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Abstract: Structured illumination (SI) has long been regarded as a
nonquantitative technique for obtaining sectioned microscopic images.
Its lack of quantitative results has restricted the use of SI sectioning to
qualitative imaging experiments, and has also limited researchers’ ability
to compare SI against competing sectioning methods such as confocal
microscopy. We show how to modify the standard SI sectioning algorithm
to make the technique quantitative, and provide formulas for calculating the
noise in the sectioned images. The results indicate that, for an illumination
source providing the same spatially-integrated photon flux at the object
plane, and for the same effective slice thicknesses, SI sectioning can provide
higher SNR images than confocal microscopy for an equivalent setup when
the modulation contrast exceeds about 0.09.
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20. M. A. A. Neil, T. Wilson, and R. Juškaitis, “A light efficient optical sectioning microscope,” J. Microsc. 189,
114–117 (1998).

21. M. J. Cole, J. Siegel, S. E. D. Webb, R. Jones, K. Dowling, M. J. Dayel, D. Parsons-Karavassis, P. M. W.
French, M. J. Lever, L. O. D. Sucharov, M. A. A. Neil, R. Juvskaitis, and T. Wilson, “Time-domain whole-field
fluorescence lifetime imaging with optical sectioning,” J. Microsc. 203, 246–257 (2001).

22. L. H. Schaefer, D. Schuster, and J. Schaffer, “Structured illumination microscopy: artefact analysis and reduction
utilizing a parameter optimization approach,” J. Microsc. 216, 165–174 (2004).

23. L. G. Krzewina and M. K. Kim, “Single-exposure optical sectioning by color structured illumination mi-
croscopy,” Opt. Lett. 31, 477–479 (2006).

24. A. L. Barlow and C. J. Guerin, “Quantization of widefield fluorescence images using structured illumination and
image analysis software,” Microsc. Res. Tech. 70, 76–84 (2007).

25. F. Chasles, B. Dubertret, and A. C. Boccara, “Optimization and characterization of a structured illumination
microscope,” Opt. Express 15, 16130–16141 (2007).

26. S. D. Konecky, A. Mazhar, D. Cuccia, A. J. Durkin, J. C. Schotland, and B. J. Tromberg, “Quantitative optical
tomography of sub-surface heterogeneities using spatially modulated structured light,” Opt. Express 17, 14780–
14790 (2009).

27. M. F. Langhorst, J. Schaffer, and B. Goetze, “Structure brings clarity: structured illumination microscopy in cell
biology,” Biotechnol. J. 4, 858–865 (2009).

28. T. A. Erickson, A. Mazhar, D. Cuccia, A. J. Durkin, and J. W. Tunnell, “Lookup-table method for imaging optical
properties with structured illumination beyond the diffusion theory regime,” J. Biomed. Opt. 15, 036013 (2010).

29. K. Wicker and R. Heintzmann, “Single-shot optical sectioning using polarization-coded structured illumination,”
J. Opt. 12, 084010 (2010).

30. T. Wilson, “Optical sectioning in fluorescence microscopy,” J. Microsc. 242, 111–116 (2010).
31. S. Gruppetta and S. Chetty, “Theoretical study of multispectral structured illumination for depth resolved imaging

of non-stationary objects: focus on retinal imaging,” Biomed. Opt. Express 2, 255–263 (2011).
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1. Introduction

Structured illumination (SI) is an optical sectioning technique compatible with widefield imag-
ing microscopy, and has been shown to provide a depth resolution comparable to confocal
microscopy [1]. Since its invention [2], SI microscopy has been widely used as a sectioning
tool in bioimaging research, both at the cellular level — such as in 3D imaging of cellular nu-
clear periphery [3], cellular fenestrations [4], tubulin and kinesin dynamics [5] and at the tissue
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level — such as in imaging of autofluorescence aggregation in human eye [6], zebrafish de-
velopment [7], rat colonic mucosa [8]. In addition, SI has also been used as a super-resolution
technique to break the diffraction limit [5, 9–11]. SI thus has the ability to maintain the high
light collection capability of widefield imaging [12,13] while also removing out-of-plane light.
It has, however, been criticized as being a non-quantitative technique, and for producing noisy
data in comparison to the sectioned images derived from confocal microscopes. The analysis
below shows that SI can easily be made quantitative by properly scaling the standard section-
ing algorithm, and we also provide analytical expressions for the resulting noise in SI-sectioned
images. Although Somekh et al. [14, 15] provide numerical simulations of the noise properties
of SI-sectioned images, they use a non-quantitative algorithm and do not include the effects of
out-of-focus light on the noise.

