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While rapamycin has been in use for
years in transplant patients as an
antirejection drug, more recently it has
shown promise in treating diseases of
aging, such as neurodegenerative disor-
ders and atherosclerosis. We recently
reported that rapamycin reverses the
cellular phenotype of fibroblasts from
children with the premature aging disease
Hutchinson-Gilford progeria syndrome
(HGPS). We found that the causative
aberrant protein, progerin, was cleared
through autophagic mechanisms when
the cells were treated with rapamycin,
suggesting a new potential treatment for
HGPS. Recent evidence that
progerin is also present in aged tissues
of healthy individuals, suggesting that

shows

progerin may contribute to physiological
aging. While it is intriguing to speculate
that rapamycin may affect normal aging
in humans, as it does in lower organisms,
it will be important to identify safer
analogs of rapamycin for chronic treat-
ments in humans in order to minimize
toxicity. In addition to its role in HGPS
and normal aging, we discuss the poten-
tial of rapamycin for the treatment of age-
dependent neurodegenerative diseases.

HGPS

Hutchinson-Gilford progeria syndrome
(HGPS) results from a de novo mutation
in the gene for the nuclear lamina protein,
lamin A, and is observed in about 1 in
L2 Patients with
HGPS appear normal at birth, but begin

4 million live births.
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to display alopecia, growth retardation,
bone abnormalities, osteoporosis and scler-
odermatous skin by one year of age."”> The
cardiovascular system is severely affected
and, sadly, HGPS patients most often
succumb to myocardial infarction or
stroke in their early teens.'" The most
common form of HGPS is caused by a de
novo mutation in exon 11 of the lamin
A gene. This mutation activates a splice
donor, leading to production of a lamin
A variant with an internal deletion of
50 amino acids. This protein is termed
progerin® and is defective in a critical post-
translational processing step. The normal
processing of the lamin A protein involves
farnesylation of the C terminus by farne-
syltransferase, followed by cleavage by
the metalloproteinase Zmpste24, which
removes 18 amino acids at the C terminus
and yields mature lamin A.>° The farne-
sylation of lamin A is an essential step in
this process, as it targets the protein to the
inner nuclear membrane surface where
it is finally cleaved by Zmpste24 to yield
mature lamin A.” In HGPS, the mutant
progerin protein has lost this cleavage site,
resulting in permanent farnesylation. The
retention of the farnesylated C terminus
is thought to cause the progerin protein
to remain anchored in the nuclear mem-
brane, with other proteins of the normally
fluid nuclear scaffold attached to it
During mitosis, when the scaffold has to
disassemble and reassemble, the mutant
protein is highly disruptive. With increas-
ing numbers of cell divisions, several
phenotypes can be observed including
nuclear blebbing, which is seen in primary
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fibroblasts from HGPS patients, along
with a reduced growth rate and increased
senescence in culture.®*® Of note, muta-
tions in humans and mice that disrupt
Zmpste24, resulting in permanent farne-
sylation of an otherwise normal lamin
A, also give rise to phenotypes similar to
HGPS, supporting the hypothesis that
retention of the farnesylated C terminus
leads to the cellular phenotype.®'*!"

Therapeutic Strategies for HGPS

Without treatment, HGPS is a uniformly
fatal disorder. A promising new therapy,
now being subjected to a clinical trial, is
the use of farnesyltransferase inhibitors
(FTTs).
originally developed for cancer therapy,
because of their predicted effect on the
oncoprotein Ras, which also requires

FTIs are experimental drugs

farnesylation for its function.”” While
FTIs have been somewhat disappointing
in their effectiveness against cancer, FTT
treatment reduces nuclear blebbing in
HGPS fibroblasts and cell lines trans-

1314 Fyrthermore

fected with progerin.
FTIs improve phenotype and life span in
mouse models of progeria.”"® It is thought
that FTIs, by preventing farnesylation
of progerin, reduce the accumulation of
progerin at the nuclear rim, reducing the
damaging effects of the mutant protein on
the nucleus.”” The outcome of an open-

label HGPS clinical trial of the FTI

lonafarnib is awaited with great interest.

