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Neurobiology of Disease

A Model of Toxic Neuropathy in Drosophila Reveals a Role
for MORN4 in Promoting Axonal Degeneration

Martha R. C. Bhattacharya,' Josiah Gerdts,> Sarah A. Naylor,' Emily X. Royse,' Sarah Y. Ebstein,' Yo Sasaki,’
Jeffrey Milbrandt,? and Aaron DiAntonio'

Departments of 'Developmental Biology and 2Genetics, Washington University in St. Louis School of Medicine, St. Louis, Missouri 63110

Axonal degeneration is a molecular self-destruction cascade initiated following traumatic, toxic, and metabolic insults. Its mechanism
underlies a number of disorders including hereditary and diabetic neuropathies and the neurotoxic side effects of chemotherapy drugs.
Molecules that promote axonal degeneration could represent potential targets for therapy. To identify such molecules, we designed a
screening platform based on intoxication of Drosophila larvae with paclitaxel (taxol), a chemotherapeutic agent that causes neuropathy
in cancer patients. In Drosophila, taxol treatment causes swelling, fragmentation, and loss of axons in larval peripheral nerves. This
axonalloss is not due to apoptosis of neurons. Taxol-induced axonal degeneration in Drosophila shares molecular execution mechanisms
with vertebrates, including inhibition by both NMNAT (nicotinamide mononucleotide adenylyltransferase) expression and loss of
wallenda/DLK (dual leucine zipper kinase). In a pilot RNAi-based screen we found that knockdown of retinophilin (rtp), which encodes
a MORN (membrane occupation and recognition nexus) repeat-containing protein, protects axons from degeneration in the presence of
taxol. Loss-of-function mutants of rtp replicate this axonal protection. Knockdown of rtp also delays axonal degeneration in severed
olfactory axons. We demonstrate that the mouse ortholog of rtp, MORN4, promotes axonal degeneration in mouse sensory axons
following axotomy, illustrating conservation of function. Hence, this new model can identify evolutionarily conserved genes that promote

axonal degeneration, and so could identify candidate therapeutic targets for a wide-range of axonopathies.

Introduction
Injury to axons occurs in a wide variety of pathological contexts,
including diabetic neuropathy, exposure to chemotherapeutic
agents during cancer treatment, and hereditary neuropathies
such as Charcot-Marie-Tooth disease (Coleman, 2005). In recent
years, axonal injury has been appreciated as an early event in CNS
degenerative diseases such as Alzheimer’s disease (Stokin et al.,
2005) as well as traumatic brain injuries (Xu et al., 2007). These
diverse mechanical, toxic, and metabolic insults initiate a stereo-
typed set of cellular changes beginning with axonal swellings that
progress into breaches of membrane integrity and axonal frag-
mentation (Coleman and Freeman, 2010).

Axon degeneration occurs through a molecular pathway that
is evolutionarily conserved. Evidence for this molecular cascade
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came initially from the remarkable protective effects of ex-
pression of nicotinamide mononucleotide adenylyltransferase
(NMNAT), the critical component of the Wallerian degeneration
slow (W1d°®) fusion protein (Mack et al., 2001; Araki et al., 2004).
Using a mechanism that is still mysterious, NMNAT gain-of-
function in the axon blocks axonal degeneration in Drosophila
and mouse from a wide range of insults (Mack et al., 2001; Hoop-
fer et al., 2006; MacDonald et al., 2006; Press and Milbrandt,
2008; Zhai et al., 2008; Sasaki et al., 2009a). Endogenous path-
ways also promote axonal degeneration following injury. The
dual leucine zipper kinase DLK, or its Drosophila ortholog wal-
lenda, is required for efficient axonal degeneration in response to
axotomy or chemotherapy treatment in vitro, and in vivo follow-
ing sciatic nerve injury (Miller et al., 2009). That the roles of
NMNAT and DLK are functionally conserved across species sug-
gests that an ancient cascade executes the removal of irreparably
damaged axons. Identification of important players in this cas-
cade may enable strategies to block axon degeneration and could
slow or prevent progression of many neurological diseases.

In human patients, the administration of chemotherapeutic
agents such as vincristine and paclitaxel (taxol) causes a dose-
limiting peripheral neuropathy, such that very aggressive cancers
cannot be adequately controlled by these drugs (Malik and Still-
man, 2008; Park et al., 2008). Since the timing of chemotherapy
treatment is known, strategies to protect axons before and/or
during treatment have great potential to minimize this toxic side
effect (Windebank, 1999). The identification of genes that pro-
mote axon degeneration after injury is a first step toward realizing
this therapeutic potential.
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Figure 1.