Quantitative sectioned images allow one to perform photon counting as if the regions above
and below the sectioned layer were not present. While the resulting photon number estimate
will be noisier than would be the case for imaging the slice without out-of-focus layers present,
the mean value of the correctly scaled algorithm will equal to the mean photon count one
would obtain with a standard widefield microscope. This permits researchers to use standard
methods [16] of correcting for the objective lens’ numerical aperture, optical transmission, and
detector quantum efficiency to determine photon counts at the sectioned plane relative to the
number of photoelectrons detected at the sensor plane. Allowing quantitative data to be obtained
with SI sectioning thus gives researchers the ability to perform measurements of radiance, ab-
solute reflectance, fluorophore quantum yield, and absolute fluorophore concentration within
volumetric media [17, 18].

Finally, the analytical formulas for noise also enable us to roughly define an operational range
for the modulation contrast at the section plane, such that for any contrast above this value one
can expect SI to provide higher SNR data than confocal microscopy. For any contrast below
this value, confocal imaging will out-perform SI.

2. Sectioning algorithm

The general approach in SI is to illuminate the object with a sinusoidal illumination pattern of
the form [2]

si(x,y) = 1
2

[
1+m cos(νx+φi)

]
, (1)

at each of three spatial phases φ1 = 0, φ2 = 2π/3, and φ3 = 4π/3. Although other structured
forms are possible [19], this one is particularly easy to implement. The quantity m is the mod-
ulation contrast (a number varying from 0 to 1), and ν is the modulation spatial frequency. The
factor of 1/2 placed in front, not present in previous work, is used here in order to represent the
fact that half of the illumination light is absorbed or reflected by the grid placed in the illumi-
nation path. If we take the limit m → 0, we obtain standard widefield illumination of half the
intensity that one would obtain without the grid in place. Note that s represents a normalized
illumination amplitude, ranging from 0 to 1.

Ignoring the effects of optical blurring, the resulting modulated images gi(x,y) are given by

gi(x,y) = 1
2 d(x,y)+ si(x,y) f (x,y) (2)

for a planar object distribution f (x,y) and out-of-focus light d(x,y), both scaled to what one
would obtain with standard widefield imaging. For fluorescence imaging, the absolute bright-
ness f of the object contains the illumination irradiance I, the fluorophore quantum yield q, and
a factor Ω resulting from integrating the angular distribution of fluorescence emission over the
numerical aperture of the imaging optics: ffluor = IqΩ. For brightfield imaging, f is simply the
illumination I multiplied by the object reflectance R: fbright = IR. Thus, the expression for gi
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is valid for the cases of both fluorescence imaging and brightfield imaging, but with a subtle
difference in what f means for each case.

In order to obtain an optically sectioned image i(x,y) at the focal plane, the most common
algorithm used is [1, 2, 8, 20–31]

istd(x,y) =
√

(g1 −g2)2 +(g1 −g3)3 +(g2 −g3)2 , (3)

based on square law detection. Alternative illumination patterns allow for different processing
approaches [19]. SI for superresolution, for example, relies on the Moire effect to detect light
emitted outside the conventional bandwidth limit.

Since the algorithm (3) operates on each pixel independently, we have dropped the spatial
arguments (x,y) as unnecessary. (These can be added back into each equation at any point.)
Inserting Eqs. (1) into (2) and applying trigonometric identities, we obtain the result

istd =
3m

2
√

2
f , (4)

Thus, the sectioned image is a copy of the object distribution, as we expect, but scaled by the
factor 3m/(2

√
2). The quantitatively-scaled algorithm is obtained by multiplying Eq. (3) by the

inverse of this factor:

i(x,y) =
2
√

2
3m

√
(g1 −g2)2 +(g1 −g3)3 +(g2 −g3)2 . (5)

Note that the algorithm assumes that the out-of-focus light d(x,y) does not change with a shift
in the illumination pattern. A consequence of this result is that in order to obtain quantitative
results for the sectioned image, one must estimate the modulation contrast m. A further assump-
tion required is that of linearity, which in fluorescence imaging is limited to weakly fluorescent
structures [1].

