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The toxin-producing bacterium C. difficile is the leading cause of antibiotic-associated colitis, with an estimated 500,000
cases C. difficile infection (CDI) each year in the US with a cost approaching 3 billion dollars. Despite the significance of
CDI, the pathogenesis of this infection is still being defined. The recent development of tractable murine models of CDI
will help define the determinants of C. difficile pathogenesis in vivo. To determine if cefoperazone-treated mice could be
utilized to reveal differential pathogenicity of C. difficile strains, 5–8 week old C57BL/6 mice were pretreated with a 10 d
course of cefoperazone administered in the drinking water. Following a 2-d recovery period without antibiotics, the
animals were orally challenged with C. difficile strains chosen to represent the potential range of virulence of this
organism from rapidly fatal to nonpathogenic. Animals were monitored for loss of weight and clinical signs of colitis. At
the time of harvest, C. difficile strains were isolated from cecal contents and the severity of colitis was determined by
histopathologic examination of the cecum and colon. Cefoperazone treated mice challenged with C. difficile strains VPI
10463 and BI1 exhibited signs of severe colitis while infection with 630 and F200 was subclinical. This increased clinical
severity was correlated with more severe histopathology with significantly more edema, inflammation and epithelial
damage encountered in the colons of animals infected with VPI 10463 and BI1. Disease severity also correlated with
levels of C. difficile cytotoxic activity in intestinal tissues and elevated blood neutrophil counts. Cefoperazone treated
mice represent a useful model of C. difficile infection that will help us better understand the pathogenesis and virulence
of this re-emerging pathogen.

Introduction

Clostridium difficile is an anaerobic, spore-forming, gram-positive
bacillus first isolated in 1935.1 Within the past decade new focus
has been put on C. difficile due to an increase in the prevalence
and severity of infection.2,3 C. difficile infection (CDI) is now the
leading cause of hospital-acquired infections, surpassing methi-
cillin-resistant Staphylococcus aureus.4 C. difficile accounts for
almost all cases of pseudomembranous colitis and 20% of
antibiotic-associated diarrhea cases.5 Antibiotic treatment is a
major risk factor for CDI with elevated risk associated with the
administration of antibiotics from multiple classes including
clindamycin, quinolones, cephalosporins, and aminopenicillins.6-8

Standard treatment of CDI has traditionally involved the
administration of metronidazole or vancomycin. Unfortunately,
after initial successful treatment an increasing number of patients
experience one or more relapses of disease.9 Not only is relapse
more prevalent, morbidity and mortality per year has increased,

where an estimated 15,000 to 20,000 patients die annually in the
US from CDI.10 There has been some success with alternative
treatments for patients with reoccurring or severe CDI, however
further effort is needed in developing novel treatments for C.
difficile infection.

The development of tractable animal models greatly aids in
understanding the pathogenesis of infectious agents. Syrian
hamsters were first used to fulfill Koch’s postulates for C. difficile
in the 1970s and are still being used today.11-13 Infection of
clindamycin treated hamsters with C. difficile results in severe
colitis and death within 3 d.11,14 The use of the hamster model has
demonstrated a role for the C. difficile toxins A and B (TcdA and
TcdB) in the pathogenesis of infection.12,13 More recently, mouse
models of CDI have been developed that approximate human C.
difficile infection. Pretreatment of mice with a cocktail of five
antibiotics, followed by an intraperitoneal injection of clindamy-
cin changes the gut microbiota and renders animals susceptible to
colonization with C. difficile vegetative cells.15,16 Unlike the
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uniformly fatal hamster model, disease severity can vary with the
size of the bacterial inoculum administered and the strain of C.
difficile used for infection.16