30 um. Insets show portions of a dendrite from the larger images. Scale bar, 6 wm.

To identify molecules underlying axonal degeneration, we de-
vised a novel paradigm for injuring axons in the fruit fly Drosoph-
ila melanogaster using the chemotherapy drug paclitaxel (taxol).
In this model, axons swell, fragment, and are lost, and this loss is
not caused by apoptosis. Axons injured in this paradigm can be
protected by both NMNAT overexpression and loss of wallenda/
DLK, demonstrating that the conserved axonal degeneration pro-
gram mediates this taxol-induced neuropathy. To test the utility of
this new model as a gene discovery platform, we performed a pilot
RNAi-based screen and identified the MORN (membrane occupa-
tion and recognition nexus) family member retinophilin as a gene
promoting degeneration. Importantly, the mouse ortholog of reti-
nophilin, Morn4, also promotes mammalian axonal degeneration.
Our work introduces a novel and clinically relevant axonal injury
paradigm in Drosophila and has identified a role for MORN4 as a
conserved component of the axonal degeneration program.

Taxol - Severe

Drosophila peripheral axons are damaged or lost following taxol treatment. A-C, The segmental nerve between
segment A3 and A4 is visualized by Cy3-HRP (labels neuronal membranes, red). ppkEGFP labels a subset of sensory neurons. 4,
Vehicle (DMSQ) treated. B, C, 30 wm taxol treated. Axon degeneration was assessed 4 d after treatment initiation. In B, an
intermediate phenotype of swellings and fragmentation is visible with both EGFP (arrowheads) and with HRP (arrows). In ¢, amore
severe phenotype of EGFP and HRP loss is shown. Scale bar: (in A) A-D, 5 um. D, E, EM cross-section images of nerves from
wild-type (Canton S) vehicle- and taxol-treated animals. Scale bars: D, E, 1 um. F, G, Zoomed-in images of axons from D and E.
Scalebar (in F) F, G, 200 nm. H, I, Peripheral nerves stained with antibody to Futsch (22C10). Three nerves are shown in the vehicle;
one defasciculated nerve is shown in the taxol-treated animal. Arrowheads point to prominent swellings in individual axons. Scale
bar (in H), H, 1,10 um. J, K, Class IV sensory axons ( ppkgal4/+,; UAS-CD8:GFP/+) in the ventral nerve cord in vehicle (left) and
taxol treated (right). Arrows point to intact axons (/) or swollen and fragmenting axons (K). Scale bar: (in J) J, K, 10 wm. L-N,
Dendrites and cell body of ddaCsensory neurons in vehicle-treated (L) or 30 um taxol-treated (M, N') animals. Scale bar: (in L) LN,
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Materials and Methods

Fly strains. The following strains were used in this
study: Canton S (wild-type), elav-GAL4 (Yao and
White, 1994), pickpocket’-EGFP (referred to as
PPKEGFP; Grueber et al., 2003), pickpocket-CD8:
3xGFP (referred to as ppkCD8GFP; Shimono et
al,, 2009), ppk-GAL4 (Grueber et al., 2007), wnd”
and wnd® mutant alleles (Collins et al., 2006),
UAS-dmNMNAT (MacDonald et al., 2006), re-
tin' (Venkatachalam et al., 2010), and rtp’
(Mecklenburg et al., 2010). All other strains are
from the Bloomington Stock Center. All RNAi
lines used are from the Vienna Drosophila RNAi
Consortium (Retinophilin RNAi, 109000).

The UAS-cytNMNAT]I expression construct
was made using mouse cytNMNATI, a mutant
version of NMNAT]1 with the nuclear localiza-
tion disrupted (Sasaki et al., 2006). The full-
length cytNMNAT1 was inserted into the
pUAST expression vector and injected into w—
fly embryos to create transgenic lines. A viable
second chromosome insertion of this con-
struct was used for experiments.

Genetics. For screening, females with ho-
mozygous UAS-Dicer2, elavGAL4, and
PpPkEGFP were crossed to homozygous UAS-
RNAi males to generate progeny of either sex
for analysis. For olfactory axotomies, females
of a strain containing GAL4 driven by the pro-
moter region of olfactory receptor 82a (Or82a-
GAL4; Fishilevich and Vosshall, 2005), UAS-
CDS8:GFP, and UAS-Dicer2 were crossed to
UAS-RNAi males, and male progeny were an-
alyzed. Other genotypes are as noted in figure
legends.

