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Abstract
Automating the process of neural circuit reconstruction on a large-scale is one of the foremost
challenges in the field of neuroscience. In this study we examine the methodology for circuit
reconstruction from three-dimensional light microscopy (LM) stacks of images. We show how the
minimal error-rate of an ideal reconstruction procedure depends on the density of labeled neurites,
giving rise to the fundamental limitation of an LM based approach for neural circuit research.
Circuit reconstruction procedures typically involve steps related to neuron labeling and imaging,
and subsequent image pre-processing and tracing of neurites. In this study, we focus on the last
step – detection of traces of neurites from already pre-processed stacks of images. Our automated
tracing algorithm, implemented as part of the Neural Circuit Tracer software package, consists of
the following main steps. First, image stack is filtered to enhance labeled neurites. Second,
centerline of the neurites is detected and optimized. Finally, individual branches of the optimal
trace are merged into trees based on a cost minimization approach. The cost function accounts for
branch orientations, distances between their end-points, curvature of the merged structure, and its
intensity. The algorithm is capable of connecting branches which appear broken due to imperfect
labeling and can resolve situations where branches appear to be fused due the limited resolution of
light microscopy. The Neural Circuit Tracer software is designed to automatically incorporate
ImageJ plug-ins and functions written in MatLab and provides roughly a 10-fold increases in
speed in comparison to manual tracing.
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INTRODUCTION
It is evident, that the complete understanding of the brain function can only be derived from
a substantially detailed account of synaptic connectivity in the underlying neural circuit. Can
such an account be given in the form of a complete connectome of the circuit (Lichtman and
Sanes 2008, Sporns et al. 2005)? While the connectomes of small invertebrate circuits can
be fully determined electron-microscopically (EM) (Chen et al. 2006, White et al. 1986),
this technique, in spite of a number of impressive developments in recent years [see e.g.
(Briggman and Denk 2006, Denk and Horstmann 2004, Hayworth et al. 2006, Mishchenko
et al. 2010)], still lacks the capacity to reconstruct connectivity on a larger scale. Consider a
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hypothetical serial-section EM reconstruction of a 1 mm3 brain tissue. Volume of this size
roughly corresponds to a blowfly brain or a mammalian neocortical column. At 5 nm x 5 nm
x 50 nm spatial resolution, the amount of data required to describe the volume completely is
on the order of 800 TB, which is too large to be easily processed by modern day computers.
More importantly, even at very low probabilities of errors in following small axon profiles
from one serial section to the next, say 0.01%, cumulative probability of error in
connectivity over a distance of about 1 mm (or 20,000 serial sections) is virtually 100%,
making the resulting connectivity diagram unusable. This fundamental limitation of the
technique makes the complete connectome description of large circuits unrealistic, at least
for the time being.

Other issues further compound the problem (Stepanyants and Chklovskii 2005). First,
synaptic connectivity in large circuits can change over time due to the formation and
elimination of synapses [see e.g. (Grutzendler et al. 2002, Trachtenberg et al. 2002, Yuste
and Bonhoeffer 2001)]. Second, synaptic connectivity in large circuits is bound to be
variable from one brain to another (Bohland et al. 2009). Hence, the connectome of a large
neural circuit is not likely to be time and brain invariant. To understand the extent of the
variability it would be necessary to compare connectomes of different brains. However, this
is not a trivial task since neurons in large brain circuits may not be identifiable from one
animal to another. In the end, one will be forced to abandon the idea of the complete
connectome description, and instead resort to a partial or statistical/probabilistic account of
connectivity.

As an alternative to a statistical connectome description one can base the account of
connectivity on features of the circuit that are more stable over time and may be more
invariant among different brains. Since a synaptic contact requires physical proximity
between axonal and dendritic branches of pre- and postsynaptic neurons, such an account
can be made in terms of the relative layout of branches, or potential synapses (Stepanyants
and Chklovskii 2005, Stepanyants et al. 2002, Stepanyants et al. 2008). Description of
connectivity in terms of potential synapses, though far from being complete, is particularly
useful for characterizing large circuits. This is because while actual synaptic connectivity
may change over time, potential connectivity is typically much more stable (Holtmaat et al.
2005, Trachtenberg et al. 2002). What is more, potential connectivity in different animals
(same species, age, brain area, neuron classes, etc.) appears to be less variable than actual
connectivity (Jefferis et al. 2007, Stepanyants et al. 2008). This is because while the number
of potential synapses between neurons depends mainly on their class and positions in the
brain, the number of actual synapses, in addition, depends on neurons’ functional properties
(e.g. orientation preference in primary visual cortex). Finally, because potential connectivity
is defined by the appositions between axonal and dendritic branches on a micrometer scale,
reconstructions of potential connectivity can be done with light confocal or two-photon
microscopy (LM), taking advantage of the multitude of imaging and cell labeling techniques
(Wilt et al. 2009).

With this study, we are aiming to develop a tool which will automate the process of large-
scale 3D reconstruction of neurites. A typical circuit reconstruction procedure contains
several general steps (Meijering 2010, Russ 2007): neuron labeling and imaging, image pre-
processing, tracing of the wires, and post-processing. The pre-processing stage may include
alignment of individual images within the stack, deconvolution of the stack, and the
application of various noise reduction and feature enhancement filters. The post-processing
stage could contain detection of features such as spines, boutons and synapses, 3D rendering
of neuronal branches, and tiling of the reconstructions of individual stacks. In this study, we
will mainly focus on the wire tracing part, as it is arguably the main obstacle on the way to
automating the circuit reconstruction process. As neurites of many cell types can span the
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entire brain of an animal (e.g. cortical pyramidal cell axons) or the entire animal itself (e.g.
C. elegans), our ultimate goal is to be able to perform reconstructions on a large-scale, and
to recover the traces of axonal and dendritic arbors of sparsely labeled populations of
neurons in their entirety. But, how sparse should the labeling be?