We recently demonstrated that the broad-spectrum cephalos-
porin cefoperazone is sufficient to make mice susceptible to
infection with C. difficile strain VPI 10463.15 This C. difficile
strain produces high amounts of toxin and experimental infection
with this strain is lethal in hamsters and, with increased dose, in
mice.16-18 Since we demonstrated a dose-response to inoculum size
with VPI 10463 in cefoperazone-treated mice, we hypothesized
that this model could be used as a platform to examine differential
virulence of C. difficile strains and isolates. As a proof of principle
we compared the outcome of experimental infection of
cefoperazone-treated mice with four C. difficile strains, including
those used in past murine models.16,19,20 In addition to VPI
10463, we also challenged mice with a BI1 strain which is a
member of the restriction enzyme analysis (REA) group BI,
ribotype 027, from North American isolates NAP1. This strain is
an ancestor of the epidemic strain that has appeared in the past
decade.21,22 The 630 strain is a genetically tractable strain that was
originally isolated from a clinical case of pseudomembranous
colitis in Switzerland.23,24 Given the essential role of toxin
production for pathogenesis in hamsters,12,13 we obtained a non-
toxigenic human isolate (F200) of C. difficile as a control. We

selected these strains since they represent the potential range of
virulence as judged by previous in vitro and in vivo studies. We
demonstrate that cefoperazone treated mice exhibit varying
degrees of disease when challenged with these different C. difficile
isolates and thus this represents a model that can be used in future
studies to test the relative virulence of different strains.

Results

Varied clinical courses in cefoperazone-treated mice challenged
with different C. difficile strains. Wild type C57BL/6 mice were
made susceptible to infection with C. difficile by a 10 d
pretreatment with cefoperazone followed by a 2 d period without
antibiotics.15 Mice were orally challenged in multiple trials with
the vegetative form of C. difficile strains VPI 10463, BI1, 630 and
F200. Animals infected with 2 � 105 CFU of C. difficile strain
VPI 10463 developed clinical signs of CDI (including lethargy,
diarrhea and hunched posture) within 24–48 h post infection
and lost $ 20% of their initial body weight by day 2 post
infection necessitating euthanasia (Fig. 1A). Similarly, animals
infected with 6 � 104 CFUs of C. difficile strain BI1 lost $ 20%
of initial body weight by day 2 post infection (Fig. 1B).
Interestingly, decreasing the challenge dose of VPI 10463 to
4 � 104 CFU extended the time to the development of severe

Figure 1. C. difficile strains exhibit different clinical outcomes in cefoperazone treated mice. Body weight was measured daily starting from Day 0 or the
day of infection. Animals were challenged with C. difficile strains (A) VPI 10463 (2 � 105 CFU closed circles and 4 � 104 CFU open circles) (B) BI1 (6 � 104

CFU closed squares and 8 � 103 CFU open squares) (C) 630 (2 � 105 CFU closed triangles and 8 � 104 CFU open triangles) and (D) F200 (4 � 105 CFU
closed diamonds and 5 � 103 CFU open diamonds). Black lines represent mean percentage of the baseline weight for animals in each group.
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CDI (Fig. 1A). However, decreasing the infectious dose of the
BI1 strain to 8 � 103 CFU resulted in the survival of 3 of 5
animals that neither lost weight nor developed signs of severe
disease (Fig. 1B).

In contrast, cefoperazone treated mice infected with strain 630
or F200 never reached clinical endpoints (20% weight loss or
death) regardless of the size of bacterial inoculum (a total of three
infection trials were performed). Animals challenged with the 630
strain exhibited minor weight loss, although this did not approach

the loss observed in animals infected with VPI 10463 or BI1.
While animals infected with the higher doses of VPI 10463 or
BI1 required euthanasia by 48 h after infection due to reaching
clinical endpoints, animals challenged with 630 or F200 remained
well for the duration of the experiment (6 to 9 d post infection)
(Fig. 1C and D).

Variable severity of disease early in the time course of
infection. Since the clinical trajectory of CDI varied with the
strain of C. difficile used for infection in multiple experiments,
additional infections were done to compare disease at a uniform
time early in the infectious course. Cefoperazone treated C57BL/
six mice were challenged with the four C. difficile strains, VPI
10463, BI1, 630 and F200 at an average dose of 7 � 105 CFU.
All animals were harvested by 48 h after challenge. As in the
previous experiments, animals infected with C. difficile strain VPI
10463 and BI1 exhibited significant weight loss, but animals
infected with 630 and F200 remained well (Fig. 2A).