Taxol treatment. Embryos from crosses were
collected on grape plates, and first instar larvae
of both sexes were washed off and resuspended
in water with 30 um paclitaxel (Tocris Biosci-
ence) or an equivalent amount of DMSO (ve-
hicle; Tissue Culture Support Center,
Washington University School of Medicine).
This liquid was then used to make up instant
Drosophila media (“blue food;” Carolina Bio-
logical Supply). For large-scale screening, 12
well plates were used and plugged with Flugs
(Genesee Scientific). Animals on taxol-treated
food were incubated at 25°C for 4 d before dis-
section and analysis.

Immunocytochemistry. GFP signal was en-
hanced with Alexa Fluor 488-rabbit-anti-GFP
(1:1000, Invitrogen). Other antibodies used
were Cy3-HRP (1:1000, Jackson ImmunoResearch) and Rabbit anti-
cleaved-Caspase 3 (1:200, Cell Signaling Technology). Secondary anti-
bodies were obtained from Jackson ImmunoResearch and used at 1:1000
dilution.

Mouse DRG cultures. Embryonic day 12.5 mouse DRG neurons were
cultured as described previously (Sasaki et al., 2009b) using embryos
of both sexes. Lentiviral particles containing Morn4-targeting (5'-
TGACCTTCTCAGATGGCTCAA-3") or control shRNA sequences were
packaged as described previously (Araki et al., 2004) and added to DRG
cultures at 2 DIV. In vitro axotomy was performed at 7-8 DIV. Quanti-
tative reverse transcriptase-PCR analysis of neuronal mRNA was per-
formed using an ABI Prism 7900HT sequence detection instrument
(Applied Biosystems) as described previously (Gerdts et al., 2011). Fol-
lowing insult, axonal degeneration was quantified from four phase-
contrast images per well by ImageJ software that measures fragmentation
of axon segments (Sasaki et al., 2009b). Briefly, axon images are bina-
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Axonal degeneration following taxol treatment is independent of apoptosis. A-D, The viral anti-apoptotic protein p35 is unable to rescue sensory axon degeneration. Confocal images

of single representative nerves labeled with CD8:GFP (green) and HRP (red). Genotype is ppkgal4/+;UAS-CD8:GFP/+- (Ctrl, A and C) or ppkgal4/UAS-p35,UAS-(D8:GFP/+ (p35, B and D). Animals
were fed food containing vehicle (DMSO) (4, B) or taxol (C, D) for 4 d. Scale bar (4), 2 wm. E, Quantification of GFP-labeled axons per nerve remaining after treatment from the genotypes shown in
A-D.N = 21,20, 18,and 16 for the genotypes quantified. NS, Not significant (p > 0.1). F, GFP (left column) and activated caspase 3 (right column) in control larvae ( ppkGAL4/+;UAS-(D8:GFP/+)
that are untreated (top) or treated with 30 um taxol (second from top). Bottom two sets of images are controls showing caspase 3 activation following ppkGAL4-driven expression of UAS-hid and
UAS-reaper (second from bottom), and loss of caspase 3 activation in flies expressing UAS-hid, UAS-reaper, and UAS-p35 (bottom). Scale bar (F), 3 m.

rized, and the ratio of fragmented to total ax-
onal area axonal area is computed by using
circularity as an indicator of fragmentation.

Microscopy. Images of Drosophila larval ax-
ons and adult brains were taken on a Nikon
Eclipse E600 confocal microscope and are
maximal Z-projections. Phase contrast images
of DRG axons (20X objective) were taken us-
ing an inverted microscope (Eclipse TE 300;
Nikon).

To analyze Drosophila axons, we took im-
ages of nerves between segments A3 and A4 of
vehicle-treated third instar larvae or equiva-
lently timed taxol-treated larvae. We counted
the number of intact GFP-positive axons per
nerve from each image (~100 wm length of
nerve per picture). The average number of
GFP+ axons/nerve in vehicle-treated control
(wild-type) animals labeled with ppkEGFP was
1.97 = 0.06 (SEM) (n = 71 nerves) and was not
significantly different in animals labeled with
ppkCD8GEP, or between wild-type and rtp
mutant strains. For presentation, we normal-
ized data to the average of the wild-type vehicle
control of the relevant experiment. All analysis
of peripheral sensory axons and olfactory ax-
ons was done blind to genotype. One-way
ANOVA was used for statistical analysis unless
otherwise specified. All error bars are SEM.