ANALYSIS
How does the minimal LM reconstruction error-rate depend on the sparseness of labeled
neurites?

It is clear that densely labeled neurites are more difficult to reconstruct, potentially leading
to larger numbers of errors in the reconstructed image. Assuming that labeling and imaging
are performed ideally, errors in the reconstruction process would most commonly occur
when the length density of labeled neurites, ρ, is high. Length density is defined as the
combined length of all processes per unit volume (Escobar et al. 2008). At high ρ neurites
may appear fused in 3D (Figure 1A) and it is often difficult to resolve their individual
branches or the branching pattern. Assuming that branches are distributed isotropically and
uniformly in the stack of volume V, and that their typical diameter in the image is d
(apparent, not real diameter), we can estimate the expected number of places in the stack
where two branches appear to be in contact. This number is πdρ2V/2 (Escobar et al. 2008).
In these locations one would have to rely on additional characteristics of labeled neurites in
order to tell them apart. Such characteristics may include relative branch orientations,
branch thicknesses, types (e.g. axons or dendrites), brightness of the label, and color. Below
we examine the possibility of discriminating fused branches based on their relative
orientations.

When two branches appear to be in contact, they can still be resolved some distance away
from the place of contact if their relative orientations are significantly different (Figure 1B).
Branch orientations that cannot be resolved will lead to ambiguities or errors in the trace. To
estimate the fraction of such branch orientations we note that over short distances (< 150
μm) tortuous paths of axons and dendrites can be described with an empirical scaling
relation (Figure 1C):

(1)

This expression shows how the average deviation of neurite’s orientation from a straight
path, δθ, depends on the path length along the neurite, l. Parameter lp is referred to as the
effective persistence length. Over this length branch orientation changes on average by 1
radian (or 57°), assuming that there is no branching along the way.

Figure 1C shows the dependence of δθ on l for mouse axons of neocortical layer 6 neurons
(sample reconstructions are shown in Figure 8). In calculating δθ we used the reconstructed
traces of neurites and uniformly sampled from them neurite segments which do not traverse
through branch points. Deviation in orientation was calculated for every such segment (see
inset in Figure 1C) and the results were combined within groups of similar length segments
(black error-bars in Figure 1C). The effective persistence length, lp, and the scaling
exponent, γ, were determined from the nonlinear list squares regression of this data with Eq.
1: lp = 2050 ± 190 μm (mean ± S.D.) and γ = 0.18 ± 0.01. The adjusted R2 = 0.985
illustrates the goodness of the fit (red line).

Two branches which appear to be in contact cannot be resolved if the deviations in their
individual orientations, δθ, over the length of the contact, l, are comparable to the angle of
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branch incidence, θ ≈ 2d/l (Figure 1B). As a result, contacting branches, incident at θ < θc =
(2d/lp)γ/(1+γ) are unlikely be resolved. Assuming isotropy, the fraction of such branch
orientations in 3D is equal to (1−cos(θc))/2. As θc < 1, this expression is well approximated
with the leading term of its expansion over θc, resulting in the fraction of not resolvable
relative branch orientations of (2d/lp)2γ/(1+γ)/4.

Multiplying the number of fused branches with the fraction of not resolvable relative branch
orientations, we estimate the expected minimal volume density of errors (or ambiguities) in
the stack:

(2)

This minimal expected error-rate depends strongly (quadratically) on the density of labeled
neurites. The expected number of errors per unit length of labeled neurites can be calculated
from Eq. 2, by dividing both sides of this expression with ρ:

(3)

This calculation makes it possible to estimate the lower bound of the error-rate for different
levels of label sparseness. As the combined length of an axonal arbor, La, is much larger
than that of a dendritic arbor for many central neuron classes, in labeling neurites for circuit
level analyses it is essential to ensure that the minimal error-rate does not exceed about one
error per axon, or eLLa < 1. Otherwise, results of automated, or even manual reconstruction
procedures, may be unreliable.

Consider an attempt to reconstruct potential connectivity on the scale of the entire mouse
cerebral cortex. The total length density of axons in the mouse neocortex is estimated at
about 4 μm−2 (Stepanyants et al. 2009). Assuming that the apparent axon diameter d ≈ 1
μm, the typical values of the effective persistence length of cortical axons (most of which
are the axons of pyramidal neurons) and the scaling exponents, γ, are similar to those
obtained from Figure 1C, we estimate that reconstruction of 0.01% of excitatory neurons
uniformly labeled throughout the cortex (only 1 out of 10,000 neurons labeled, ρ = 0.0001 x
4 μm−2) can be done reliably. This reconstruction would result in about 8 errors per mm3 of
cortical gray matter according to Eq. 2, or 1 error per 50 mm of axon length according to Eq.
3. As the average axon length per neuron in mouse neocortex is about 40 mm (Braitenberg
and Schüz 1998), the above error-rate is sufficiently low, making reconstructions suitable
for circuit level analyses of connectivity. It is worth noting that by using multiple color
labels (Lichtman et al. 2008, Livet et al. 2007) one can increase the fraction of labeled
neurons many-fold without affecting the error-rate significantly.