By 48 h after experimental challenge, mice infected with each
of the four strains had high levels of C. difficile colonization with
108-109 colony-forming units per gram of cecal content (Fig. 2B).
Despite this uniform colonization, the levels of C. difficile
cytotoxic activity detected in the intestine varied with the
infecting strain. Mice infected with VPI 10463 had the highest
levels of cytotoxic activity in the gut followed by animals infected
with BI1 and then those infected with 630 (Fig. 2C). No
cytotoxic activity was detected in gut tissues isolated from animals
infected with F200 or in uninfected controls.

Upon histopathological examination of cefoperazone treated
mice, the colons of mice infected with VPI 10463 and the BI1
strain had the most severe pathology (Fig. 3A). Maximal levels of
inflammation, edema and epithelial damage were seen in animals
infected with VPI 10463 and BI1 (Figs. 4A, B and S1). Minimal
inflammation and slight edema without significant epithelial
damage was encountered in animals infected with 630 or the F200
(Figs. 4C, D and S1). However, one F200 animal with moderate
inflammation (score 2) had small multifocal neutrophilic aggregates
with mild edema and no epithelial damage. This may represent a
background lesion or limited inflammation in response to
colonization but without pathological significance, as evidenced
by the fact that none of the F200 mice had epithelial damage.
Histopathological results had similar statistical significance regard-
less of whether a rank-ordering or numerical scoring system was
used (Figs. 3A and S1).

As a correlate of systemic illness induced by CDI, blood was
collected from mice at the time of necropsy and the total number
of circulating white blood cells and neutrophils were determined.
Mice infected with C. difficile strains VPI 10463 and BI1 had
elevated levels of peripheral neutrophils at the time of necropsy
(Fig. 3B). In fact, these mice had a reversal of the normal
lymphocyte-predominance in peripheral mouse blood. Neutrophil
predominance is consistent with a severe inflammatory response.
Mice infected with 630 and F200 retained the normal
lymphocyte-predominance.

C. difficile spores can infect cefoperazone-treated mice. The
previous infection experiments were conducted with the veget-
ative form of C. difficile. It is thought that human clinical

Figure 2. Early murine infection with different C. difficile strains.
Cefoperazone treated C57BL/6 WT mice challenged with C. difficile
strains, VPI 10463 (n = 4), BI1 (n = 3), 630 (n = 5), F200 (n = 3) and a mock
(n = 3) infected were all sacrificed early during infection, or 48 h post
infection. (A) Average body weight was measured daily starting from Day
0 or the day of infection (B) Colonization levels in CFU per gram of cecal
content at the time of necropsy (C) Vero cell cytotoxicity assay from cecal
content of each mouse in log10 reciprocal dilution toxin per gram of
cecal content at the time of harvest (VPI 10463 vs. F200, p , 0.05; VPI
10463 vs. mock, p , 0.05 Kruskal-Wallis 1way ANOVA).
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infection generally arises from the ingestion of the spore form of
the organism. To demonstrate that cefoperazone-treated mice
could be infected with C. difficile spores, antibiotic-treated
animals were challenged with the spore form of strains VPI
10463 and BI1. Animals infected with 2 � 105 spores of C.
difficile strain VPI 10463 developed clinical signs of CDI
(including lethargy, diarrhea and hunched posture) within 24–
48 h post infection and lost $ 20% of their initial body weight by
day 2 post infection (Fig. 5). Animals infected with the same
spore dose of C. difficile strain BI1 lost weight, but never reached
clinical endpoints requiring euthanasia (Fig. 5). After day 4 post
infection animals gradually gained weight until day 7 post
infection when the experiment was terminated.