For ultrastructural analysis of the Drosophila peripheral nerves, sam-
ples were fixed in 2% paraformaldehyde/2.5% glutaraldehyde (Poly-
sciences Inc.) in 100 mMm phosphate buffer, pH 7.2 overnight at 4°C.
Samples were washed in phosphate buffer and postfixed in 0.5% osmium
tetroxide (Polysciences Inc.)/0.08% potassium ferricyanide (Electron
Microscopy Sciences)/100 mMm phosphate buffer for 1 h, and subse-
quently in 1% tannic acid (Electron Microscopy Sciences, Fort Washing-
ton, PA)/100 mMm phosphate buffer for 1 h. Samples were then rinsed
extensively in dH,O before en bloc staining with 1% aqueous uranyl
acetate (Ted Pella Inc., Redding, CA) for 1 h. Following several rinses in
dH,0, samples were dehydrated in a graded series of ethanol and embed-
ded in Eponate 12 resin (Ted Pella Inc.). Sections of 100 nm were cut with
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Overexpression of mouse NMNAT protects axons and dendrites from taxol-induced degeneration. A-D, Confocal
images of single representative nerves labeled with ppkEGFP. Genotypes are elavgal4, ppkEGFP/+ (Ctrl, A and C), or UAS-cyt-
NMNAT1/+elavgal4, ppkEGFP/+ (NMNAT, B and D). Animals were treated with DMSO (A, B) or taxol (C, D) for 4 d and then
analyzed. Scale bar (4), 2 um. E, Quantification of GFP-labeled axons per nerve following taxol treatment in the genotypes shown
inA-D.N = 10,17, 17,and 22 for the genotypes quantified. **p < 0.01. F, G, Dendrites and cell bodies of ddaC neurons treated
with taxol from control (same genotype as A and €) and UAS-cytNMNAT 7-expressing (same genotype as Band D) animals. Scale bar

a Leica Ultracut UCT ultramicrotome (Leica Microsystems Inc.,
Bannockburn, IL), stained with uranyl acetate and lead citrate. Electron
micrographs were taken on a transmission electron microscope (H-7500;
Hitachi). Quantification of axon number was performed on 10 noncon-
secutive sections of nerves from at least three independent larvae per
treatment condition.

Results

Paclitaxel causes axonal injury and loss in Drosophila

Because only a few genes have been identified that regulate axonal
degeneration, we sought to develop a model of axonal degenera-
tion in Drosophila amenable to screens for genes that promote
axonal demise. Loss-of-function of a protein participating in the
axonal degeneration cascade would be predicted to cause axonal



Bhattacharya et al. @ MORN4 Promotes Axonal Degeneration

protection following an insult and would be a putative therapeu-
tic target. To maximize throughput, we wanted to devise an ax-
onal injury paradigm that did not depend on mechanically
injuring each animal individually. In addition, we wanted to use a
clinically relevant insult. Drosophila has been used as a model of
neurodegeneration following cisplatin toxicity (Podratz et al.,
2011), and so may respond to chemotherapeutics in a manner
analogous to mammals. We therefore attempted to mimic the
neuropathy caused in human patients by paclitaxel (taxol) ad-
ministration. To do this, we fed larval-stage animals food laced
with taxol. By beginning treatment after animals have reached the
larval stage, we avoid disrupting neurogenesis or axon pathfind-
ing, events that are complete at the time of hatching (for review,
see Prokop, 1999). Following treatment, we examined larval pe-
ripheral axons using a genetically encoded GFP that labels class
IV sensory neurons and their projections ( ppkEGFP) (Grueber et
al., 2003). Because this marker highlights only a few neurons per
hemisegment, it allows single axon resolution within the segmen-
tal nerves leading to the ventral nerve cord.