METHODS
Outline of the automated tracing algorithm

There are numerous approaches to automated tracing of linear structures of neurites from 3D
LM images [see (Meijering 2010) for review]. In general, these approaches fall into two
main categories. The first category of algorithms is based on local neurite tracking (or
tracing) (Al-Kofahi et al. 2002, Bas and Erdogmus 2010a, b, Can et al. 1999, Srinivasan et
al. 2007, Wang et al. 2007). Tracking is typically initiated from a seed point provided by the

Chothani et al. Page 4

Neuroinformatics. Author manuscript; available in PMC 2012 April 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



user and the algorithm steps along the structures of neurites by analyzing intensity
distribution in a small neighborhood of the current location. Tracking based algorithms are
computationally inexpensive and can successfully interpolate through small intensity gaps in
the image. On the downside, tracking based algorithms usually run into problems at branch
points or branch crossover regions. This is because, at a given step of a tracking algorithm,
information about neurite structures contained in the image is limited only to the structures
previously visited by the algorithm.

The second group of algorithms is based on image segmentation. Here, some measure of
tubularity is calculated for every voxel in the image in order to delineate voxels belonging to
the neurites from the ones belonging to the background. Next, centerline of the segmented
regions is determined by means of skeletonization (or thinning) (Lee et al. 1994, Palagyi and
Kuba 1998, Weaver et al. 2004), voxel coding (Vasilkoski and Stepanyants 2009, Zhou and
Toga 1999, Zhou et al. 1998), or by optimally connecting a set of maximum tubularity seed
points (Deschamps and Cohen 2001, Dijkstra 1959, González Germán et al. 2008, González
G. et al. 2010, Sethian 1999, Wink et al. 2002, Xie et al. 2010). Segmentation based
algorithms are computationally expensive because they operate on the entire image. The
resulting centerline is often broken into multiple pieces, which need to be interconnected,
and contains numerous spurious branches, which must be pruned. Additional algorithms are
invoked to accomplish these tasks.

Our algorithm for automated tracing of neurites is rooted in the notion that in order to
reconstruct completely one or several structures from a sparsely labeled stack of images, it is
necessary to reconstruct all of the neurites contained in the stack first and, only after, extract
the structures of interest. Consequently, our algorithm is based on image segmentation rather
than tracking. It consists of several steps and relies on a number of parameters (Table 1),
some of which are supplied by the user, while others are learned during interactive training.
The main steps of the algorithm are outlined below and are illustrated in Figure 2:

1. Image stack (see Figure 2A) is pre-processed if necessary. This step may include
alignment of images within the stack, stack deconvolution, conversion of color
formats to gray scale, elimination of cell bodies and other non neurite structures.
Pre-processing steps strongly dependent on the details of neuron labeling and
imaging and are not addressed in this study.

2. The pre-processed image is filtered to enhance the tracing process and binarized
(thresholded). Separate regions containing small numbers of voxels are eliminated.
The outcome of this step is illustrated in Figure 2B.

3. Centerline of the remaining structures in the binary image is detected. This
centerline is represented with a graph consisting of short connected straight line
segments. Due to noise and imperfect labeling centerline usually contains short
erroneous terminal branches and small nested loops. Erroneous terminal branches
are eliminated by setting a branch length threshold. Similarly, every small nested
loop cluster is replaced with a single vertex located at the cluster’s center of
intensity. The result is referred to as the initial trace. The outcome of this step is
illustrated in Figure 2C.

4. The initial trace is optimized with two sequential modified active contour methods
(Kass et al. 1988, Vasilkoski and Stepanyants 2009), Figures 2D. End-points of the
trace remain fixed during the first optimization, but the branch- and intermediate-
points are allowed to move to their optimal positions. The second optimization
algorithm improves the placement of the branch- and end-points of the trace.
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5. Individual branches contained in the optimal trace are merged into branching tree
structures. Branch here is defined as a neurite connecting the root or a branch-point
to a successive branch- or an end-point. This step is based on a novel cost function
optimization method. Special care is taken to prevent the formation of loops at
every step of the branch merging process. The result is illustrated in Figure 2E.

In the following subsections we provide more details for the steps 2, 3, and 4 of the
algorithm.

Filtering tubular structures of neurites
Multi-scale filters can be used successfully to enhance tubular structures. Some such filters
are based on the analyses of eigenvalues of the Hessian matrix (Frangi et al. 1998, Lorenz et
al. 1997, Sato et al. 1998, Streekstra and van Pelt 2002). These eigenvalues are calculated at
different spatial scales for every voxel in the image, and the filter is constructed in such a
way that voxels with high intensity variations along one direction relative to the orthogonal
directions produce high responses. Filter responses at different spatial scales are combined
by taking the maximum over the range of scales. An alternative approach is to use a bank of
steerable filters designed to enhance different orientations and take the maximum over the
range of orientations (Freeman et al. 1991, Gonzalez et al. 2009, Jacob and Unser 2004).
This approach is computationally very expensive as it is usually necessary to use hundreds
of filters to resolve orientations of neurites in 3D.

In this study, we use multi-scale center surround filters (CSF) as means for enhancing linear
structures. The main advantage of the CSFs over Hessian or steerable filters is in the
processing speed. Because of their isotropy, CSFs perform equally well on neurites of
different orientations. When the size of a filter, σ, is matched with the caliber of neurites,
CSF can smooth out the intensity within the boundaries of the neurites, sharpen the
boundaries, and reduce the background noise. A popular choice of a CSF used in detecting
linear structures is the Laplacian of Gaussian (LoG) (Marr and Hildreth 1980). In 3D LoG
has the form:

(4)

Numerical coefficients in this equation are chosen in such a way that both positive and
negative components of the filter are normalized to unity and the filter as a whole is
normalized to zero.