Discussion

The clinical picture that results from human infection with C.
difficile ranges from asymptomatic colonization to fulminant
colitis.25 Chronic, recurrent infection is becoming an increasingly
important problem.26 This wide range of disease manifestations is
presumed to reflect differences in the host, the indigenous
microbiota, and infecting C. difficile strains.10 While much
attention has been focused on host determinants of disease
severity (such as age, immunosuppression, co-morbidities), fewer
studies have addressed differences among C. difficile strains that
influence clinical outcome in patients with CDI. However, the
emergence of epidemic strains of C. difficile with apparently
increased virulence (e.g., NAP1/BI/027) has opened new
questions about the specific determinants of C. difficile virulence
in different isolates.27

While important insights into the pathogenesis of CDI have
been gained from experimental infection of Syrian hamsters,14,28

one limitation of this model is that animals infected with toxigenic
C. difficile strains generally have a uniformly fatal course, reducing
the ability to detect differences in virulence.19,20 In this report, we
present a model of CDI that should be useful to show relative

differences in the pathogenicity of C. difficile strains. Animals are
made susceptible to colonization with C. difficile through the
administration of a single antibiotic, cefoperazone. This closely
mimics the development of CDI in humans, which can arise
following exposure to a single antimicrobial. Cephalosporins, the
class of antibiotics which includes cefoperazone, are a key risk for
the development of CDI.29 This model has potential advantages
over previously published murine models of CDI in immuno-
competent animals, which required multiple antibiotics to make
animals susceptible to CDI16 or were models of colonization
without the development of significant clinical or histopathologic
disease.30,31

The use of inbred mice from a single breeding colony in the
current model controls for variation in host genetics.
Furthermore, based on our previous studies, cefoperazone treated
mice demonstrate reproducible changes to the gut microbiota,
limiting microbiota variability as a potential modifier of disease
outcome.32 Therefore, the main variable in determining the
clinical outcome in this murine model of CDI is the strain of C.
difficile used for challenge. Depending on the specific strain of C.
difficile, infected mice exhibited a variety of clinical courses
ranging from asymptomatic colonization to a subacute, resolving
histopathologic colitis to rapidly fatal, clinically severe colitis.

The main virulence factors of C. difficile are thought to be toxin
A (TcdA) and toxin B (TcdB).33 Both TcdA and TcdB are
cytotoxic and trigger inflammatory responses, causing disruption
of the actin cytoskeleton of intestinal epithelial cells and
disrupting tight junctions.34,35 In this study we confirmed the
essential role of these toxins in mediating colitis as no clinical or
histopathologic disease was seen in animals that were challenged
with the non-toxigenic strain F200. However, the fact that this
strain could colonize to a level equivalent of a fully toxigenic strain
demonstrates that toxin A and toxin B are not required to
establish C. difficile colonization. Our results are also in accord
with clinical observations that the severity of CDI is proportional
to the in vivo production of these C. difficile toxins.36 The most

Figure 3. Histopathology and biomarkers of disease severity during early infection with different C. difficile strains. (A) Rank order analysis of histology
slides from the murine colon showing disease severity in order from 1, most severe histopathological changes, to 18, least severe histopathological
changes. (B) Total white blood cell count in thousand (K)/ml. The black shaded boxes indicate the number of neutrophils present out of the total number
of white blood cells present (in white) in the blood of infected C. difficile mice (VPI vs. 630, p , 0.05 Kruskal-Wallis 1way ANOVA).
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severe disease encountered in cefoperazone treated mice was seen
in animals that were infected with VPI 10463 and BI1. Much
greater cytotoxic activity was found in the tissues of animals
infected with these strains compared with animals infected with
strain 630 during early infection. However it should be noted that
a relative difference in the virulence of VPI 10463 and BI1 could
be demonstrated by the fact that decreasing the challenge dose of
BI1 would result in the survival of a proportion of infected mice
while decreasing the infectious dose of VPI 10463 merely resulted
in extending the time to the development of a uniformly fatal
course.15

Our results in cefoperazone treated mice contrasts with the
clinical outcome seen in hamsters infected with BI1 and strain
630.19,20 Infection of hamsters with both of these strains was
uniformly fatal, although death occurred more rapidly in animals

infected with BI1. Cefoperazone-treated mice infected with a
strain 630 have a clinically benign course. Although toxin
expression occurred in mice infected with 630, the lower quantities
apparently did not induce clinical signs of toxemia (unlike what was
encountered in animals infected with VPI 10463 and BI1 strains,
which produced high levels of toxin in vivo).

