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Abstract

PURPOSE—-Previous research has led to the expectation that the gap in mortality between sexes
narrows in older ages as sex differences in fecundity decrease. However, the patterns and
explanations of variations in sex disparities in mortality across the life span and underlying causes
of death are not well understood. We conducted a population-based study to further test this
hypothesis.

METHODS—BY using a nationally representative sample of adults (A = 25,254) with mortality
follow-ups for 18 years, we modeled age variations in sex differences in risks of mortality from
leading causes of death.

RESULTS—Male excesses in mortality decrease at older ages significantly for some but not all
causes. Differential exposures to social, physiological, and morbidity risk factors account for the
late life reductions of the sex mortality gaps completely in circulatory diseases, partially or
minimally in the other causes of death. Social status and relationship are more important risk
factors for mortality in younger ages, health behaviors are significant for all ages, and
physiological dysregulation is more predictive of mortality in older ages.

CONCLUSIONS—Sex differences in the risk of mortality have strong age variations and are
cause specific. Additional studies of age acceleration of cancer mortality risk are needed.
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INTRODUCTION

Sex differences in mortality have intrigued, and continue to intrigue, scientists from many
disciplines because they arguably provide one of the most promising areas of scientific
research into aging and longevity (1, 2). Survival advantages in the female have been widely
observed across time, space, and species (3, 4), but a full understanding of the origins and
mechanisms in these disparities is still lacking (5). One glaring omission in the assessment
of sex phenotypic differences is how they unfold with individual aging (6). There is
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evidence from demographic data that the pronounced survival disadvantage in males during
young adulthood decreases at older ages (7, 8) and that cardiovascular diseases account for
the majority of the sex gap in adult mortality and the decrease of this gap at older ages (9,
10).

Our knowledge is far from complete, however, on the patterns and explanations of variations
in this gap. Evidence of a late life reduction in the sex gap is restricted to historical periods
up to the 1980s with limited age ranges and causes of death. It is unknown whether such
patterns hold in the contemporary U.S. population subject to a different epidemiologic
environment. To the extent that age and cause of death provide crucial information on
physiological and behavioral pathways through which sex-specific mortality occurs, the age
variations in sex differentials in cause-specific mortality can be highly informative to the
understanding of the sex difference in longevity and merits further investigations.

The timing of the change in the sex mortality gap brings theories of evolutionary biology of
aging and reproductive biology to bear on the physiological mechanisms underlying the
change. The converging sex gap can be expected as a result of sex differences in the age
pattern of fecundity decrease (11, 12) and an accelerated decline of physiological functions
in other major regulatory systems after the exhaustion of reproductive potential in women
but not men (7). Furthermore, the female sex hormone, estrogen, may protect women at the
cellular level in terms of immune competence, fat and glucose metabolism, and
cardiovascular compliance (13-17), all major physiological risk factors of mortality (2, 18,
19). This estrogenic hypothesis implies the loss of physiological advantages caused by the
reduction of estrogen after menopause (20).

A separate and sizeable body of demographic and social epidemiologic literature has
identified powerful processes by which social status and socially learned lifestyles and
behaviors affect human mortality and gender differences therein (21-23). Changes in
exposures to social risk factors of mortality in middle to old ages consequently may
contribute to age variations in gender gaps in mortality. Convergences in gender gaps can be
expected from the age-as-leveler hypothesis that aging narrows and levels social disparities
in health by equalizing social statuses and resources in late life (24, 25). For instance,
eligibility for social welfare benefits such as Medicare, retirement from the paid labor force,
and increasing stressful life events such as widowhood and loss of friends in old age can
minimize gender differences in survival. Because social conditions have rarely been
modeled in relation to age changes in the sex mortality gaps, whether they modulate such
changes independently from physiological factors or are mediated by them is not clear and
needs additional examination.

Although there are compelling theoretical explanations for the biological foundations of a
late-life reduction of the sex mortality gap, empirical evidence from large population-based
studies is scant. Biomedical studies use research designs not suitable for the examination of
these questions because they have different foci and are based primarily on animals or small
regional clinical samples of a single sex and/or limited age ranges (13-17). Demographic
studies focus on trends in aggregate rates but not explicit measures of biological robustness
or social processes leading to mortality (7, 8). Age variations in sex differences in mortality
have not been systematically examined from an integrative biological and sociodemographic
perspective or rigorously modeled in population-based studies (20). It is unclear how
differential exposures and vulnerabilities to social and physiological risk factors contribute
to age variations in the sex mortality gap by cause. It also remains to be determined whether
the mechanisms underlying sex differences are specific to the life-course stage and the cause
of death. In this study, we address these questions and further test the hypothesis of a late
life reduction of the sex mortality gap by directly linking social behavioral and physiological
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variables to age variations in total and cause-specific mortality risks. The results should shed
more light on sex phenotypic differences throughout the life span and may lead to more
effective health care designs for achieving longer and healthier lives for both sexes.