The LoG filter, for σ = 3 voxel sizes, is shown in Figure 3A. If applied to a cylindrical
neurite of a uniform intensity (intensity of 1 in Figure 3A), the LoG filter produces the
response shown in Figure 3B. As it becomes evident from examining the figure, a problem
will arises if the image stack contains neurites of different calibers. LoG will reduce the
intensity inside thick branches, effectively curving out their interiors (e.g. R = 8 voxel sizes),
as well as reduce the intensity of very thin branches (e.g. R = 1 voxel size), which may lead
to branch breaking. To circumvent these problems one may combine the outputs from
different size filters applied to an image, I, by taking the maximum output at every voxel:

(5)
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Asterisk in this expression denotes convolution. The response of such multi-scale CSF,
Figure 3C (σ = 2, 3, and 4 voxel sizes), encompasses a larger range of neurite calibers, R,
which is advantageous. For real neurites, Figure 3D, comparison of the results of single- and
multi-scale LoG filters is shown in Figures 3E and 3F.

Extracting initial traces of neurites
There are multiple methods that can be used for detecting the centerline of neurites. Some
methods are based on skeletonization or thinning of binary images [see e.g. (Lee et al. 1994,
Palagyi and Kuba 1998, Weaver et al. 2004)]. The basic idea behind these methods is an
iterative removal of voxels from the surface of the segmented image in a way that preserves
the topology of the contained structure and does not erode terminal branches. This can be
accomplished by fixing the tips of the terminal branches and monitoring the number of
disconnected structures at every step of the algorithm. The algorithm proceeds until no more
voxels can be removed from the image without increasing the number of regions.
Alternatively, the centerline of neurites can be obtained by using the Minimum Cost Path
methods [see e.g. (Deschamps and Cohen 2001, Dijkstra 1959, González Germán et al.
2008, González G. et al. 2010, Sethian 1999, Wink et al. 2002, Xie et al. 2010)].

In this study we use voxel coding algorithm (Vasilkoski and Stepanyants 2009, Zhou and
Toga 1999, Zhou et al. 1998) as the means for centerline detection (see Figure 4A). Here, a
3D wave of consecutive numerical labels is initiated at an arbitrary voxel in the image. At
every step of the algorithm a new wave front is determined as a set of yet unlabeled image
voxels in the 3×3×3 neighborhood of the current front’s voxels. After the wave of labels
propagates through the first connected region in the image, another wave is initiated at a
different location, and the algorithm proceeds until all the regions are labeled. Voxel coding
may be initiated at seed points provided by the user, however, this is not essential and
random seeds were used throughout this study.

The centers of intensity of consecutive wave fronts (graph nodes) are connected with
straight line segments (graph edges) to form a graph. The branch-points of the graph
correspond to the centers of intensity of the dividing wave fronts, and end-points are the
centers of intensity of the terminal wave fronts (see Figure 4A). Due to noise and imperfect
labeling, voxel coding algorithm may result in a graph containing short erroneous terminal
branches and small nested loops. Erroneous terminal branches are eliminated by setting a
branch length threshold. Similarly, every small nested loop cluster is replaced with a single
vertex located at the cluster’s center of intensity. This reduced graph is referred to as the
initial trace of neurites. It usually consists of multiple unconnected sub-graphs which, in
turn, may contain multiple branches and branch segments (see Figure 4B).

Trace optimization
The initial trace, obtained with the voxel coding algorithm, usually represents the structure
of neurites only approximately (Figure 4B). A smother and more accurate representation can
be achieved with fitness function optimization algorithms. Because the initial trace typically
lies sufficiently close to the optimal solution, such optimization can be performed with a fast
iterative gradient ascent procedure (Boyd and Vandenberghe 2004).

In the previous version of the optimization algorithm (Vasilkoski and Stepanyants 2009) the
fitness function, Φ1, was constructed from intensity integrated along the trace (average
intensity along the trace times the trace length) and the elastic energy of the trace:
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(6)

Vectors r⃗k in this expression specify the positions of vertices of the trace and R⃗k denote the
positions of voxel centers in the image stack. Parameter s denotes voxel size which, for
simplicity, is assumed to be the same in all 3 dimensions. Index kl in the second term
enumerates all the vertices of the trace that are connected to the vertex k. For example, if
vertex k is an intermediate node, kl enumerates the 2 of its neighboring vertices, and if
vertex k is a bifurcating node, kl describes 3 vertices. Parameter λ denotes the average
density of segments along the trace (number of segments per unit length of the trace), and a1
> 0 controls the tension in the trace. Parameter σ should be of the order of the typical radius
of neurites contained in the image, and, due to the fast decay of the Gaussian pre-factor,
summation over i in Eq. 6 can be restricted to a small number of voxels in the vicinity of the
trace.

Maximization of the functional Φ1 can be achieved with the following gradient ascent
procedure:

(7)

Here, superscript n enumerates the steps of the algorithm and parameter b1 > 0 controls the
step size. Terminal vertices of the trace must remain fixed during this procedure to prevent
the subtrees within the trace from collapsing to single points. Details related to the stability
of the algorithm and the appropriate range of values of parameters a1 and b1 are addressed in
(Vasilkoski and Stepanyants 2009).