Cefoperazone-treated mice will likely have utility in defining
the role of other potential C. difficile virulence factors in the
pathogenesis of infection. The production of another toxin,
known as binary toxin or CDT, has been proposed to be another
factor that may influence the virulence of C. difficile.37 CDT is
produced by a number of C. difficile strains including the recent
NAP1/BI/027 epidemic isolates.3 In spite of the correlation
between emergence of this epidemic strain and increased disease
prevalence and severity, there is conflicting evidence on the

Figure 4. Histopathology in the colon of C. difficile-infected animals during early infection. (A) Colon of a mouse with clinically severe CDI infected with
VPI 10463. There is severe submucosal edema accompanied by inflammatory cells within the mucosa and invading the submucosal lymphoid tissue. The
epithelial surface is also irregular and eroded. (B) Colon of a mouse infected with BI1 that shows significant submucosal edema and scattered
inflammatory cells. (C) Colon of a mouse infected with the 630 strain of C. difficile shows minimal to no histopathological changes. (D) Colon of a mouse
colonized with F200 which shows some inflammation but otherwise no significant histopathological changes. HE. All images were the same
magnification (x200). Scale bar = 100 mm.
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specific role of CDT in pathogenesis.38 The strain BI1 that we
employed in the current study is a historic isolate of the current
epidemic strain and produces CDT. Our finding that the strain
VPI 10463 (which does not produce CDT due to a deletion in
the binary toxin genes)39 produced equivalent disease in
cefoperazone treated mice to BI1 underscores the controversial
role for binary toxin in disease pathogenesis.40 To test the role of
potential virulence factors such as CDT in the pathogenesis of C.
difficile infection would require the use of isogenic strains, as has
been done to show the essential role of TcdA and TcdB in
hamsters.12,13 The primary goal of the current study was not to
obtain new insight into the pathogenesis of C. difficile strains that
have been previously studied in vitro and in vivo. The toxigenic
strains that we employed (VPI 10463, BI1 and 630) have been
the subject of multiple other studies. We chose to use these well-
characterized strains, in addition to a non-toxigenic strain, so that
we could reasonably expect the full range of disease that can result
from C. difficile infection, ranging from asymptomatic coloniza-
tion to rapidly fatal colitis. Having demonstrated the utility of this
model in potentially distinguishing relative virulence, future
studies with isogenic mutants or multiple isolates of genetically
related strains (e.g., a collection of NAP1/027 strains) could
extend our knowledge of C. difficile virulence determinants and
mechanisms.

Human infection with C. difficile is thought to result primarily
from exposure to the spore form of the organism.10 A potential
weakness of the current experiments is that we employed
challenge with vegetative forms of C. difficile in this study. We
and others have used vegetative cells in previous studies to initiate
C. difficile infection in antibiotic-treated mice.15,16 Here it is
demonstrated that cefoperazone-treated mice are also overtly
infected when challenged with the spore form of VPI 10463 and
BI1. Similar to the results demonstrated with vegetative cells,

spores of VPI 10463 had apparently greater virulence in this
model. This was evidenced by the fact that the same inoculum
size of VPI 10463 spores that uniformly killed infected mice
caused significantly less severe disease when BI1 spores were used
for challenge. The ability to utilize what is thought to be the
nosocomial and naturally infectious form of the organism opens
the possibility of examining the role of spore germination in the
pathogenesis of disease. We anticipate that future studies
employing this model system of CDI will lead the way to novel
means for the prevention and treatment of this significant
hospital-acquired infection.