We find that treatment with taxol causes axonal destruction
and loss (Fig. 1). Axonal injury following taxol treatment was
apparent after 3 d, with maximal injury after 4 d. In the majority
of nerves, GFP is severely fragmented or lost following taxol treat-
ment (Fig. 1C). Interestingly, in nerves where taxol has not
caused complete GFP-positive axon loss, we see axonal swellings
and debris, hallmarks of mammalian axonal degeneration (Cole-
man, 2005) (Fig. 1 B,I). HRP labeling occasionally shows axonal
swellings (Fig. 1B) or overall staining intensity decreases (Fig.
1C), likely due to the degeneration of non-GFP-labeled nerves.
Examination of nerves using electron microscopy reveals an ap-
proximately twofold decrease in axon number (vehicle, 80.9 =
3.9 axons per nerve; taxol, 42.7 = 5.1 axons per nerve; p < 0.001,
Student’s t test) (Fig. 1D, E), suggesting that the GFP loss often
corresponds to the frank loss of axons. Nerves in taxol-treated
animals have large holes (Fig. 1 E), and free organelles are occa-
sionally seen in these areas. However, remaining axons appear
relatively unaffected and contain microtubule profiles (Fig.
1 F,G). In addition to the phenotypes in GFP-labeled axons, we
also observe peripheral nerve defasciculation. In these defascicu-
lated nerves, swellings of single axons that accumulate the
microtubule-associated protein Futsch are apparent (Fig. 1 H,I).
Sensory axons are still present within the neuropil of the ventral
nerve cord following taxol treatment, however the ladder pattern
of sensory endings is often disrupted and individual axons are
fragmented (Fig. 1],K). Using the same ppkEGFP label, we also
examined the effects of taxol on the dendrites of multidendritic
sensory neurons in the larval cuticle. Similar to its effects on
axons, taxol causes sensory dendrite swelling and loss (Fig. 1 L—
N). To assess whether taxol treatment caused “dying back”-like
retraction, we examined larval neuromuscular synapses. Unlike
genetic models in Drosophila that disrupt the cytoskeleton (Mas-
saro et al., 2009), we observe normal apposition of presynaptic
and postsynaptic markers following taxol treatment, indicating
that our model of taxol-induced degeneration does not cause
motoneuron synaptic instability (data not shown). Together,
these results highlight the range of degenerative phenotypes re-
sulting from paclitaxel treatment in flies and reveal morphologi-
cal similarities to degenerating mammalian axons.

Taxol-Induced Axonal Degeneration is Not Secondary

to Apoptosis

In patients, neuronal cell death is not a major contributor to
paclitaxel-induced neuropathy (Lee and Swain, 2006; Windebank
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Figure 4. Wallenda is required for taxol-induced axonal degeneration in Drosophila. A-D,
Confocal images of single representative nerves labeled with ppkEGFP. Animals were treated
with DMSO (4, €) or taxol (B, D) for 4 d and then analyzed. WT genotype is heterozygous
wnd*/+; wnd genotype is wnd>/wnd®. A, Wild-type vehicle; B, wnd mutant vehicle; C, wild-
type taxol; D, wnd mutant taxol. Scale bar (4), 2 um. E, Quantification of axonal preservation in
the genotypes shown in A—D. N = 54, 54, 58, and 77 for genotypes quantified. **p << 0.01.

and Grisold, 2008). To test whether this is also true in our Dro-
sophila model, we overexpressed the baculoviral anti-apoptotic
protein p35 in sensory neurons (Hay et al., 1994). Expression of
p35 with the ppkGAL4 driver (Grueber et al., 2007) effectively
blocks activation of Caspase 3 following induction of apoptosis in
sensory neurons via the forced expression of the proapoptotic
genes hid and reaper (Fig. 2F). However, when p35-expressing
animals are treated with taxol, their peripheral sensory axons are
not preserved (Fig. 2A-E), indicating that axonal loss in this
model is not secondary to apoptosis in the sensory cell bodies. In
addition, cell bodies of taxol-treated animals fail to label with
anti-activated Caspase-3 antibodies (Fig. 2 F). These results are
consistent with studies that have found a role for caspases in
dendrite pruning but not in injury-induced degeneration
(Schoenmann et al., 2010; Tao and Rolls, 2011). These data high-
light the independence of the mechanism of taxol-induced ax-
onal degeneration from that of apoptosis.