The scale factor in front of the square root differs from that given in previous studies. The
factor of 2 in the numerator appears as a result of the 1/2 scaling introduced into our definition
of si(x,y) and thus is new. All previous authors have also assumed ideal modulation (m = 1).
This is an assumption which introduces a large error into the quantitative result. Moreover,
since the modulation m(x,y) is in general spatially varying, the error introduced is generally not
a simple scalar factor for the whole image. As a whole, the literature shows wide disagreement
over the appropriate scale factor to place in front of the square root. Refs [20,22,26,28,32,33]
use

√
2/3, which is appropriate when m = 1 and the factor of 1/2 in s(x,y) is not used. Refs [2,

23–25,27,29] use a scale factor of 1, which is the most appropriate choice for a non-quantitative
approach, while other authors use alternative factors such as 1/(3

√
2) [8], 1/

√
2 [1, 31], or

3
√

2 [21] without explanation.
In practice, one finds that even for ideal samples m cannot achieve the maximum value of

1. The modulation contrast, however, remains excellent (m > 0.5) in thin samples in which the
sectioned plane is taken near the surface, but poor (m < 0.1) in dense tissue samples (in which
multiple scattering is present) and in deeper layers of thinly scattering media.

3. Widefield image algorithm

In addition to the sectioned image algorithm (5), it is well known that one can form a widefield
image representation iw(x,y) from the modulated images by

iw = 2
3 (g1 +g2 +g3) . (6)
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(Our scale factor differs from that of previous authors due to the factor of 1/2 used in the
definition of s(x,y).) Once again inserting the formulas for the illumination and modulated
images, Eqs. (1) and (2), we obtain

iw = d+ f . (7)

The widefield image is a simple sum of the sectioned plane and the out-of-focus contribution.
For quantitative work, we also want to estimate the variance of the widefield image, for which

we insert Eqs. (1), (2), and (6) into the standard variance formula var(iw) =
〈
i2w
〉− 〈

iw
〉2

and
solve. Here the angle brackets

〈 ·〉 represent an expectation value. The first term in the variance
formula is

〈
i2w
〉
=
〈

4
9 (g1 +g2 +g3)

2〉

= 4
9

〈
g2

1 +g2
2 +g3

3 +g1g2 +g1g3 +g1g2 +g2g3 +g1g3 +g2g3
〉

= 4
9

〈
9
4 d2 + f 2(s2

1 + s2
2 + s2

3)+
3
2 d f (s1 + s2 + s3)+2 f 2(s1s2 + s1s3 + s2s3)

〉

=
〈
d2〉+ 4

9 (s
2
1 + s2

2 + s2
3)
〈

f 2〉+ 4
3 (s1 + s2 + s3)

〈
d
〉〈

f
〉

(8)

+ 8
9 (s1s2 + s1s3 + s2s3)

〈
f 2〉 .

Here we have assumed that d and f are independent of one another, so that terms such as〈
d + f

〉
=

〈
d
〉
+
〈

f
〉

and
〈
d f

〉
=

〈
d
〉〈

f
〉
. Because the si represent a normalized illumination

distribution, the stochastic properties of the system are present only within the out-of-focus
light d and the slice’s light distribution f , and not in the illumination s.

The second moment
〈
i2w
〉

thus separates into four terms, each of which can be considered
separately. Using trigonometric identities, we obtain for the modulation factor in each term

s1 + s2 + s3 =
3
2 , (9)

s2
1 + s2

2 + s2
3 =

3
4 +

3
8 m2 , (10)

s1s2 + s1s3 + s2s3 =
3
4 − 3

16 m2 , (11)

giving the result 〈
i2w
〉
=
〈
d
〉2

+var(d)+2
〈
d
〉〈

f
〉
+
〈

f 2〉 ,

where we have used
〈
d2
〉
=
〈
d
〉2

+var(d).
The second term in the variance formula is easily obtained from Eq. (7) as

〈
iw
〉2

= (
〈
d
〉
+
〈

f
〉
)2 =

〈
d
〉2

+2
〈
d
〉〈

f
〉
+
〈

f
〉2

.

Putting the two results together produces

var(iw) = var(d)+var( f ) . (12)

Just as the mean value of the widefield image is a simple sum of the planar slice and the out-of-
focus light,

〈
iw
〉
=

〈
d
〉
+
〈

f
〉
, the variance of the widefield image is also a simple sum of the

component variances.