Trace, resulting from optimization of Eq. 6, captures very precisely the layout of neuronal
branches (Figure 4C), but the placement of the branch- and end-points in the trace can be
further improved with a secondary optimization procedure. In this optimization, a new
fitness function Φ2, reflecting the intensity and straightness of the trace is maximized:

(8)

Index k in this expression runs over the intermediate vertices only, and dot in the second
term denotes the scalar product. At every intermediate vertex, k, the notion of straightness is
captured by the cosine of the angle between segments connecting k with its two first order
neighbors (denoted with k−1 and k+1 in Eq. 8). The gradient ascent procedure for this
functional is:

(9)
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Positions of all vertices of the trace, including branch- and end-points, are updated during
this procedure. For brevity, Eq. 9 is written in a way where it is only applicable to vertices,
k, with strictly two first and second order neighbors, i.e. k−2, k−1 and k+1, k+2. To describe
the steps of other types of vertices, Eq. 9 must be modified in the following way: (i) if some
of the neighboring vertices of k do not exist (e.g. if k is an end-point vertex), or (ii) if the
number of first or second order neighbors of k is greater than two due to branching (e.g. if k
is a bifurcation point it has 3 first order vertices) then the terms corresponding to such
neighboring vertices must be dropped from Eq. 9.

At every iteration step of the gradient ascent algorithms of Eqs. 7 and 9 positions of all
vertices are synchronously updated. Long segments are subdivided and short segments are
combined to ensure stability of the trace and adequate representation of intensity in the
image (Vasilkoski and Stepanyants 2009). The sequential optimization scheme was designed
to improve trace precision while maintaining stability. The initial trace is stretched in the
course of the first optimization, straightening the zigzags resulting from voxel coding
(Figure 4C). This step is essential, as the second optimization, which improves the
placement of branch- and end-points (Figure 4D), results in instability if applied directly to
the initial (wave) trace. Numerical values of parameters used in both optimization
procedures are shown in Table 1. For the 3 datasets examined in this study, both
optimizations converged to their optimal solutions (as judged by monitoring the fitness
functions) within 50 iteration steps. Optimization improves the placement of branch- and
end-points by about 2 – 3 μm over the initial trace (Vasilkoski and Stepanyants 2009)
(compare Figures 4B and 4D). What is however more important, optimization smoothes out
zigzags present in the initial trace. This is essential for the next step of the algorithm, during
which individual branches are merged into tree structures based on their orientations,
intensities, and curvatures. Calculation of these quantities relies on smoothness of the trace.

Automated branch merger
Branch merging is the most important stage of the described automated tracing procedure.
At this stage we are invariably risking to create erroneously connected neurites. Such false
positive mergers are difficult to find and to correct. Hence, the best reconstruction strategy
in our opinion is to merge branches only when the confidence level is relatively high.
Regions with complex merger patterns are better handled by trained users.

In merging branches of the optimal trace we first identify the end-points of all the branches
and group them into spatially segregated clusters. For this, we consider a graph in which the
nodes represent the branch end-points and the edges are placed only between spatially
neighboring nodes (distance less than a threshold set by the user). Branch end-point clusters
are sorted based on the number of contained end-points and the algorithm proceeds from
merging 2 end-point clusters (in the order of increasing cost, see Eq. 10), to 3 end-point
clusters, to the higher order clusters.

Within each cluster of branch end-points, all possible merger scenarios leading to 2 branch
mergers, 3 branch mergers (bifurcations), and 4 branch mergers (trifurcations) are
considered. Figure 5 shows an example of 4 branch end-point merger. In this case, there are
15 merger scenarios in total: 1 scenario resulting in 4 separate branches (no merger), 4
scenarios leading to 1 bifurcation and 1 separate branch, 3 scenarios resulting in 2 separate
branches (Figures 5A–C), 6 scenarios leading to 3 separate branch, and 1 scenario
corresponding to 1 trifurcation. For each scenario the optimal merging trace is determined
and the cost of the merger is evaluated. The algorithm performs the lowest cost merger and
moves to the next cluster, unless the merger results in the formation of a loop. In this case
the algorithm will attempt the subsequent lowest cost merger.
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During manual tracing, trained human operators discriminate between correct and erroneous
tracing scenarios by combining information about multiple features of neurites. Such
features may include distance between branches, branch orientations, average intensities,
variations of intensities, branch thicknesses, curvatures, tortuosities (Stepanyants et al.
2004), colors, presence of spines or boutons, etc. Likewise, to evaluate different merger
scenarios within a given cluster of branch end-points, we designed the cost function which
contains 4 of the above mentioned features:

(10)

Index i in this expressions enumerates separate branch end-point mergers within the
considered merger scenario. Di denotes the total distance between all merging branch end-
point pairs within the i-th merger. χij represents the angle made by the branch pair j within
the i-th merger. It is calculated as the angle between tangents to the two branches in the
vicinity of the considered end-points. By default, χi0 equals 180° for 2 branch end-points
mergers, 120° for bifurcations, and 90° for trifurcations. Ii is the average intensity along the
optimally connecting traces of the i-th merger, and I0 is the average intensity along the
optimal trace of the entire image. These quantities are calculated by dividing the first terms
in Eqs. 6 or 7 with the trace length. Ki is the average curvature of the optimally connecting
traces of merger i. As before, the curvature is calculated only for the intermediate vertices. N
represents the number of remaining (not merged) branch end-points. Figure 5 shows
individual components of the cost for 3 out of 15 possible merger scenarios involving 4
branch end-points.