NMNAT overexpression can block paclitaxel-induced

axonal degeneration

To determine whether paclitaxel-induced axonal degeneration in
flies shares molecular mechanisms with axonal degeneration in
mammalian sensory neurons, we asked whether molecules
known to block axonal degeneration in mice also protect axons in
our Drosophila model. First, we tested whether overexpression of
NMNAT could protect fly sensory axons from degeneration.
NMNAT is protective for both sensory axons and dendrites in
other injury paradigms in the fly (Tao and Rolls, 2011; Wen et al.,
2011). We made transgenic flies that allow for the targeted ex-
pression of cytoplasmically targeted mouse NMNATI (cyt-
mNMNAT1) (Sasaki et al., 2009a). Following taxol treatment,
axons from neurons overexpressing cyt-mNMNAT1 were pre-
served, whereas control axons were lost (Fig. 3). cyt-mNMNAT1
expression also blocked dendrite degeneration following taxol
treatment (Fig. 3F, G). These results illustrate conservation of the
protective effects of NMNAT for taxol-induced neuropathy be-
tween invertebrates and vertebrates (Wang et al., 2002).
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Figure 5.  Retinophilin promotes axonal degeneration. A, Comparison of GFP-labeled axonal maintenance with knockdown of retinophilin in vehicle-treated (top two images) or taxol-treated
animals (bottom two images). Genotypes are UAS-DCR/+elavGAL4, ppkEGFP/+ (Ctrl) and UAS-DCR/+;UAS-rtpRNAi/ + elavGAL4, ppkEGFP/+ (rtp RNAI). Scale bar, 2 um. B, Quantification of rtp
RNAi and control axons as shown in A. For the graph, N = 23, 26, 38, and 33 nerves for each genotype and treatment. *p < 0.05 between taxol-treated groups, Student’s ¢ test. C, Images of
GFP-labeled axons in vehicle-treated (top two images) or taxol-treated animals (bottom two images) that are of the genotypes ppk(D8GFP/+ (Ctrl) or ppk(D8GFP/+;rtp/retin’ (rtp). D,
Quantification of rtp mutant and control axons as shownin C. For the graph, N = 58,37, 51, and 40 nerves for each genotype and treatment. **p << 0.01. E, Representative images of olfactory axons.
All are labeled with 0r82a-gal4, UAS-(D8:GFP. Top, Uncut control (no RNAi); middle, cut control; bottom, rtp RNAi expressed by 0r82a-gal4. Scale bar, 15 um. F, Schematic of quantification scheme
for olfactory axotomies. A score of O indicates the lack of any detectable axons outside of glomeruli; a score of 4 indicates that axons reach and cross the central commissure. Scores of 1-3 rank axons

by number and length of remaining axons or axonal fragments. G, Axotomy scores of the genotypes shown in C.N =

Wallenda/DLK is required for taxol-induced axonal
degeneration in Drosophila

To examine whether endogenous genes required for axonal de-
generation in mammals also participate in taxol-induced degen-
eration in flies, we examined the effect of loss of the MAP3K
Wallenda (DLK in mammals). Wallenda participates in the de-
generation cascade following Drosophila olfactory axotomy or
mouse axonal injury (Miller et al., 2009) and is required for injury
signaling following Drosophila nerve crush (Xiong et al., 2010).
Following taxol treatment, wallenda mutants displayed robust
protection of peripheral axons (Fig. 4). Similar protection is ob-
served when transgenic RNAi is used to knockdown wallenda
exclusively in neurons (data not shown). These data demonstrate
that known pathways used in mammalian axonal degeneration
are conserved members of the taxol-induced degeneration cas-
cade in flies. Furthermore, it illustrates that loss-of-function
analysis in taxol-treated animals could be useful to identify novel

18,12, and 10 for genotypes quantified. **p << 0.01.

players in axonal degeneration that may be relevant to mamma-
lian axonal degeneration.

RNAI interference identifies a role For retinophilin in
axonal degeneration
We undertook a pilot RNAi screen looking for genes that, similar
to wallenda, would block axonal degeneration when knocked
down. We used a collection of inducible, transgenic RNAI strains
available from an international consortium (Dietzl et al., 2007).
These RNAI lines were expressed under the control of UAS ele-
ments using the pan-neuronal driver elav-GAL4 to express both
the RNAi and Dicer2, which enhances efficacy of RNAi knock-
down. Under these conditions, ~80% of genes with known phe-
notypes in the nervous system give the expected phenotype when
knocked down (Dietzl et al., 2007).

We limited our analysis to Drosophila genes with clear mam-
malian orthologs as determined by Homologene NCBI software.
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the commissure (Fig. 5E, bottom). Using
a scoring system to rank the number and
length of remaining axons, we find that
axon loss is inhibited following rtp knock-
down, but much less so than via expres-
sion of cyt-mNMNAT1 (NMNAT
score = 3.8 = 0.1) (Fig. 5F, G). Together,
these results suggest that Retinophilin
promotes the normal axonal degenera-
tion program initiated by both traumatic

Cut

ctrl

Figure 6.

indicate p < 0.001 between cut control shRNA and Morn4 shRNA.

A subset of 490 RNAI strains was chosen for our pilot screen that
was enriched for proteins with enzymatic functions and for genes
known to function in the nervous system; this selection was done
using Flybase QueryBuilder (www.flybase.org). These strains
were screened for degeneration or preservation of ppkEGFP-
labeled axons following taxol intoxication. From this collection
we identified the MORN family member retinophilin [rtp, also
called undertaker (uta)]. Retinophilin participates in termination
of phototransduction in the fly retina (Mecklenburg et al., 2010;
Venkatachalam et al., 2010) and in store-operated calcium release
and phagocytosis in fly embryonic macrophages (Cuttell et al.,
2008). It contains four MORN repeats, regions that can bind to
phospholipid membranes (Ma et al., 2006). Knockdown of retino-
philin protected axons from chemotherapy-induced peripheral
neuropathy (Fig. 5A). The RNAi protection is quantitatively
modest, but consistent (Fig. 5B). To test whether loss of Retinophi-
lin is responsible for this phenotype, we generated a trans-
heterozygote between two previously characterized loss-of-function
mutant alleles of rtp (Mecklenburg et al., 2010; Venkatachalam et al.,
2010). Axons in this rtp mutant are preserved following taxol treat-
ment (Fig. 5C,D), confirming that removal of retinophilin is indeed
axoprotective.