Materials and Methods

Ethics statement. This study was approved by the University
Committee on the Care and Use of Animals (UCUCA) at the
University of Michigan. The University of Michigan laboratory
animal care policies follow the Public Health Service policy on
Humane Care and Use of Laboratory Animals. Animals were
assessed daily for physical condition and behavior and those
assessed as moribund were humanely euthanized by CO2

asphyxiation. Animal husbandry was performed by trained animal
technicians in an AAALAC-accredited facility.

Animals and housing. 5–8 week old C57BL/6 WT mice (male
or female) were used from a breeding colony that was established
using animals purchased from Jackson Laboratories for the
experimental infections. Mice were housed with autoclaved
food, bedding and water. Cage changes were performed in a
laminar flow hood. Mice had a cycle of 12 h of light and 12 h
of darkness.

Clostridium difficile strains and growth conditions. The C.
difficile strains used in this study include reference strain VPI
10463 (ATCC 43255), BI1 (NAP1/BI/027) which was obtained
from Dale Gerding (Hines VA Hospital Loyola University
Medical Center Maywood, IL), strain 630 (ATCC BAA-1382)
and a non-toxigenic clinical strain (F200) which was obtained by
the University of Michigan Archives. VPI 10463 was first isolated
from an abdominal wound (http://img.jgi.doe.gov/cgi-bin/w/
main.cgi: DOE Joint Genome Institute website) and is grouped
in toxinotype 0. The BI1 strain is from isolate 5352 and was
recovered from a patient in the surgical intensive care unit on the
Minneapolis VA Hospital in February 1993 (personal corres-
pondence, Stuart Johnson).21 The BI1 strain represents the REA,
restriction enzyme analysis; group BI, ribotype 027, from North
American isolates NAP1, that is an ancestor of the epidemic strain
that has appeared in the past decade. It is a part of the toxinotype
III group, with a point mutation in the tcdC (negative regulator)
that results in expression of a truncated protein in the
pathogenicity locus and carries the binary toxin genes.22 The
630 strain, toxinotype 0, was originally isolated from a clinical
case in Switzerland with pseudomembranous colitis and is now
genetically tractable.23,24 A non-toxigenic strain (isolate F200) of
C. difficile that is a clinical isolate obtained from the University of
Michigan hospital archives will also be used in this study as a
control. F200 was confirmed as a non-toxigenic strain by PCR
and a negative Vero cell cytotoxicity assay (data not shown).

Figure 5. C. difficile strains exhibit different clinical outcomes in
cefoperazone treated mice when infected with spores. Average body
weight was measured daily from Day 0 or the day of infection. Animals
were challenged with C. difficile strains (A) VPI 10463 circles (2 � 105

spores) (B) BI1 squares (2 � 105 spores). All animals infected with VPI
10463 met their clinical endpoint by day 2 post infection and had to
euthanized. Animals infected with BI1 never met the clinical endpoint
and were euthanized when the experiment was terminated on day 7
post infection.
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All strains were isolated and grown on brain heart infusion
media (BHIS) supplemented with 0.01% L-cysteine (Sigma-
aldrich cat# C7352). C. difficile vegetative cells were grown in
a Coy anaerobic chamber (Coy Industries). When preparing
inoculum for C. difficile infections, isolates were plated on BHIS
agar to isolate single colonies, which were used to inoculate an
overnight culture of BHIS broth. The next morning, a back
dilution of 1:10 was made with fresh BHIS broth to ensure
uniform growth phase of bacteria used for infection. After 4 h of
growth, the culture was harvested by centrifugation and washed
3 times with PBS pH 7.4 (Gibco, cat# 10010) that was pre-
equilibrated to anaerobic conditions. C. difficile cultures were
diluted to the appropriate final dose and loaded into 1 ml syringes
for gavaging animals. Bacterial enumeration was performed by
plating on BHIS agar in order to determine the actual dose.