4. Variance and SNR of sectioned images

Next we can try to follow the same procedure for the sectioning algorithm (5) to obtain the
variance of the sectioned image, var(i) =

〈
i2
〉− 〈

i
〉2

. The second term in the variance formula

is easily obtained from Eqs. (4) and (5) as
〈
i
〉2

=
〈

f
〉2

. The first term can be obtained by
inserting Eq. (6) to give

〈
i2
〉
=
〈

8
9m2 [(g1 −g2)

2 +(g1 −g3)
2 +(g2 −g3)

2]
〉
. (13)
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The next step is to substitute Eqs. (1) and (2) into this formula, but here one must be careful.
Each modulated image gi provides different samples di and fi of the stochastic out-of-focus
and slice light distribution, such that terms like

〈
d2

1 − d1d2
〉

will be nonzero. That is, since d1

is independent of d2, we can write
〈
d1d2

〉
=

〈
d1
〉〈

d2
〉
, whereas

〈
d2

1

〉
=

〈
d1
〉2

+var(d1). Once
all cross-terms are eliminated from inside an expectation value, one can then take

〈
di
〉→ 〈

d
〉

and var(di) = var(d), and likewise for the fi as well. Thus, the first quadratic term inside the
expectation value of Eq. (13) is

〈
(g1 −g2)

2〉=
〈
( 1

2 d1 + s1 f1 − 1
2 d2 − s2 f2)

2〉

= 1
4

〈
d2

1

〉
+ 1

4

〈
d2

2

〉− 1
2

〈
d1
〉〈

d2
〉
+ s2

1

〈
f 2
1

〉
s2

2

〈
f 2
2

〉
+ s1

〈
d1
〉〈

f1
〉− s2

〈
d1
〉〈

f2
〉

− s1
〈
d2
〉〈

f1
〉
+ s2

〈
d2
〉〈

f2
〉−2s1s2

〈
f1
〉〈

f2
〉
.

Letting all
〈
di
〉→ 〈

d
〉

and
〈
d2

i

〉→ 〈
d
〉2

+var(d), we have

〈
(g1 −g2)

2〉= 1
2 var(d)+(s2

1 + s2
2)
〈

f 2〉−2s1s2
〈

f
〉2

.

Doing this also for the second and third squared terms in Eq. (13) and combining gives

〈
i2
〉
=

8
9m2

[3
2

var(d)−2(s1s2 + s1s3 + s2s3)
〈

f
〉2

+2(s2
1 + s2

2 + s2
3)
〈

f 2〉
]

=
8

9m2

[3
2

var(d)−2
(3

4
− 3

16
m2

)〈
f
〉2

+2
(3

4
+

3
8

m2
)〈

f 2〉
]

=
4

3m2 var(d)+
〈

f
〉2

+
(2

3
+

4
3m2

)
var( f ) ,

where we have also used the results of Eqs. (10) and (11). Incorporating this result into the
variance formula obtains

var(i) =
4

3m2 var(d)+
(2

3
+

4
3m2

)
var( f ) . (14)

The variance of the sectioned image is thus dependent on the out-of-focus contribution in ad-
dition to the variance of f . (Recall that f represents the light obtained from a single standard
widefield image of just the planar slice itself.) Both terms contain a dependence on the modula-
tion contrast, so that as the modulation approaches zero (m → 0), the variance in the sectioned
image increases without bound, as we should expect.

The theoretical expression for the sectioned image variance Eq. (14) indicates that when
the illumination produces ideal modulation contrast at the slice plane (m = 1), the sectioning
algorithm amplifies noise in the slice image by a factor of

√
2 (in standard deviation) relative to

the stochastic noise in f . For most cases, a large out-of-focus contribution is present, and this
not only reduces the modulation contrast but adds to the noise as well. Then m becomes small,
and in this regime the variance approximates to

var(i)≈ 4
3m2

[
var(d)+var( f )

]
,

so that the signal-to-noise ratio of the sectioned image in the weak modulation regime is reduced
by a factor 2/(m

√
3) relative to that of a standard widefield image,

SNR(i)≈
〈
i
〉

2
m
√

3

[
var(d)+var( f )

]1/2
=

m
√

3
2

〈
f
〉

σ(iw)
.
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5. Estimating the modulation contrast

The quantitative sectioning algorithm (5) requires knowing the modulation contrast m in order
to properly scale the result. This value is generally not known a priori and so must be estimated,
but one can use the modulated images themselves to provide the estimated value m̂. For each
of the three modulated images, we obtain a “modulation map” by normalizing the modulated
images using the widefield algorithm as

μi(x,y) =
gi(x,y)
iw(x,y)

=
gi

2
3 (g1 +g2 +g3)

.