Rapamycin Promotes Clearance
of Progerin

Rapamycin is an FDA-approved drug that
has been used historically to suppress the
rejection of transplanted organs, usually
in combination with other immunosup-
pressants. In addition to its historical use
as an immunosuppressant, there is mount-
ing pre-clinical evidence that rapamycin
or analogs of rapamycin extend life span
in a number of species including flies
and mice.'®'® The life-span extending
effect in mice is observed even if treatment
is not started until the mice are already
aged.” Furthermore, there is evidence
that rapamycin and rapamycin derivatives
are useful in delaying or treating age-
related conditions, including cancers and

148

neurodegenerative diseases. These effects
are presumed to be due to the inhibition
of mTOR by rapamycin, and are at least
in part dependent on autophagy.'”***!
We recently found that the mTOR
inhibitor rapamycin rescues the cellular
phenotype of HGPS fibroblasts
decreases the amount of progerin pro-
through  autophagic
Co-treatment with rapamycin and the

and

tein clearance.”
autophagy inhibitors bafilomycin Al or
3-methyladenine slow the enhanced clear-
ance, suggesting that progerin is being
cleared through autophagy. Further experi-
ments using genetic inhibition of auto-
phagy by ATG7 knockdown confirmed this
result.

To examine the mechanism of progerin
clearance in further detail, we next exa-
mined the ubiquitination status of pro-
gerin. Protein ubiquitination has recently
emerged as an important signal for selec-
tive autophagic clearance that involves
autophagy adaptor proteins that bind both
ubiquitinated cargo and autophagosomes
(e.g., p62). Specifically, different effects
have been described for different types
of polyubiquitin chains; for example, the
K48 polyubiquitin  (polyUb) chain is
recognized by, and promotes degradation
of proteins through, the proteasome,
whereas the K63 polyUb chain promotes
autophagic clearance of oligomeric and
aggregated proteins.”>*> We found that
progerin is preferentially ubiquitinated
by K63-linked polyUb chains, suggesting
that it is a substrate for autophagy. Addi-
tionally, progerin co-immunoprecipitates
with the autophagic adaptor protein p62,
further demonstrating that the clearance
of progerin is mediated by autophagy.
Finally, via immunofluorescence micro-
scopy, we found that progerin colocalizes
with both p62 and the autophagy linked
FYVE protein, ALFY, in the presence of
rapamycin. Interestingly, upon treatment
with rapamycin, less progerin is seen in the
nuclei, and it instead colocalizes with p62
and ALFY in the juxtanuclear cytoplasm,
suggesting that ALFY and p62 are instru-
mental in the clearance of progerin.
Importantly, because p62 and ALFY can
also interact with the mammalian homolog
of Atg8 (LC3), they therefore represent
a functional link between ubiquitinated
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cargo and autophagosomes. Since
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ALFY normally resides in the cell nucleus,
it will be of particular interest to further
examine its role in clearance of nuclear
progerin.

Interestingly, in the context of HGPS,
rapamycin also has been reported to have
a beneficial effect on mouse models prone
to cardiovascular disease phenotypes. In
three separate studies involving apoE
knockout mice or LDLR knockout mice,
rapamycin reduces arteriosclerotic lesions
despite the severe hypercholesterolemia
in these mice, even when fed a high-fat
diet.?>3! Because the cardiovascular disease
component of HGPS leads to devastating
heart attacks or strokes, it will be of
interest to examine if rapamycin confers
any benefit on the cardiovascular aspects
of HGPS by promoting clearance of
progerin in cardiovascular tissues. The
G608G mouse model of HGPS has a
phenotype  that
with  FTI  treatment.’
Experiments are now underway with this
mouse model of HGPS to see whether
everolimus (an analog of rapamycin) is

cardiovascular shows

improvement

capable of preventing the cardiovascular
disease phenotype.