C. difficile spores were prepared as follows. Strains were grown
overnight in BHIS broth. The next day, 100 ul of these
overnights was spread onto BHIS plates (four plates per strain).
The plated strains were allowed to grow for seven days before
being removed from the anaerobic chamber and subjected to
oxygen overnight to kill vegetative bacilli. Plates were flooded
with 15 ml cold water and bacteria were removed by scraping
with a sterile loop. Bacterial suspensions were centrifuged and
washed in cold water at least three times. Spore stocks were
stored at 4°C in sterile water. The presence of spores was
confirmed using phase contrast microscopy and stocks were
enumerated by plating for viable CFU. C. difficile spores were
heat treated for 20 min at 65°C to ensure that all spores
were viable prior to gavaging animals. Spores were enumerated
by plating dilutions on TCCFA agar in order to determine the
actual dose.

Antibiotic administration and infection with C. difficile.
C57BL/6 WT mice (male or female) ranging from 5–8 weeks in
age were used in this study. Mice were given cefoperazone
(0.5 mg/ml) (MP Bioworks, cat# 199695) in sterile drinking
water for 10 d. Antibiotic water was refreshed every other day in
order to prevent the antibiotic from breaking down. After 10 d,
mice were switched to regular water (Gibco, cat# 15230) and
allowed to recover for 2 d before being infected by oral gavage
with C. difficile vegetative cells. The actual dose of C. difficile
vegetative cells administered ranged from 103 – 105 CFUs of C.
difficile strains VPI 10463, BI1, 630 and a F200. Cefoperazone
treated mice in Figure 1 were orally gavaged with approximately:
VPI 10463: 2 � 105 CFU (n = 4), 4 � 104 CFU (n = 5); BI1:
6 � 104 CFU (n = 3), 8 � 103 CFU (n = 5); 630: 2 � 105 CFU
(n = 5), 8 � 104 CFU (n = 5) and F200: 4 � 105 CFU (n = 4),
5 � 103 CFU (n = 3). Mock infected animals were pretreated with
cefoperazone but orally gavaged with PBS. Animals in the early
infection study were all orally gavaged with an average dose of
7 � 105 CFUs and sacrificed at day 2 post infection. Cefoperazone
treated mice infected with the spore form of C. difficile were orally
gavaged with approximately 2 � 105 spores of VPI 10463 and BI1.
Animals challenged with C. difficile were monitored for signs of
clinically severe CDI including inappetence, diarrhea, and hunch-
ing. Animals were euthanized after losing 20% of initial baseline
weight or after developing any severe clinical signs listed above.

Necropsy and histological procedures. Mice were euthanized
by CO2 asphyxiation. Contents and tissue from the cecum and
colon were collected, flash frozen and stored at -80°C. For
infected animals, the cecum and colon were prepared for histology
by placing the intact tissue into histology cassettes and stored in
10% buffered formalin for 24 h then transferred to 70% ethyl
alcohol. Tissue cassettes were further processed and paraffin
embedded then sectioned. Haematoxlyin and eosin stained slides
were prepared for histopathological examination (McClinchey
Histology Lab Inc.).

Hematologic analysis. Blood from animals was taken at the
time of harvest and collected in Microtainer tubes with K2EDTA
(BD, cat# 365974). Blood samples were taken immediately to the
ULAM Pathology Core for Animal Research, Animal Diagnostic
Laboratory. Samples were processed for complete blood count
with automated white blood cell differential.

