Table 3.
Comparison of pooled nuclei classification performances from different techniques.
| Automated analysis vs. Observer 1 | |||||
|---|---|---|---|---|---|
| KNNkde(n=1) | KNNkde(n=5) | SVMkde | CF-SVM | ||
| p16-/Ki67+ | Precision [%] | 78.4 | 89.8 | 88.3 | 93.8 |
| p16+/Ki67- | 62.1 | 58.3 | 74.3 | 82.7 | |
| p16+/Ki67+ | 35.3 | 45.5 | 70.2 | 82.6 | |
| Sensitivity [%] | 53.6 | 56.2 | 71.9 | 89.4 | |
| Specificity [%] | 99.4 | 99.5 | 99.5 | 99.6 | |
| Automated analysis vs. Observer 2 | |||||
|---|---|---|---|---|---|
| KNNkde(n=1) | KNNkde(n=5) | SVMkde | CF-SVM | ||
| p16-/Ki67+ | Precision [%] | 77.9 | 89.1 | 87.9 | 93.2 |
| p16+/Ki67- | 61.6 | 57.7 | 72.5 | 81.2 | |
| p16+/Ki67+ | 34.6 | 42.3 | 67.4 | 77.1 | |
| Sensitivity [%] | 51.5 | 58.4 | 71.1 | 86.3 | |
| Specificity [%] | 99.4 | 99.4 | 99.5 | 99.6 | |