METHODS

Study Population

The data come from the National Health and Nutrition Examination Survey (NHANES)
Linked Mortality Study public-use file 1988-2006. The NHANES, conducted by the
National Center for Health Statistics, uses a multistage stratified sampling design and
includes a representative sample of the noninstitutionalized U.S. population, with an
oversample of older persons and minorities (26). The study sample of 25,254 respondents
aged 17+ attended household interviews or clinical examinations in 1988-1994, 1999-2000,
2001-2002, and 2003-2004 and were eligible for mortality follow-up through 20086, the
most recent year available in the public-use file. Mortality information is based on
probabilistic matching between NHANES and National Death Index death certificate
records. The National Center for Health Statistics matching methodology is similar to the
standard methodology offered by the National Death Index, which selects death record
matches on the basis of 7 established match criteria (27). Respondents who were not
identified as deceased by the end of the follow-up period were assumed to be alive. The
analytic sample for the follow-up period of up to 18 years recorded 1902 deaths. Table 1
summarizes the major causes of death examined. We divided malignancies into lung and
other cancers in consideration of the uniquely strong link between lung cancer and smoking.
We adopted the International Classification of Diseases underlying-cause-of-death recode
across all years in the study period (28).

The sample consists of 13,183 women and 12,071 men in three age groups: young adulthood
(17-44 years), middle age (45-64 years), and older age (65 years and older). Table 2
summarizes sample characteristics by age and sex in terms of descriptive statistics of
covariates in regression analyses. These include demographic and social factors, health
behaviors, 12 biomarkers of physiological dysregulation (2 for systemic inflammation, 8 for
the metabolic syndrome (19, 29) and related disorders, homocysteine, and creatinine
clearance), morbidity, and general health status. Laboratory measurements and assay
procedures for all biomarkers have been described elsewhere (30, 31).

Analytic Methods

For descriptive analyses, age-specific death rates by cause were calculated as the number of
deaths per 100,000 person-years; logged male to female ratios of death rates were then
computed to compare sex differences. Cox proportional hazards regression models were
estimated to test the statistical significance of observed sex differences and age variations
therein. In light of previous research (7, 20), we examined three substantively meaningful
age categories in final analyses because the death counts are too small to compute stable
estimates of death rates and hazard ratios (HRs) for more refined age intervals and the age
distributions do not differ by sex within each age group. We first estimated unadjusted HRs,
or gross effects, for sex, age, and sex-by-age interaction. Adjustments of covariates were
then added to test for net effects. Continuous variables were recoded into intervals for the
identification of nonlinear effects and more stable estimates of HRs. We dichotomized
biomarkers into high- and low-risk groups by using cutoff points based on clinical practice
for 11 markers and empirically defined for creatinine clearance as the top quartile at risk
based on prior studies of the same data (20, 32). For each control variable, a Cox model with
only that variable was first estimated. The variable was allowed to enter the multivariate
models if its unadjusted HR was statistically significant (the P for entry was <.05 and for

Ann Epidemiol. Author manuscript; available in PMC 2013 February 01.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

RESULTS

YANG and KOZLOSKI Page 4

removal was .10). Groups of control variables were then added stepwise. The results for
these models were similar to those in the full models including all variables. The same
variables were assessed in models for each cause of death for comparison of risk factors
across the causes and to age-specific models by cause.

We adopted the common practice of censoring survival times at competing causes of death
(33), that is, when estimating the model for a particular cause, we treated all other death
causes as censoring. Small percentages of respondents are missing data on most biomarkers
(ranging from 1.5% to 9.5%) that indicate unusable information, incapacity, or refusal to
provide biospecimens due to old age, frailty, or additional risk factors (30, 31). We added a
missing value category to all biomarkers in regression models. We then compared analyses
that excluded and included the missing category. These two approaches did not produce
substantively different results; thus, we report the results of the latter as it yields slightly
more conservative findings. We used Stata 10.0 for all statistical analyses. To adjust for the
complex survey design of the NHANES, we applied sampling weights for descriptive
analyses and used the “svy” procedures for regression analyses.

The logged age-specific sex mortality ratios in Figure 1 show greater rates of male mortality
for all ages and most causes except nonlung cancers, for which mortality rates are greater for
females at younger ages of 17-44. Ratios decreased in the middle and older ages for total
mortality and mortality attributable to circulatory and infectious diseases, pneumonia and
influenza (P&I), and external causes, indicating smaller male excesses. However, the ratios
increased in the older ages for cancer-related deaths.