Retinophilin could be specifically involved in chemotherapy-
induced neuropathy in the peripheral nervous system, or could
play a broader role in injury-induced axonal degeneration. To
test whether retinophilin participates in other types of degenera-
tion, we turned to the well established model of olfactory axo-
tomy in Drosophila (MacDonald et al., 2006; Doherty et al.,
2009). The cell bodies of olfactory neurons are located in the
antenna, and their projections extend into the brain, cross a cen-
tral commissure, and synapse onto bilateral glomeruli (Fig. 5E,
top). By removing the third antennal segment, olfactory axons
are severed (MacDonald et al., 2006). We labeled a subset of
olfactory axons via expression of GFP driven by the Or82a-GAL4
line (Fishilevich and Vosshall, 2005). Twenty-four hours after
axotomy, wild-type axons have degenerated almost completely,
with only a few axonal fragments remaining outside the glomer-
uli (Fig. 5E, middle). In contrast, axons in which retinophilin has
been knocked down exclusively within the labeled neurons show
adelay in this degeneration, with many axons still extending near

24

ctrl Uncut

Mouse Morn4 participates in axonal degeneration. A, Representative images of axons from cultured mouse DRG
neurons infected with shRNAs targeting luciferase (ctrl) or Morn4. Axons are uncut (top images) or 24 h post-axotomy (bottom
images). Scale bar, 100 m. B, Quantification of degeneration index of control shRNA (red trace)- or Morn4 shRNA (blue trace)-
infected axons at 0, 9, 24, 48, and 72 h post-axotomy, and uncut control shRNA-infected axons (black trace). Double asterisks

and toxic axonal injury, and that it func-

48 72 tions in a cell-autonomous manner.

Hours Post-Axotomy
—— Morn4 shRNA

The mammalian rtp ortholog Morn4 is
required for axonal degeneration

The closest mammalian ortholog to
Drosophila retinophilin is Morn4 (50%
identity at the amino acid level)
(Mecklenburg, 2007). Morn4 is an un-
characterized protein in mouse and hu-
man that also contains four MORN
repeats. To test whether Morn4 functions
like Retinophilin in promoting axonal de-
generation, we knocked down Morn4 expression in cultured
mouse embryonic DRG neurons and then cut their axons. Con-
trol axons swell and then degenerate within the first 12 h, a pro-
cess that can be quantified using image analysis software that
detects axon fragments as circular particles (Sasaki et al., 2009b;
Gerdtsetal.,2011). Knockdown of Morn4 was very efficient, with
only ~1% of mRNA remaining by quantitative PCR analysis
(1.3 = 0.7%). Knockdown of Morn4 significantly reduced axonal
degeneration following axotomy (Fig. 6 A, B). Protection was ev-
ident for at least 72 h, with knockdown cultures displaying signs
of early degeneration (swellings) but no fragmentation. Thus
Morn4 may participate in an intermediate step of axonal degen-
eration, following axonal swelling but preceding fragmentation.
The involvement of mouse Morn4 in axonal degeneration high-
lights the ability of this new Drosophila chemotherapy-induced
neuropathy model to identify genes that participate in axonal
degeneration in mammals.

Discussion

Here we describe a novel Drosophila model of chemotherapy-
induced peripheral neuropathy and demonstrate that the process
shares molecular components with the mammalian axonal de-
generation program. We then use this platform to identify the
Retinophilin/Morn4 protein as a component of an evolutionarily
conserved axonal self-destruction cascade.