Since μi can also be written as μi =
1
2 +

m
2 cos

[
νx− φi

]
, subtracting 1/2 from μi produces a

result proportional to m, so that

(μ1 − 1
2 )

2 +(μ2 − 1
2 )

2 +(μ3 − 1
2 )

2 =
m2

4

[
cos2(νx)+ cos2 (νx+ 2π

3

)
+ cos2 (νx+ 4π

3

)]

=
3
8

m2 ,

and an estimate of m is thus given by

m̂(x,y) =
[8

3

(
(μ1 − 1

2 )
2 +(μ2 − 1

2 )
2 +(μ3 − 1

2 )
2
)]1/2

. (15)

This suggests that, for high SNR data, one can calculate the sectioned image pixel-by-pixel by
combining Eqs. (5) and (15) to give

i(x,y) =
1√
3

[
(g1 −g2)

2 +(g1 −g3)
2 +(g2 −g3)

2
]1/2

[( g1
iw
− 1

2

)
+
( g2

iw
− 1

2

)
+
( g3

iw
− 1

2

)]1/2
(16)

As an example, we measured the three modulated images g1, g2, and g3 on a fluorescent
bead sample and use the algorithm in Eq. (15) to obtain the estimated modulation m̂(x,y) at
every pixel in the image. Our experimental setup (see Sec. 6.1) achieves approximately uniform
modulation across the image, and so if we first threshold the image iw to prevent noisy pixels
from skewing the estimate, we obtain a histogram of m̂ across the image, as shown in Fig. 1. The
histogram suggests that the pixel-by-pixel estimate of m will be quite noisy, so that a much more
accurate estimate can be achieved by averaging m̂ across the image. Or, if there is a significant
contribution of outliers, one can use the histogram median as a more robust estimate. For Fig. 1,
the mean and median values are m̂ = 0.48 and 0.49 respectively. We can note, however, that
taking the mean or median are only valid for homogeneous samples.

From a theoretical standpoint, the roughly Gaussian shape to the histogram is expected, but
the long tail at the lower values of m̂ is not, and may be the result of some beads aggregating
together to create a thicker layer at some locations within the image. If the thickness exceeds
the sectioning depth, then the modulation contrast will drop.

While Fig. 1 shows that the median modulation contrast can be accurately estimated from a
single image, the use of Eq. (15) to estimate m(x,y) requires exceedingly high signal-to-noise
ratio images in order to achieve a reasonable accuracy for every pixel in the image. Its practical
use, therefore, requires collecting a large number of photons (perhaps by summing a sequence
of static images) or some kind of spatial processing in order to reduce the effects of noise.

6. Experimental results

In order to test our theoretical results, we conducted several experiments on a Zeiss Axio Imager
Z1 microscope equipped with an Apotome module, a Zeiss AxioCam MRm monochromatic
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Fig. 1. A histogram of the estimated modulation contrast, m̂, obtained from (15).

camera (1388×1040 pixels), and an HB-100 mercury lamp illumination source. The objective
lens used for all of the experiments is a Zeiss Plan-Apochromatic 20× objective (NA = 0.8).
In order compare measurements against theory, we use the ratio r of measured noise to the
estimated shot noise. Whereas the measured noise is obtained by taking the standard deviation
of a sequence of 1000 measurements, the photon shot noise standard deviation σp is estimated
by taking the square root of the mean number of photons collected. For a standard widefield
measurement, this number should be close to 1, but for SI-sectioned images the noise is larger
than one would expect from the shot noise alone, so that the theory predicts r > 1.

The first step of the experiment involves measuring the camera gain in order to scale digital
counts to detected photelectrons. This involves imaging a uniformly illuminated field (created
by Köhler illumination) at the microscope sample stage with different illumination intensities.
To remove the effects of pixel response nonuniformity, we implemented the following proce-
dures: [34]

1. At each illumination intensity, two wide field images I1 and I2 are acquired.

2. The standard deviation σc is calculated for a 200×200 pixel area in the difference image
I1 − I2.

3. The signal variance is calculated by var( fc) = σ2
c /2. The scaling factor of 2 accounts for

the increased noise due to the image subtraction operation in Step 2.