Rapamycin and Autophagy
in Neurodegenerative Diseases

It is thought that the accumulation of the
progerin protein in HGPS underlies the
progression of the disease phenotype. This
is true for other proteinopathies that are
caused by accumulation of mutated or
improperly processed protein. Among
them are several neurodegenerative dis-
eases, including Huntington, Parkinson
and Alzheimer diseases. Recent evidence
suggests that boosting autophagy in mod-
els of these disorders can reduce the
accumulation of the disease protein and
protect against toxicity associated with
protein aggregation.

For example, Huntington disease is
caused by an abnormal expansion of the
polyglutamine tract in the huntingtin
protein. This mutant form of huntingtin
accumulates inside neurons, forms aggre-
gates and eventually causes cell death.
Cell culture models overexpressing mutant
huntingtin are protected from toxicity and
clear huntingtin faster when treated with
the autophagy-enhancing drug rapamycin,
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leading to less aggregation.”” This finding
has been extended in vivo, in both flies
and mice. Fruit flies expressing mutant
huntingtin in photoreceptor neurons are
protected from rhabdomere degeneration
when fed rapamycin.>*** Mouse models
expressing mutant huntingtin in the brain
also demonstrate less aggregation in the
striatum when treated with the rapamy-
cin analog temsirolimus.”> Huntingtin
is a substrate for autophagic clearance,”
and the protective effects of rapamycin
in these models occur at least in part
through the activation of autophagy,®”’
and the subsequent clearance through
degradation of unnecessary or toxic com-
ponents inside the cell.”®*

A characteristic feature of Parkinson
disease (PD) is the presence of intracellular
inclusions known as Lewy bodies. These
inclusions contain d-synuclein, which
accumulates in PD. Accumulation of toxic
a-synuclein species further affects the
lysosomes’ ability to clear o-synuclein.
Increasing autophagy increases clearance
of a-synuclein in cell models that over-

4 and mouse

express the mutant proteins,
models which overexpress and accumulate
a-synuclein also show less accumulation
when treated with rapamycin because of
increased autophagy and lysosomal activa-
tion.*> Furthermore, in mouse models of
PD treated with the toxin MPTP, auto-
phagosomes accumulate due to a decrease
in lysosomal function. Accumulation of
autophagosomes and loss of lysosomes is
also found in postmortem PD brain, and
Lewy bodies are positive for autophagoso-
mal markers. In the MPTP mouse model,
rapamycin treatment is able to restore
lysosomal levels, decrease autophagosome
accumulation, and protect against dopa-
minergic cell death.”

Alzheimer
pathologically by the presence of amyloid

disease is characterized
plaques, consisting of amyloid- and
neurofibrillary tangles, which are intra-
cellular inclusions composed of hyper-
phosphorylated tau. In several mouse
and fly models of Alzheimer disease,
upregulation of autophagy improves
some of the behavioral and pathological
phenotypes, and reduces amyloid B and
tau related toxicities.***** Interestingly
in Alzheimer models, mTOR is acti-

vated, potentially by the presence of
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amyloid-B, which therefore inhibits auto-
phagy. Rapamycin restores autophagy and
reduces amyloid-8 despite this baseline
inhibition of autophagy.

Together, these studies demonstrate
that in neurodegenerative diseases where
misfolded proteins accumulate, boosting
autophagy with pharmacological agents
can prove beneficial. As in HGPS, rapa-
mycin shows promise in various models
of neurodegenerative disorders; however,
it will be important to identify safer
analogs of rapamycin for chronic treat-
ments in patients.

