations
such as ovarian and breast cancer.101 Given the data presented, we
anticipate that PARP inhibitors will be employed in a variety of
cancers that harbor homologous recombination defects, including
endometrial cancer. Currently, iniparib is being employed to treat
recurrent carcinosarcoma of the uterus in combination with
carboplatin and paclitaxel (NCT00687687). Sensitivity to PARP
inhibitors can be predicted by the presence of mutations that
confer impaired DNA damage repair.106 A screen for homologous
recombination defects would be another potential method to
capture PARP inhibition sensitive patients.

EGFR family. The EGFR family has garnered a great deal of
interest as a cancer therapeutic target given that it activates
important downstream pathways such as PI3K/AKT and ras/raf/
MEK.107-109 There are 4 EGFR-specific cell-surface receptors that
make up this group, EGFR (HER-1, ERBB1), HER-2 (ERBB2),
HER-3 (ERBB3), and HER-4 (ERBB4). These receptors are
present on endothelial cells within the tumor microenvironment,
and activation increases angiogenesis through stimulation of
endothelial cell proliferation.110 Finally, activation of EGFR is
known to stimulate cancer cell invasion while suppressing
apoptosis.107,109 EGFR is overexpressed in a large proportion of
endometrial cancer, regardless of histotype.111 Unfortunately,
studies of drugs targeting EGFR have demonstrated only modest
success in the treatment of endometrial cancer. This may relate to
fact that recent data in several solid tumors have indicated that
EGFR overexpression is not sufficient to predict response to
therapy. It appears that response is more closely correlated with
the presence of EGFR mutation.112 Current data indicate that
the rate of EGFR mutation in the serous and carcinosarcoma
subtypes is quite low, although further study is indicated to
determine the prevalence of this mutation in the endometrioid
subtype.113,114

Another modifier of response to EGFR directed therapy is
KRAS mutation. The presence of KRAS mutations appears to
negatively impact response in colorectal cancer patients.115,116 The
data were so strong that an American Society of Clinical Oncology
Provisional Clinical Opinion was published stating “all metastatic
colorectal carcinoma patients who are candidates for anti-EGFR
antibody therapy should have their tumor tested for KRAS
mutations.”117 In non-small cell lung cancer, EGFR mutations
appear to correlate with response to gefitinib and erlotinib,118,119

while KRAS mutations are associated with lack of response.120

Clearly, close examination of this pathway will be necessary to
determine the appropriate cohort of patients to treat with these
targeted agents.

Targeting EGFR. There are a variety of small molecule
inhibitors of EGFR that have been explored in endometrial
cancer. Erlotinib blocks the auto-phosphorylation of the tyrosine
kinase portion of EGFR. In a group of recurrent endometrial
cancers without prior chemotherapy, erlotinib had a 12.5% PR
and 47% SD rate. EGFR expression was analyzed in all patients
with 19/30 patients were positive. Of those patients with EGFR
expression, three had PR and seven had SD. EGFR mutational
status was also assessed among all responders with no mutations
detected.121

6 Cancer Biology & Therapy Volume 13 Issue 1



Gefitinib, a small molecule inhibitor that binds to the ATP-
binding site of EGFR, was evaluated in recurrent or persistent
endometrial cancer after 1–2 prior regimens. Unfortunately,
response was quite low with only 1/29 patients demonstrating CR
and 7/29 with SD. EGFR mutations, as well as expression of
EGFR, phospho-EGFR, phospho-ERK were examined in tumors,
but did not correlate with clinical response.122

Monoclonal antibodies which bind the external domain of
EGFR, including cetuximab and panitumumab, have also had
success in the treatment of advanced solid tumors.123 Cetuximab,
a chimerized monoclonal antibody to EGFR, was employed to
treat recurrent endometrial cancer patients previously treated with
chemotherapy (NCT00392769). This trial recently completed
accrual though the GOG and results are anticipated soon.

Targeting HER-2. Poor prognosis in endometrial cancer has
been associated with elevated immunohistochemical expression of
HER-2, especially among the papillary serous subtype.124-126

Trastuzumab, a humanized monoclonal antibody to HER-2,
was evaluated in a Phase II trial for advanced and recurrent
endometrial cancer with overexpression or amplification of
HER-2. Unfortunately, there were no clinical responses, and
only 12 of 30 patients had SD. This trial closed early due to poor
accrual.127 A novel dual tyrosine kinase inhibitor of EGFR and
HER-2, lapatinib,128 was also studied in this disease cohort
(NCT00096447). Although no data have been published from
this GOG trial, second stage accrual was not opened, likely
indicating low clinical activity. A more focused trial in advanced
or recurrent uterine serous cancers is planned, comparing treat-
ment with paclitaxel/carboplatin with or without herceptin only
in patients with tumor expression of HER-2/neu by immuno-
histochemistry and HER-2/neu gene amplification documented by
FISH (NCT01367002).