The cost function in Eq. 10 depends on 13 non-negative parameters (Table 1): three sets of
parameters α, β, γ, δ – one set for each allowed merger type (2, 3, and 4 branch end-point
mergers), as well as the parameter ε. These parameters are determined with the perceptron
learning algorithm (Engel and Broeck 2001) during user assisted branch merging procedure.
Here, for every cluster of branch end-points in the training stack of images, the user is
sequentially presented with different merger scenarios and has to identify the correct one.
Once the correct merger is identified, numerical values of D, χ, I, K, and N for this merger
are associated with 1 (or correct merger) and those for all other merger scenarios within the
cluster are associated with −1 (or incorrect merger). The algorithm proceeds to other clusters
of endpoints until training is complete. Perceptron is trained to identify the correct merger
within each cluster by solving the system of inequalities which ensures that costs of the
correct mergers are the lowest within each group.

Numerical values of the cost function parameters α, β, γ, and δ are obtained from the
perceptron learning, during which more than 95% of mergers are typically recognized
correctly. Reconstructions are not very sensitive to the exact values of α, β, γ, and δ, and
the parameter sets generalize well on test images obtained under similar experimental
conditions. For example, in reconstructing datasets of drosophila olfactory neuron axons
(Brown et al. 2011) used in the DIADEM challenge (Brown et al. 2011), we trained the
algorithm on 3 training image stacks and tested its performance on 3 qualifier image stacks
by using the DIADEM metric. The metric scores were not statistically different between the
training (0.89, 0.89, and 0.67) and test groups (0.66, 0.79, and 0.90).
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IMPLEMENTATION
Parameters and data formats

Our algorithm depends on a number of parameters, some of which are set by the user while
others are learned from the training data and are generalized on images of the same type (see
Table 1). Parameters set by the user include: the multi-scale CSF sizes, thresholds for
intensity, region size, and branch length, as well as trace optimization parameters. There are
no strict guidelines on how to choose the values of these parameters, and the best choice of
parameters is dependent on the image type.

In general, the multi-scale CSF sizes must span the range of neurites’ radii. Because voxel
coding algorithm works on binary images, intensity thresholding is a necessary step. The
threshold must be high enough to eliminate the background and separate neurites as much as
possible without breaking them into many small regions. Region size threshold is used to
eliminate small noise remaining in the image after filtering and thresholding. Typically, few
hundred voxels are sufficient to remove such noise without affecting regions of neurites.
Branch length threshold is used to eliminate short terminal branches. This is usually
necessary for simplifying the topology of branch merging patterns. It is recommended to set
this threshold to at least few voxel sizes in order to reduce artifacts of the voxel coding
algorithm. For neurites containing short terminal branches (2 – 5 μm), spines, or filopodia,
branch length threshold should be high enough to eliminate the traces of such structures.
These structures must be detected with separate algorithms, after the main trace of neurites
is determined. The choice of optimization parameters was previously described (Vasilkoski
and Stepanyants 2009). Best values of parameters a1,2, which control the stiffness and
straightness of the trace, depend on the class of neurites. For example, in the neocortex
axons of many inhibitory neuron classes are much more tortuous than axons of excitatory
neurons (Stepanyants et al. 2004), and therefore they must be reconstructed by using lower
values of a1,2. More studies are needed to determine the best values of the trace optimization
parameters for different neuron classes.

Traces of neurites in this study are built out of short connected straight line segments. Their
topological structure is conveniently represented with an adjacency matrix. This format
makes it possible to describe structures containing loops, which are often present at the
initial stages of the algorithm. This data format also allows for fast traversing through the
trace and identifying its branch- and end-points. The final trace of all the neurites contained
in the image stack can be converted from the adjacency matrix format to a more traditional
SWC format of neuron morphology (Cannon et al. 1998).

The Neural Circuit Tracer software
The Neural Circuit Tracer is open source software built using Java (Sun Microsystems) and
Matlab (MathWorks, Inc., Natick MA). It is based on the core of ImageJ
(http://rsbweb.nih.gov/ij) and the graphic user interface has been developed by using Java
Swings. The software combines a number of functionalities of ImageJ with several newly
developed functions for automated and manual tracing of neurites. The Neural Circuit
Tracer is designed in a way that will allow the users to add any plug-ins developed for
ImageJ. More importantly, functions written in MatLab and converted into Java with Matlab
JA toolbox can also be added to the Neural Circuit Tracer.

Current version of the software includes basic ImageJ components and plug-ins, such as
image stack view, ImageJ 3D viewer plug-in (http://rsb.info.nih.gov/ij/plugins/3d-viewer),
and a number of 3D filters. Additional features included in the current version are:
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• Loading a stack of images with the option to reduce the stack in xy or xyz
dimensions. The reduction can be accompanied with 3D median, mean, minimum,
maximum, or standard deviation filtering of the stack. Image stack can be loaded in
Tagged Image File (.tif) and MatLab (.mat) formats.

• Multi-scale CSF and a region size filters (described above).

• Automated tracing module. This function is based on the algorithm described
above.

• Manual editing module. The trace is conveniently displayed in 2D on top of the
ImageJ stack view and in 3D inside the ImageJ 3D viewer plug-in (see Figure 6).
Trace can be zoomed in/out and rotated in 3D. Individual tree segments can be
added and deleted. Tracing can be continued from any vertex of the trace. Trees can
be connected, disconnected and deleted.

• Two trace optimization functions (described above).

• Saving and loading of the stack and the trace in MatLab (.mat) format.

• Exporting the trace in SWC format (Cannon et al. 1998).

• Adding Java and MatLab based plug-ins.

• Building, saving, and running macros. User can save a group of functions as
macros and run them consecutively.