Histopathological examination. Histological sections were
coded, randomized, and scored in a blinded manner by a
board-certified veterinary pathologist (ILB). The slides were
scored two times using two separate methods. First, a previously
published numerical scoring system was used.15 Edema, cellular
infiltration, and epithelial damage were assessed separately in
cecal and colonic tissue using numerical severity scores from
0–4 according to previously defined criteria.15 Edema, cellular
infiltration and epithelial damage for the cecum and colon was
scored from 0–4 according to the following defined criteria:
Edema scores: 0, no edema; 1, mild edema with minimal (, 2x)
multifocal submucosal expansion; 2, moderate edema with
moderate (2–3x) multifocal sub-mucosal expansion; 3, severe
edema with severe (. 3x) multifocal sub-mucosal expansion;
4, same as score 3 with diffuse sub-mucosal expansion. Cellular
infiltration scores were graded as follows: 0, no inflammation;
1, minimal multifocal neutrophilic inflammation; 2, moderate
multifocal neutrophilic inflammation (greater submucosal
involvement); 3, severe multifocal to coalescing neutrophilic
inflammation (greater submucosal ± mural involvment; 4, same as
score 3 with abscesses or extensive mural involvement. Epithelial
damage was scored as follows: 0, no epithelial changes; 1, minimal
multifocal superficial epithelial damage (vacuolation, apoptotic
figures, villus tip attenuation/necrosis); 2, moderate multifocal
superficial epithelial damage (vacuolation, apoptotic figures, villus
tip attenuation/necrosis); 3, severe multifocal epithelial damage
(same as above) +/− pseudomembrane (intraluminal neutrophils,
sloughed epithelium in a fibrinous matrix); 4, same as score 3
with significant pseudomembrane or epithelial ulceration (focal
complete loss of epithelium).

The slides were then re-scored using a rank-ordering system.
Under some circumstances, this method is considered more
powerful than traditional numerical or categorical scoring
systems.41,42 In brief, the same histological criteria for edema,
inflammatory cell infiltration, and epithelial damage were used as
with the categorical scoring method but, rather than grouping
slides into numerically defined categories, all slides were simply
placed in order of increasing severity of histopathological changes.

Colonization of C. difficile from cecal contents. At the time of
necropsy, cecal contents were taken from mice and weighed. Cecal
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contents were passed immediately into the anaerobic chamber for
bacterial enumeration. Cecal contents were serial diluted and plated
on TCCFA (Taurocholate Sigma, cat# T4009, D-cycloserine
Sigma, cat# C6880, cefoxitine Sigma, cat# C47856, fructose
Fisher, cat# L95500 agar) selective media in order to isolate and
quantify the C. difficile load in the cecum of infected mice.

C. difficile cytotoxin assay. Vero cells were grown and used as
described in Reeves et al.15 Briefly, cells were maintained in
DMEM media supplied from (Gibco Laboratories, cat# 11965)
with 10% fetal bovine serum (Gibco Laboratories, cat# 16140)
and 1% Penicillin streptomycin solution (Gibco Laboratories,
cat# 15140). Cells were incubated with 0.25% trypsin (Gibco
Laboratories, cat# 25200) washed with 1X DMEM media and
harvested by centrifugation 1,000 RPM. Cells were plated at
1 � 105 cells per well in a 96-well flat bottom microtiter plate
(Corning, cat # 3596). Luminal content from mice was prepped
by weighing final contents and adding 10-fold higher volume of
1X PBS to make a 1:10 initial dilution. Samples were vortexed
and then spun at 13,000 rpm for 5 min. Supernatant was
collected and put through a 0.2 mm filter membrane. Each sample
was titrated in 10-fold dilutions within the wells to a maximum
dilution of 20−7 and each well had a corresponding control to
which both antitoxin (TechLabs, cat# T5000) and sample were
added. After an overnight incubation at 37°C, plates were viewed
under 200X magnification for Vero cell rounding. The cytotoxic

titer was defined as the reciprocal of the highest dilution that
produced rounding in 100% of Vero cells per gram of cecal
sample. Vero cells treated with purified C. difficile toxin and
antitoxin (TechLabs, cat# T5000) were used as controls.

Statistical analysis. Prism 5 Graphpad Software was used for
statistical analysis. Kruskal-Wallis (1-way ANOVA) test was used
for nonparametric analysis with statistical significance set at a p
value of , 0.05.
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