Unadjusted HRs of the model for total mortality in Table 3 show a significant male excess in
mortality risk (HR=2.26, p < .001) and strong age variations (HR of 45-64 years = 9.18, HR
of 65+ years=47.11, p<.001), and also a reduction of the male excess in late life (HR of sex
x (45-64) = 0.58, HR of sex x (65+)=0.60, p=.02). Adjusting for covariates largely reduced
the age coefficients and slightly reduced the sex-by-age 65+ interaction effect, indicating
that social, behavioral, physiological, and morbidity factors partially account for the old-age
reduction of the sex gap.

Compared with the results of total mortality, the unadjusted HRs for the circulatory disease
mortality model showed a similar male excess and a greater reduction of this excess in older
ages. The reduction became nonsignificant after we adjusted for social behavioral and
physiological functions. Interestingly, mortality from cancer revealed no significant
differences by sex when we adjusted for age and sex-by-age interaction effects. There were,
however, significant age changes in sex difference that indicated a large increase in male
excess in cancer mortality risk beyond 65 years of age, when most cancers occur (HR =
1.87, p=.004). This effect remains significant and sizable after adjustment of other risk
factors. The site-specific model estimates are consistent with findings on cancer incidence.
Specifically, data from Surveillance, Epidemiology, and End Results show greater
incidences of lung cancer and prostate cancer that occur only in men that increase sharply at
older ages. Correspondingly, unadjusted HRs show increases in male excesses in lung and
other cancer mortality risks after 65 years of age. The Surveillance, Epidemiology, and End
Results data also show a slight female excess of cancers before age 60 as the result of breast
cancer, which occurs at a greater rate earlier in life than the other cancers (34).

Similarly, there was a small female excess in nonlung cancer mortality that reverses after the
age of 65. The lack of significance in lung cancer mortality results may be attributable to the
small number of deaths in this data set. Our adjustment for smoking and other covariates
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reduced the increases in male excesses in cancer mortality risks in older ages. Sex
differences in infectious disease and P&l mortality are enormous, with male subjects having
much greater rates of death. Most of these sex differences occur during reproductive years
and largely decline thereafter. A more active female immune system during reproductive
ages could potentially explain this apparent difference and its change over the life span, as
suggested by the immune competence hypothesis. Results on external causes of death do not
suggest any significant age change in the sex gap, which also indirectly supports the
biological hypothesis as reproductive apparatus does not have obvious bearings on
exogenous forces of mortality.

Figure 2 compares the HRs of sex differences for all causes by age group, with adjustment
for other factors. Consistent with the aforementioned results, the major finding is that the
sex mortality gap shows strong age variations and is cause specific. For total mortality, the
adjusted HRs are all greater than 1, indicating the well-known male excess. The adjusted HR
for middle age, however, is not significant. Although the circulatory disease mortality result
indicates consistent female advantages across all ages, the sex difference is ambiguous for
cancer mortality in young and middle ages and reverses in direction during older ages. The
male excess in mortality risk is not significant in either middle or older ages for remaining
causes. Reductions in the sex gaps are observed in late life for total mortality and mortality
caused by causes associated with physiological functions that show substantial changes with
age, including circulatory diseases, infectious diseases, and P&I. For mortality by cancer, no
clear sex difference is observed before older ages, but a large male excess occurs during
older ages. There are no significant age variations in the sex gaps for external and residual
causes of death. Comparisons of the unadjusted and adjusted HRs in Table 3 also indicate
that differential exposures to social, physiological, and morbidity risk factors account for the
late life change of sex mortality gaps completely for circulatory diseases and partially or
minimally for cancers and nondegenerative diseases.

We further examined measured social behavioral and biomarkers in hazards models of
cause-specific mortality by age group. Table 4 (35) presents the results for total, circulatory
disease, and cancer mortality (results of covariates did not show much significance for other
causes and are omitted). The significance of these risk factors varies by age and cause. For
instance, racial and ethnic differences in mortality are significant in younger and older ages.
Education significantly affects total mortality at younger ages. Marital status strongly affects
circulatory disease mortality (being widowed young is associated with a sevenfold increase
in risk of death) but not cancer mortality. Cigarette smoking exerts the most consistent
detrimental effects on survival across ages and causes of death and is the single most
powerful risk factor for cancer mortality among all covariates examined. In most cases,
moderate drinking reduces mortality risks whereas heavy drinking increases mortality risks.
Such effects are larger for cancer mortality. Physical activity is protective against circulatory
disease mortality but not cancer mortality in middle and older ages. High-risk levels of
systemic inflammation marked by C-reactive protein and albumin are related to substantially
greater risks of mortality. An excess waist circumference and obesity are associated with
greater risks of cancer mortality in younger ages but lower risks of circulatory disease
mortality in older ages. High diastolic blood pressure is predictive of mortality at younger
ages. In sum, social status and relationship are more important risk factors for mortality in
younger ages, behaviors and lifestyles are significant for all ages, and physiological
dysregulation is more predictive of mortality in older ages.