A Drosophila model of chemotherapy-induced
peripheral neuropathy
Chemotherapy drugs such as paclitaxel (taxol) and vincristine
cause a dose-limiting peripheral neuropathy in humans. Taxol
causes sensory neuropathy which manifests as pain and loss of
sensation in extremities, while vincristine causes both sensory
and motor dysfunction. These drugs are used widely in both
pediatric and adult patients to treat aggressive metastatic cancer
(Sparano, 2000; Bradley and Hussain, 2008; Marsh, 2009; Moore
and Pinkerton, 2009; Grossi et al., 2010). Because we know so little
about the mechanisms causing this severe side effect, we currently
have no way to prevent axonal degeneration in these patients.
Axonal degeneration is not only a component of chemotherapy-
induced neuropathy but is also a hallmark of many neurological
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diseases including hereditary neuropathies, neurodegenerative
diseases such as Alzheimer’s Disease, and trauma including spinal
cord injury. Hence, the need is great to identify therapeutic strat-
egies that could slow or block axon loss and thereby prevent
progression of neurological symptoms in these and other disor-
ders. To identify such targets, we have developed a model of toxic
neuropathy in Drosophila. Treating larval-stage Drosophila with
paclitaxel causes axonal degeneration that is anatomically and
molecularly similar to that occurring in rodents and, potentially,
in human patients undergoing chemotherapy treatment. In Dro-
sophila, as in humans, paclitaxel preferentially damages sensory
rather than motor axons (Park et al., 2011). This conservation
provides a platform to identify molecules that could serve as fu-
ture therapeutic targets.

Retinophilin/Morn4 participates in axonal degeneration

We identified Rtp/Morn4 as an evolutionarily conserved compo-
nent of the axonal degeneration cascade. Furthermore, we ob-
serve that Rtp/Morn4 must be present for efficient degeneration
following both neurotoxicity (i.e., chemotherapy administra-
tion) and traumatic injury (i.e., axotomy). Hence, while the
screen uses a neurotoxin as the axonal damaging agent, it can
identify components that function downstream of multiple stim-
uli. Importantly, our screen was able to identify a subtle effect of
rtp on the timing of axonal demise. When using RNA interference
to implicate a gene in a process, the ability to detect small changes
is useful since gene expression is not completely eliminated. Im-
portantly, we were able to confirm this finding using a true loss-
of-function mutant in flies. While identification of a Drosophila
gene that promotes axonal degeneration is important, we are
most interested in genes with an evolutionarily conserved role in
the process. Lentiviral-mediated gene knockdown in mouse sen-
sory neurons (Gerdts et al., 2011) is a powerful secondary screen
allowing us to identify such genes. Using these methods in com-
bination, we demonstrate that the role of Rtp/Morn4 in the pro-
gression of axonal demise is evolutionarily conserved.

While we do not know the mechanism of action of Morn4 in
axonal degeneration, Retinophilin has been implicated in both
localization of signaling molecules required for termination of
phototransduction (Mecklenburg et al., 2010; Venkatachalam et
al., 2010) and regulating cytoplasmic calcium levels preceding
phagocytosis (Cuttell et al., 2008). Morn4 contains four mem-
brane occupation and recognition nexus (MORN) repeats that
can target proteins to lipid membranes (Ma et al., 2006). Poten-
tially, these domains could bring Morn4 to a membrane surface
to modulate lipid activity or second messenger generation. Inter-
estingly, Morn4 has recently been implicated in the neuroprotec-
tive process of preconditioning following oxygen-glucose
deprivation (Dai et al., 2010). Further work to clarify the molec-
ular role of Morn4 in these two seemingly opposite cascades will
be necessary.

Axonal degeneration mechanisms and implications for
neurological disease

While we know a great deal about the molecular control of the
apoptotic process and how it can contribute to disease, we know
comparatively little about axonal degeneration despite its impor-
tance in a wide variety of pathological states. Many activating
insults ultimately use a common pathway (Vohra et al., 2010)
that includes the mitochondrial permeability transition pore
(Forte et al., 2007; Barrientos et al., 2011) and can be blocked by
axonal expression of NMNAT isoforms (Araki et al., 2004; Con-
forti et al., 2009; Sasaki et al., 2009a; Yahata et al., 2009; Babetto et
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al., 2010; Sasaki and Milbrandt, 2010). In addition, kinases in-
cluding DLK, JNK, IKK, and GSK3 promote axonal degeneration
(Miller et al., 2009; Gerdts et al., 2011). The relationships among
these proteins, as well as the identity of upstream and down-
stream components of the axonal degeneration program, are still
mysterious.

Screens in both Drosophila and mouse (Gerdts et al., 2011)
have the potential to reveal molecular targets for therapeutic in-
tervention to block axonal degeneration in the early stages of
neurodegenerative diseases, hereditary neuropathies, or before
chemotherapeutic treatment. Here we have used a clinically rel-
evant insult in Drosophila to identify a role for Retinophilin/
Morn4 in promoting axonal degeneration. Future screening
should yield additional candidates whose inhibition could disable
this degenerative process.
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