The quantities fc and σc here indicate the measured intensity and standard deviation in units
of counts and not photons. The resulting measured signal vs. variance at different illumination
intensities is shown in Fig. 2, and gives an estimated gain g = 4.1 photons/count.

In order to provide a baseline reference for later SI noise measurements, we imaged a micro-
scope slide containing a sparse layer of fluorescent beads (Molecular Probes Fluosphere F8853,
peak emission at 515 nm, 2 μm diameter) in wide-field mode (i.e. without the structured grid
placed in the illumination path). To prepare a uniformly distributed sample, the fluorescent
beads were suspended by vortex mixing and sonicated. The suspensions was then dropped onto
a microscope slide and sealed with a cover slip. A total of 1000 images of the sample were
acquired in a time sequenced experiment. The measured mean fluorescent intensity

〈
f
〉

of the
fluorescent beads is 4.33× 104 counts (obtained by summing all pixels at the bead location),
and the standard deviation σn of fluorescent intensity is 112 counts. Thus the ratio of measured
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Fig. 2. Signal vs. variance measurement, showing experimental data (dots) and the fitted
line. The line slope of 4.1 gives an estimate for the gain of g = 4.1 photons/count.

noise to the photon shot noise is:

r =
σm

σp
=

112 counts ×4.1 photons/count

(4.33×104 counts ×4.1 photons/count)1/2
= 1.09 .

Since r is very close to 1, we can say that the imaging system is shot-noise limited.

6.1. Sectioned imaging of 2 μm fluorescent beads without out-of-focus light

We first measured the axial PSF of the SI-sectioned measurements by imaging sub-resolution
green fluorescent nanoparticles (175 nm diameter spheres, from Invitrogen), using the software-
recommended VL grid (17.5 lines/mm) on the Apotome. The FWHM of resulting measured
axial PSF is 3.6 μm, indicating that our fluorescent bead sample (peak emission at 515 nm,
2 μm diameter) is sufficiently thin that no out-of-focus light will be present. For the quantitative
algorithm, we estimate the modulation contrast for this setup using the data shown in Fig. 1,
giving m̂ = 0.49 from the median of the distribution. A total of 1000 sectioned images were
acquired in a time sequenced experiment. The mean intensity

〈
f
〉

and its standard deviation
σm are calculated for 5 different beads, with results shown in Table 1. The ratio of measured
noise to the photon noise is calculated as:

r =
σm (photons)
σp (photons)

=
σm (photons)

[〈
f
〉
(photons)

]1/2
=

σm (counts)×4.1 photons/count
[〈

f
〉
(counts)×4.1 photons/count)

]1/2
. (17)

On the other hand, the theoretical value of the ratio r, assuming Poisson noise, is obtained by

r̂ =
σm

σp
=

√
var(i)√

f
=

[(
2
3 +

4
3m2

)
var( f )

]1/2

√
f

=
(2

3
+

4
3m2

)1/2
= 2.49 .

The theoretical value of 2.49 thus closely corresponds to the measured mean value of 2.41
given in Table 1. That is, use of the sectioning algorithm with the three modulated images on
the (planar) sample has reduced the SNR by a factor of 2.41 from that of a single (unmodulated)
widefield image.

The calculated widefield image iw of the same sample is obtained by algorithm (6). The mean
intensity

〈
iw
〉
, standard deviation σm and ratio r are calculated for the same five beads, with

results shown in Table 1. The measured value of the noise ratio r = 1.04 closely corresponds to
the theoretical result of r = 1 obtained from Eq. (12).
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Table 1. Measurements on a sample of five different fluorescent beads without out-of-
focus light. These are the measured mean widefield intensity

〈
f
〉

and its standard deviation
σm( f ), the calculated widefield intensity

〈
iw
〉

and its standard deviation σm(iw), and the
corresponding ratios r obtained with Eq. (17). The modulation contrast m used to calculate〈

f
〉

is estimated using Eq. (15).