DISCUSSION

This study challenges an assumption implicit in some previous research on sex differences
in human mortality risk that such differences apply uniformly throughout the life span in
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direction and magnitude. Through a modeling approach that integrates data on mortality,
biomarkers and social factors, this study reveals diverse patterns of the sex gaps in mortality
by cause across the life span. Additional new findings emerge here regarding how
established mortality risk factors affect sex differences in different periods of development
and across causes of death.

The pattern of cancer mortality is opposite to the expected late life reduction of the sex
mortality gap. Given the physiological pathways to intrinsic mortality shared by
degenerative diseases, this difference seems an anomaly that requires further considerations.
One explanation is that the convergences in the sex gap occur in changes in age slopes
instead of age slopes themselves. For example, women showed slower rates of deceleration
than men in cancer incidence (31) and mortality (7) in older ages. An alternative but not
mutually exclusive explanation is that trends in total cancer deaths mask the heterogeneity of
individual cancer sites with unique age trajectories of progression to mortality. We also note
that a wide array of social and physiological factors included in the analyses do not account
for sex differences in cancer mortality and their age variations. These findings likely reflect
the complexity of cancer biology and sex differences in exposures and vulnerabilities to
carcinogens related to both constitutional endowment and reproductive biology. In addition,
the statistical power for the calculation of age change in mortality risk and sex differences is
necessarily limited by the small number of deaths in the survey. As a result, we cannot
estimate reliable age slopes and their accelerations by using finer-grained age intervals for
any cause-specific mortality. Future studies are needed that use population-level mortality
data by detailed cancer site to further model age effects with adequate statistical power.

Selective survival cannot be ruled out as an alternative mechanism producing the age
changes in sex differences. Selection of the elite eliminates the frail early on so that it
decreases heterogeneity in the surviving population later in life. If this were the only
mechanism operating, we should have observed converging sex gaps across all causes of
death. Instead, the age patterns of sex differences vary by cause of death and adjustment of
covariates. Another outcome of selection is the slowing down of the age increment in
mortality risks for all subgroups. We could not directly test this in the present study due to
the small number of age-specific deaths, but a prior study of age acceleration of
physiological risks of mortality, such as metabolic syndrome and allostatic load, shows no
similar leveling in age patterns in men and women (20). While extant evidence seems not
entirely consistent with the selection hypothesis, differential selection processes by sex
remain a possibility for future studies.
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*Because the size of the sex ratio will depend on the choice of numerator, taking the log of
the ratio makes it symmetrical (3). Positive values of the logged ratio indicate higher male

mortality rates relative to female mortality rates; negative values indicate lower male
relative to female rates.
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*p<.05, **p< .01, ***p< .001; 2-sided test. For P&I, ages 17-44, the HR is 29.9 (p=".
003). Numerical values of upper bounds of Cls are given when too large to include in the

graph.
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Causes of death coding and summary statistics (weighted): NHANES 1988-2006 mortality follow-up study
analytic sample (N = 25,254; average follow-up = 9.2 years)

Cause of death 1CD-10 codes No. deaths Death rate (per 100,000 person-years) Age at death, mean (SD)
All causes 1902 1144.60 73.35 (14.65)
Circulatory diseases * 100-178, 180-199 724 435.69 76.76 (13.08)
Malignant neoplasms C00-C97 494 297.28 69.98 (13.11)

Lung cancer C33-C34 177 106.52 68.46 (11.82)

Other cancers C00-C32, C35-C97 318 191.37 70.82 (13.71)
Infectious and parasitic diseases ~ A00-B99 68 40.92 64.09 (18.29)
Pneumonia and influenza J10-J18 51 30.69 80.54 (11.65)
External causes V01-Y88 88 52.96 57.58 (20.33)
Other causes Residuals 478 287.65 75.12 (13.61)

ICD = International Classification of Diseases; NHANES = National Health and Nutrition Examination Survey.

*
We separately examined cardiovascular and cerebrovascular diseases as subcategories of the circulatory diseases in additional analyses but only
report results of the latter because of a lack of significant differences in subsequent analyses.
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