E-cadherin/β-catenin pathway. The E-cadherin/catenin unit
is responsible for the maintenance of normal cell architecture and
cell differentiation.129,130 β-catenin and E-cadherin also are part
of the Wnt signaling pathway, which has been implicated in
tumorigenesis in numerous cancer types.131-134 Loss of E-cadherin
and change in localization of β-catenin to the nucleus is associated
with the epithelial-to-mesenchymal transition (EMT). EMT
allows cells to obtain mesenchymal properties corresponding to
increased motility, invasion, and metastasis.135 Interestingly, EMT
has also been associated with chemoresistance to oxaliplatin in
colon cancer135 and resistance to EGFR-targeted therapy in lung,
pancreatic, and colorectal cancer cell lines.136,137 Accumulation of
β-catenin in the nucleus secondary to mutations in CTNNB1, the
gene which codes for β-catenin, and loss of E-cadherin expression
is not uncommon in endometrial cancer.129,130,133,134,138 No active
agents target this pathway currently, but such agents might be
potentially useful given this pathway’s regulation of key processes
in determining a cancer’s clinical aggressiveness.

Combination agents. The development of agents that target a
variety of different pathways holds great promise in the treatment
of endometrial cancer. Sorafenib is a multi-kinase inhibitor that
blocks VEGFR, PDGFR, and KIT as well as raf, a key component
of the ras/raf/MEK pathway. This agent demonstrated a 5% PR
and 50% SD rate in a Phase II trial of recurrent endometrial

cancer.139 Dasatinib inhibits a large array of targets including the
SRC family, BCR-ABL, C-KIT and PDGF. Furthermore,
dasatinib is known to target the EphA2 receptor, a member of
the Ephrin family that is involved in cell proliferation, survival,
migration, and angiogenesis.140 EphA2 was found to be over-
expressed in a high proportion of endometrioid tumors and
correlated with advanced disease and poor prognosis.141 Due to
this promising molecular data, development of dasatinib in
clinical trials for endometrial cancer is ongoing.

Unmet Needs and Challenges for Targeted Therapy
in Endometrial Cancer

There are several cautionary tales in the literature that demon-
strate the importance of appropriate patient selection in trials
evaluating biologic agents. Given the importance of EGFR
mutations in lung cancer, gefitinib was evaluated in a Phase III
study which demonstrated improvement in symptoms and a
10% response rate.142 Interestingly, mutations were found in
the tyrosine kinase domain of 89% of the responders.143

Unfortunately, in a subsequent Phase III study in an unselected
patient population, gefitinib showed no benefit compared with
placebo.144 This resulted in gefitinib’s removal from the United
States market. However, the recent IPASS study utilized a select
group of patients based on likelihood of response to gefitinib and
found a favorable profile in comparison to standard paclitaxel and
carboplatin chemotherapy.145

The use of trastuzamab in breast cancer provides example of the
potential for success when the appropriate drug is utilized in the
appropriate patient. In patients with HER-2/neu amplification in
the breast carcinoma, the impact of this agent on response and
overall survival has been clearly documented.146,147 This is a
simple trial design that relies on the demonstration of a druggable
target prior to the institution of the given targeted therapy.

As this field has continued to grow, the different designs for
biomarker-driven clinical trials have expanded in turn. The
multiple options for clinical trials integrating biomarkers are
beyond the scope of this paper but may be found in the excellent
review by Buyse and colleagues.148 One particularly impressive
example of novel trial design is seen in the recent Biomarker-
Integrated Approaches of Targeted Therapy for Lung Cancer
Elimination (BATTLE) trial in lung cancer. The Bayesian
adaptive design utilized allowed biomarker-predicted responses
in the trial to inform later treatment group assignment.149

Low numbers of patients. Compared with cancers such as
lung, colon, and breast, endometrial cancer has a relatively low
number of patients to participate in clinical trials. This presents
several issues. The most obvious is the ability to successfully test
the expanding number of targeted agents that are currently avail-
able and relevant in this disease. The use of multi-institutional
and cooperative group trials could potentially expedite trial accrual
and timely therapy evaluation. However, as the use of biomarker-
driven trials increases, the ability to ensure standard performance
of the molecular testing across different institutions becomes a
relevant concern. Currently in the United States, biomarkers
intended to direct treatment must be validated in a clinical trial
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setting and performed in a laboratory which meets the
recommendations of the Clinical Laboratory Improvement
Amendments (CLIA) of 1988.150 Such CLIA-certified clinical
laboratories to perform these molecular diagnostics tests are
becoming more prevalent in larger academic centers, but their
availability in smaller centers is certainly not yet universal. This
could potentially be addressed by encouraging patients with
gynecologic cancer to pursue treatment at NCI-designated
comprehensive cancer centers around the country.