Sectioned image Calculated widefield image

Bead
〈

f
〉

(cts) σm( f ) (cts) r
〈
iw
〉

(cts) σm(iw) (cts) r

1 5.03×104 279 2.53 4.99×104 114 1.03
2 6.29×104 292 2.35 5.51×104 122 1.06
3 4.61×104 259 2.44 4.59×104 115 1.08
4 5.04×104 277 2.50 4.93×104 110 1.00
5 6.17×104 276 2.24 5.60×104 119 1.02

mean: 2.41 mean: 1.04

6.2. Sectioned imaging of 6 μm fluorescent beads containing out-of-focus light

In order to measure noise amplification in SI in the case when out-of-focus light is present,
we imaged a sample of 6 μm diameter green fluorescent beads. Since the sectioning thickness
of the Apotome in this setup is 3.6 μm, there will be some out-of-focus light present. A total
of 1000 sectioned images were acquired in a time sequenced experiment. The mean intensity〈

f
〉

and its standard deviation σm are calculated for five different beads, with results shown in
Table 2. The theoretical value of the ratio r, which we write as r̂, is given by

r̂ =
σm

σp
=

√
var(i)√

f
=

1√
f

( 4
3m2

[
var(d)+

(
1+

m2

2

)
var( f )

])1/2

≈ 1√
f

( 4
3m2

[
var(d)+var( f )

])1/2
=

2

m
√

3

√〈
d
〉
+
〈

f
〉

√
f

.

If we use the relation
〈
iw
〉
=

〈
d
〉
+
〈

f
〉
, let m̂ = 0.49, and substitute the mean

〈
iw
〉

with its
measured value iw, we have

r̂ =
2

m
√

3

√
iw√
f
= 2.36

√
iw/ f .

The resulting theoretical r̂ values for the five beads are shown in Table 2, and indicate a close
correspondence with the experimentally measured value for r. Note that the variation in r̂
among the five beads selected may be due to a variation in the relative amount of fluorescence
emitted by the bead from within the sectioned plane to that emitted from outside the sectioned
plane.
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Table 2. The mean intensity of wide-field images,
〈
iw
〉
, and standard deviation σm of five

different fluorescent beads, obtained from experiment and theory.
Experiment Theory

Bead
〈

f
〉

(cts) σm (cts) r iw (cts) r̂

1 1.70×105 836 4.09 5.01×105 4.11
2 1.20×105 669 3.90 4.13×105 4.38
3 10.29×104 511 3.24 2.32×105 3.56
4 1.89×105 750 3.50 5.04×105 3.85
5 9.05×104 526 3.54 2.80×105 4.15

mean: 3.66 mean: 4.01

7. Conclusion

Although it has often been argued that structure illumination sectioning microscopy is a non-
quantitative technique, we have shown that a quantitative version of the algorithm can be ob-
tained by adding a proper scaling factor. Quantitative scaling does require that one estimate the
modulation contrast m, and this adds an extra step of complexity, but Eq. (15) provides a simple
means of obtaining such an estimate. A consequence of ignoring this scaling factor, as the sec-
tioning algorithms have up to this point, is that in z-stack volumetric images (x,y,z) the deeper
layers will appear artificially darkened. A result of the SI sectioning approach, however, is that
since it removes out-of-focus light from the sectioned image after detection, it suffers from
the shot noise of both the section image and all out-of-focus planes. While this has long been
known, little has been known about the quantitative correlation between the noise amplification
in SI microscopy and the out-of-focus light or other imaging parameters.

The theoretical analysis given above has made no assumptions about the properties of the
noise other than to assume that the variance is the primary quantity of interest, and thus the
results remain valid across all noise regimes (read noise limited, shot noise limited, etc.).

The noise amplification indicated by the variance result may be taken as an argument that SI-
sectioning is a poor substitute for confocal sectioning due to the loss in SNR. But this is not the
whole story. The compatibility of SI with widefield imaging also allows orders of magnitude
greater light throughput than that achievable by confocal microscopy, such that one can use
lower-intensity light sources and still obtain 100–200× increases in photon collection above
that of scanning laser illumination [12,13]. In this case, taking 150 as a representative value for
increased light collection, SI sectioning can provide better SNR than confocal sectioning when

4
3m2 < 150 → m > 0.094 .

An additional advantage SI microscopy has is the ability to reject any residual DC light, such
as that generated by stray light or reflections within the optical system, though this comes at
an SNR penalty. Whether SI-sectioning or confocal sectioning produces better SNR images is
dependent on the microscope setup and the object under analysis, but our theoretical results
provide support for the common empirical observation that SI-sectioning gives lower quality
results when imaging deep within tissue.
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