RESULTS AND DISCUSSION
Performance of the automated tracing algorithm presented in this study was evaluated on 3
DIADEM challenge datasets (Brown et al. 2011). Neurites in the selected datasets were
fluorescently labeled and imaged with confocal or two-photon microscopy. Other DIADEM
datasets, obtained with brightfield microscopy, were not examined due to the beaded
appearance of neurites. Voxel coding algorithm cannot be used for extracting the initial
traces of neurites from such images and must be replaced with the Minimum Cost Path or
tracking based methods. After the initial trace is detected, optimization and branch merging
steps of the algorithm can be applied without changes.

Automated and manual (gold standard) traces can be compared quantitatively by using the
DIADEM metric (Gillette et al. 2011) to evaluate the performance of the algorithm.
However, this comparison is hindered by several considerations. First, the DIADEM metric
relies heavily on the topologies of the reconstructions, yet it only compares connected tree
structures. Broken trees score lower because only the tree sections connected to the roots
contribute to the score. In general, topological errors which occur closer to the root of the
reconstruction receive larger penalties. This seems reasonable if the root is selected at or
close to the neuron’s cell body, but is somewhat arbitrary otherwise (see e.g. Figure 8).
Second, gold standard reconstructions obtained manually are usually not perfect. For
example, comparisons of reconstructions performed manually by different users do not
result in perfect scores (Gillette et al. 2011). Hence, automated reconstructions, even if more
accurate than the gold standard, will not receive perfect scores. Finally, scoring automated
reconstructions with the DIADEM metric becomes meaningless in situations where the
numbers of theoretically expected ambiguities or errors are high.

Figure 7 shows two automated tracing examples of drosophila olfactory neuron axons
(Jefferis et al. 2007). Six such image stacks were traced automatically and the results were
evaluated by using the DIADEM metric and the gold standards. Metric scores were
generally high, 0.80 ± 0.11 (mean ± SD), indicating good overall quality of automated
reconstructions. Typical errors for this dataset included broken branches and other
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topological mistakes which can be classified as branch stealing (circled regions in the inset
of Figure 7B). Such errors were minor and could be easily corrected in the editing module of
the Neural Circuit Tracer, requiring 1 – 2 minute of user involvement per image stack. This
editing time is significantly shorter than the average time required for manual reconstruction
of these images, which is estimated at about 20 minutes per stack (Brown et al. 2011).

Results of automated tracing of mouse neocortical axons of layer 6 neurons (De Paola et al.
2006) are shown in Figure 8. Here, six stacks of images were traced individually. These
reconstructions may be stitched together manually to form a larger-scale mosaic.
Reconstruction errors include branch breaking due to uneven labeling and branch/tree
stealing. The stacks also contain branch crossover regions which could not be resolved with
high confidence (Figure 8G–J). Because neurites in these images are distributed roughly
uniformly and isotropically, we can invoke Eqs. 2 and 3 to estimate the theoretically
expected numbers of such regions. This calculation resulted in 8 expected ambiguities/error
in A, 21 in B, 4 in C, 12 in D, 2 in E, and 2 in F, which is in good agreement (up to a factor
of 2) with counts of such sites in individual stacks. Due to the high numbers of expected
ambiguities/errors in this dataset, the DIADEM metric could not be used in a meaningful
way to evaluate the quality of the results. The estimated average editing time necessary to
fix reconstruction errors (~10 minutes per stack) is much shorter than the manual tracing
time of several hours per stack (Brown et al. 2011).

The mouse neuromuscular projection fiber dataset (Lu et al. 2009) is a mosaic of 152 stacks
of images. Image stacks were reduced 3-fold in all dimensions and traced individually. Two
examples of such tracings are shown in Figure 9. Automated reconstruction errors included
branch breaking due to uneven labeling or due to branch proximity to stack surfaces (circled
regions in Figure 9), as well as fusing of nearby axons. The average editing and trace
stitching time (~10 minutes per stack) is much shorter than the manual tracing time, which is
estimated based on (Brown et al. 2011) to be in the range of 80 – 100 minutes per stack.

CONCLUSIONS
In this study we describe a methodology for automated tracing of neurites from 3D LM
stacks of images. Our algorithm and software can be used for tracing neurites labeled with
fluorescent and non-fluorescent markers and imaged with confocal, two-photon, or
brightfield microscopy. We estimate how the minimal error-rate of an LM based
reconstruction approach depends on the sparseness of labeled neurites. Reconstructions can
only be useful for circuit level analyses if the labeling is sufficiently sparse. If the threshold
of label sparseness is exceeded, neurites cannot be reconstructed with confidence, even
manually by trained operators.