Progerin and Normal Aging

In HGPS, progerin is produced as a result
of a mutation that activates a cryptic
splice site in the lamin A gene. However,
in normal cells, this unmutated cryptic
splice site is also used sporadically, lead-
ing to production of progerin protein
in non-HGPS individuals.“*” Increased
activation of this cryptic splice site
appears to correlate with incipient cell
senescence, and the progerin protein
appears to accumulate with increasing
age in skin biopsies," as well as in culture.
Interestingly, an early report showed that
oligonucleotide based inhibition of the
cryptic splice site in LMNA reduces the
changes in nuclear architecture found in
cells from aged individuals, and reduces
markers of senescence as well,* raising
the hypothesis that these low levels of
sporadic progerin production could con-
tribute to the aging process.

Another recent study by Olive et al.*®
looked for the presence of progerin in
non-HGPS arteries in 29 individuals
ranging in age from 1 mo to 97 y. They
found a statistically significant increase
in the amount of progerin-positive cells
with age, ranging from an average of
1 in 1,000 cells at 1 mo, to ~20 in 1,000
cells at 97 y in the adventitia. This
represents an increase of 3.34% per
year.®® In cells where progerin was pre-
sent, it was found as progerin-positive
cytoplasmic puncta, suggesting that it
accumulates in certain cells over time after
repeated mitoses.

Progerin accumulation in normal cells
would presumably have negative conse-
quences, particularly in cell populations

Autophagy

that divide rapidly, including stem cell
populations responsible for tissue home-
ostasis. Indeed, Scaffidi et al.* showed
that progerin expression interferes with
the differentiation potential of human
mesenchymal stem cells (hMSC), which
in turn gives rise to many of the affected
tissues in HGPS. This raises the possibi-
lity that sporadic expression of aberrant
progerin in physiological aging could
affect tissue homeostasis by inhibiting the
ability of stem cells to regenerate damaged
cells.

Most recently, activation of progerin
expression in normal cells has been linked
to telomere dysfunction. Non-HGPS
cells expressing progerin have shorter
telomeres than non-progerin-expressing
cells, and inducing telomere damage
experimentally also upregulates progerin
expression through increased usage of the
cryptic splice site in LMNA (and many
other changes in alternative splicing).”
Interestingly, there is also evidence that
progerin expression actually induces telo-
mere damage,”’ raising the possibility of
the existence of a positive feedback loop
between telomere damage and progerin
expression that is capable of driving
programmed senescence.

As a whole, these findings raise the
likelihood that splicing of LMNA, leading
to increasing progerin production after
multiple cell divisions, affects physiologi-
cal aging in normal individuals and con-
tributes functionally to programmed cell
senescence. Although progerin accumula-
tion is just one part of the many phy-
siological changes that occur in the aging
process, treatments that enhance clearance
of progerin or prevent its production
could have aging-related health benefits
over the long-term.

It will therefore be of interest to exa-
mine whether upregulation of autophagy
by rapamycin could enhance clearance of
progerin, as well as other proteins that
accumulate during normal aging.

Therapeutic Limitations
of Rapamycin

Rapamycin treatment is associated with
side effects, some of which require dis-
continuation of treatment (in up to 39%
of patients), at least at the doses used in
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transplant patients. Side effects include
gastrointestinal symptoms, edema, infec-
tion, delayed wound healing, high choles-
terol and triglyceride levels, anemia, and
interstitial pneumonitis.”>*> The intersti-
tial pneumonitis is a particularly severe
side effect and can be life threatening.
Some of these effects may be due to
off-target effects of rapamycin. The use
of alternative, more specific inhibitors
of the mTORCI pathway, such as
everolimus (RADO01) may be safer.
Everolimus also has better solubility in
stable
compared with rapamycin. Several case
reports indicate resolution of pneumoni-
tis upon switching from sirolimus to

aqueous solution and is more

everolimus.>

In cases where the potential benefits
outweigh the potential for side effects,
such as in devastating diseases like HGPS,
neurodegenerative disease and cancer,
rapamycin and rapamycin derivatives may
offer a new treatment strategy. However,
the use of rapamycin in otherwise healthy
people to slow the aging process would
require safer alternatives and/or lower
doses than those typically given to trans-
plant patients to mitigate the chance of
side effects.
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