The Phase 0 trial design has the promise to allow for the rapid
evaluation of a large number of targeted agents among patients
with early endometrial cancer that may then be applied to patients
with advanced and/or recurrent disease. This design involves a
small number of patients treated with a given agent for a short
period prior to surgery, allowing for determination of pharma-
codynamic effects in tissue, blood, and other tissues. An agent that
appears active in this setting would warrant further study in larger
clinical trials.151 Currently, the MD Anderson Cancer Center is
actively accruing to a Phase 0 trial of metformin given 7–14 d
prior to surgical resection of primary endometrial cancer
(NCT01205672).

Lack of tissue. The lack of available tumor tissue, specifically
from the metastasis or recurrence, is a clear issue for the use of
biomarkers to direct targeted therapy. This issue is certainly not
unique to endometrial cancer. Furthermore, this represents a
clinical problem that was never manifest in traditional chemo-
therapy/radiotherapy trials. It is common practice to perform
molecular characterization of a tumor using the available
primary tumor from the hysterectomy surgical specimen.
However, it is known that recurrent endometrial
carcinomas are often quite different at the molecular
level, especially when prior treatment with chemotherapy
or radiation is considered.152 The use of biopsies from
sites of metastasis/recurrence at the time of study
enrollment must be considered to maximize success in
biomarker validation among patients with endometrial
cancer.5,153 A relevant issue to biomarker-guided trial
design arises with the procurement of tissue utilizing
fine needle aspiration or core biopsy in the recurrent/
progressive setting, which may yield only a small amount
of tissue on which to perform molecular testing compared
with the primary hysterectomy specimen (Fig. 2).

Role of tumor histology. The role of histology in
response to targeted agents has not been completely
elucidated. In some cases, tumors with apparently similar
histologies may have drastically different molecular
features, leading to discordant response to therapy. In
non-small cell lung cancer, there are clear clinical and
pathologic features which are associated with response to
single-agent tyrosine kinase inhibitor therapy. Patient
characteristics such as female gender, Asian ethnicity,
non-smoker, and adenocarcinoma histology were associ-
ated with response to gefitinib therapy. Not surprisingly,
these clinical features were soon found to be associated
with the presence of an EGFR mutation, thus explaining
the higher response levels.115,143,154

It is well-established that endometrioid-type endometrial
carcinomas tend to have higher expression of hormone receptors
estrogen receptor (ER) and progesterone receptor (PR). In endo-
metrial cancer, hormonal response rates range from 11–56%. This
response appears higher in those patients with expression of ER or
PR.152,155 Interestingly, our experience in endometrial and ovarian
cancer indicates that the expression of a hormone receptor by
immunohistochemistry does not necessarily indicate response to
hormonal agents, especially in non-endometrioid type tumors.156

Thus, the importance of histologic type of endometrial carcinoma
when considering targeted therapy should not be completely
overlooked.

Tissue assays. Most molecular assays of tumors have
traditionally been developed using frozen cancer tissues, especially
from primary tumors from which ample tumor is typically
available. However, the use of frozen tissues is not feasible
clinically. The adaptation of select molecular assays for use in
formalin-fixed, paraffin-embedded tissues can be done, especially
if these assays involve detection of point mutations in single exons
or a small number of exons. Such assays include mutational
analysis of BRAF, KRAS and NRAS. However, for many genes,
such hotspot mutations do not exist, making sequencing the
entire gene necessary. Sequencing of large genes, such as PTEN,
may not be practical using formalin-fixed, paraffin-embedded
tissues. In the case of PTEN, the commercially available
immunohistochemical antibodies can be used as a surrogate
method to determine PTEN functional loss in an endometrial
cancer. However, for many genes, such clinically useful antibodies

Figure 2. Comparison between tissue obtained from a primary hysterectomy
specimen and tissue obtained from core needle biopsy at the time of recurrence.
Recurrence tissues are much smaller, have less tumor cells, and commonly consist
of tumor cells admixed with stroma. This latter feature may necessitate the use of
laser capture microdissection prior to PCR-based molecular diagnostics testing.
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do not exist. Another challenge for assay development is the
assessment of phosphorylated proteins, including pAKT and
pERK, in formalin-fixed, paraffin-embedded endometrial cancers.
Many such antibodies directed against phosphorylated proteins
are useful in protein gel blots of frozen tissues, but do not work
reliably in formalin-fixed, paraffin-embedded tissues. Finally, if
recurrences or metastases will be examined, molecular tests need
to be adapted to the use of very small amounts of tissue, in
contrast to the abundance of tissue available from the primary
surgical specimen (Fig. 2).

Conclusions

The use of tailored combinations of surgery, radiation, and
chemotherapy initially led to marked improvements in

survival in endometrial cancer. More recently, however, the
improvements in disease-specific mortality have reached a
plateau. Augmentation of current treatment regimens with
additional cytotoxic chemotherapy seems unlikely to provide
further benefit without significant toxicity. The use of
targeted therapies appears to hold the promise of achieving
greater levels of response and survival among women with
advanced or recurrent endometrial cancer. However, rational
trial design and biomarker-directed eligibility will be essential
to ensure the success of these agents in the appropriate
population.
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