Automated reconstruction tools, including the one described here can substantially aid more
time consuming manual reconstruction techniques, but are unlikely to replace them
completely, at least in the near future. Major improvements in the reconstruction
methodology may be easier done at the experimental rather than computational end of the
problem. Because there are no automated tools that perform well on diverse experimental
datasets, the optimal reconstruction strategy may be to extract the initial traces of neurites,
but merge branches automatically into tree like structures only when the confidence for such
mergers is relatively high. The remaining mergers can be done by the user without
significant time investment. It is usually much faster and easier to connect broken branches
with editing software than to find and repair erroneous connections.
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Figure 1.
Estimating the minimal error-rate of LM based circuit reconstruction procedures. A.
Maximum intensity projection of a small part of an image stack containing GFP labeled
mouse neocortical axons of layer 6 neurons (De Paola et al. 2006). The axonal braches
appear fused in 3D and it is not possible to resolve with certainty their individual traces or
the branching pattern. Such neurite clusters are the main contributors to the error-rate of an
LM based circuit reconstruction. Scale bar is 5 μm. B. Top: model of the scenario shown in
A. If two branches appear fused and run side-by-side over a relatively long distance l, their
individual traces cannot be resolved (middle or bottom). C. Scaling of the deviation in
neurite orientation with path length. Black line shows the dependence of the deviation on
path length derived from the reconstructions of neocortical layer 6 axons. Error-bars indicate
standard deviations of δθ. Red line is the best fit with Eq. 1. Inset illustrates how the
deviation in neurite orientation is calculated for a tree segment which does not traverse
through branch points (red segment of cyan tree).
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Figure 2.
Schematic illustration of the main steps of the automated tracing algorithm. A. Maximum
intensity projection of a small part of an image stack containing GFP labeled mouse
neocortical axons of layer 6 neurons (De Paola et al. 2006). Scale bar is 5 μm. B. Same
image after the application of the CSF (Eq. 4, σ = 1 voxel size), intensity thresholding (at 25
out of 255), and elimination of small regions (less than 200 voxels in volume). C. Voxel
coded binary image and the initial trace showing individual branches in different colors.
Short terminal branches and small nested loops were removed. The trace is shifted down to
improve visibility. D. The initial trace is optimized with two consecutive optimization
algorithms. E. Result of the automated branch merger algorithm.
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Figure 3.
Multi-scale center-surround filter. A. Central cross-section of the LoG (Eq. 4, σ = 3 voxel
sizes) is shown as a colormap. Gray bar represents the cross-section of a cylindrical neurite
of radius R located distance D away from the center of the filter. B. D – R colormap of
intensity in the filtered image. C. D – R colormap of intensity in the multi-scale filtered
image (Eq. 5, σ = 2, 3, and 4 voxel sizes) covers a broader range of neurite calibers, R. D.
Small part of an image containing mouse neuromuscular projection fibers (Lu et al. 2009).
Scale bar is 1 μm. E. Single-scale CSF may create holes in thick neurites or break the thin
ones. F. Multi-scale CSF sharpens the boundaries of neurites and smoothes out their
intensity.
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Figure 4.
Voxel coding and optimization of the trace. A. Maximum intensity projection of a small part
of a dendritic arbor. A 3D wave of consecutive numerical labels is initiated at an arbitrary
voxel (yellow circle) in the image. At every subsequent step of the algorithm a new wave
front is determined as a set of yet unlabeled image voxels in the neighborhood (3×3×3 in the
figure) of the current front’s voxels. Modified with permission from (Vasilkoski and
Stepanyants 2009) (their Figures 2A). B. The centers of intensity of consecutive wave fronts
are connected with straight segments to form the wave trace (yellow line). The branch-
points of the wave trace are defined as the centers of intensity of the dividing fronts (green
asterisk in A). The end-points are the centers of intensity of the terminal wave fronts (blue
asterisks in A). C. The initial trace is optimized with Eq. 7 for a more accurate
representation of the neurites. Typical flaws of this optimization include imprecise
placements of the branch- and end-points (circled regions). D. These problems are fixed
with a subsequent optimization of the trace with Eq. 9. Scale bar in B is 10 μm.
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Figure 5.
Local optimization based branch merging strategy. Maximum intensity projection of an
image stack showing a cluster of 4 end-points of the optimal trace (thin lines). All possible
branch merger scenarios are considered by the algorithm. Three of these scenarios are
shown in A, B, and C. The associated distances between branch end-points [D (in pixels)],
cosines of angles made by the merging branch pairs [cos(χ)], average normalized intensities
(I), curvatures (K) of the optimally connecting paths (thick red and green lines), and the
corresponding costs are shown. Merger scenario shown in A seems to be the best choice as
judged by the total cost of merger. Scale bar in A is 5 μm.
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Figure 6.
Graphic user interface of the Neural Circuit Tracer. The image stack viewer (left) is based
on ImageJ core. It displays the z projection of the trace superimposed on a given z-slice of
the image stack. The image stack viewer makes it possible to manually trace neurites or edit
automated traces in 3D. The trace can be displayed inside the ImageJ 3D viewer plug-in to
facilitate manual tracing (right).
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Figure 7.
Examples of automated tracing of drosophila olfactory neuron axons (Jefferis et al. 2007).
The traces are shifted with respect to the projected image stacks to improve visibility. Insets
in A and B zoom in on regions of high complexity. This region in B contains two possible
errors (circled areas) which can be classified as branch stealing. Scale bar in A is 10 μm.
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Figure 8.
Examples of automated tracing of mouse neocortical axons of sparsely labeled layer 6
neurons (De Paola et al. 2006). A – F. Automated traces are superimposed on the maximum
projections of the image stacks. Based on Eq. 2 and length densities of reconstructed
neurites in individual stacks the expected numbers of errors or ambiguities are: 8 in A, 21 in
B, 4 in C, 12 in D, 2 in E, and 2 in F. Circles in A highlight five such regions. In these
regions axonal braches appear fused in 3D and it is difficult to resolve their individual traces
or the branching pattern with certainty. Close-ups of these regions are shown in panels G –
K. Scale bar in A is 20 μm.
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Figure 9.
Examples of automated tracing of mouse neuromuscular projection fibers (Lu et al. 2009).
The automated traces in A and B are superimposed on the maximum projections of the
image stacks. Circled regions highlight typical errors in automated tracing. These errors
include branch breaking due to non-uniform labeling of neurites and due to branch
proximity to the stack surfaces, and erroneous branch mergers due to fusing of neurites (see
Figure 1). Scale bar in A is 10 μm.
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