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Clostridial toxins
Sensing a target in a hostile gut environment
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The current global outbreak of
Clostridium difficile infection

exemplifies the major public health threat
posed by clostridial glucosylating toxins.
In the western world, C. difficile infection
is one of the most prolific causes of
bacterial-induced diarrhea and potentially
fatal colitis. Two pathogenic enterotoxins,
TcdA and TcdB, cause the disease.
Vancomycin and metronidazole remain
readily available treatment options for
C. difficile infection, but neither is fully
effective as is evident by high clinical
relapse and fatality rates. Thus, there is
an urgent need to find an alternative
therapy that preferentially targets the
toxins and not the drug-resistant patho-
gen. Recently, we addressed these critical
issues in a Nature Medicine letter,
describing a novel host defense mech-
anism for subverting toxin virulence that
we translated into prototypic allosteric
therapy for C. difficile infection. In this
addendum article, we provide a con-
tinued perspective of this antitoxin
mechanism and consider the broader
implications of therapeutic allostery in
combating gut microbial pathogenesis.

Cysteine proteases degrade polypeptides
via a mechanism that normally involves
a reactive cysteine thiol in a catalytic
motif.1 This prevalent enzyme class regu-
lates many important cellular activities in
gut host cells and their associated micro-
flora.1,2 It has been recently appreciated
that several gut pathogens produce toxins
that also depend upon a conserved cysteine

protease for virulence.3-6 The autocatalytic
cysteine protease of these large, secreted
bacterial proteins is required for intoxica-
tion of target host cells and includes the
disease-inducing clostridium glucosylating
toxins, as well as RTX, a-hemolysin,
FrpC, and adenylate cyclase pore-forming
toxins from Vibrio cholerae, Escherichia
coli, Neisseria meningiditides and Bordetella
pertussis, respectively.3-6 Although not yet
demonstrated for all of the above bacterial
exoproteins, cellular intoxication by the
clostridium glucosylating toxins and Vibrio
cholerae RTXVC toxin also depend on
host-derived inositol phosphate cofac-
tors.7-14 These regulatory cofactors bind
to an allosteric site on the toxin after its
insertion into the plasma membrane,
activating the autocatalytic cysteine pro-
tease to facilitate toxin self-cleavage
(Fig. 1). A smaller toxin effector domain
is then injected into the cytosol where it
inactivates Rho GTPases in target cells.5-7

The Rho family members act as molecular
switches in a number of important cell
signaling pathways associated with actin
polymerization, inflammation and cell
death.

The dramatic increase in severity of
C. difficile-associated disease in North
America and Europe over the last decade
highlights the clinical prominence of
C. difficile’s glucosylating toxins, and is
partially due to the spread of new
epidemic-associated strains, for example
BI/NAP1/027 that produce high amounts
of these toxins.15 Accompanying this surge
in disease severity is a rise in recurrent
clinical episodes in up to 35% of patients
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with symptomatic C. difficile infection
(CDI).15 These unmet clinical issues
represent a significant medical and finan-
cial challenge to health care systems, and
have rekindled interest in improving
therapy against this increasingly prevalent
pathogen. Fidaxomicin has shown pro-
mise in reducing CDI relapse, but this
new antibiotic appears less effective against
the epidemic strain BI//NAP1/027.16

Adjuvant antitoxin immunotherapy has
also shown promise in preventing CDI
relapse, but the economic costs are
potentially high.17 These issues highlight
the complexity of CDI management,
and emphasize the need to identify sus-
ceptible patients and alternative appro-
aches to therapy.

A Novel Toxin Sensor
for Evading Dietary Antitoxins

A majority of the C. difficile bacterial
strains that cause disease in humans secrete
two large toxins, TcdA (308 kDa) and

TcdB (270 kDa). There is little ambiguity
that these pathogenic toxins are the major
cause of CDI since toxin-deficient clinical
isolates are avirulent and may form a new
line of clinical therapy by competing with
pathogenic strains.15 Microbial genetic
manipulation studies have highlighted the
disease-inducing potential of both toxins
but implicate TcdB as the primary
virulence factor in CDI,18,19 supporting
earlier unequivocal reports that TcdB is
the major enterotoxin in the human
colon.20,21 This notion is supported by a
recent clinical study reporting that anti-
bodies against TcdB (but not TcdA) are
associated with asymptomatic hospital
acquired C. difficile colonization.22

Nevertheless, novel antitoxin-based ther-
apy should neutralize both toxins since
each has the capacity to induce disease.

TcdA and TcdB are structurally similar,
with functional domains that are now
reasonably well defined.5-7 The C-terminus
receptor binding domain is involved in
toxin attachment to the host cell membrane.

The transmembrane and cysteine protease
domains are involved in toxin entry into
target cells, and the N-terminus is a catalytic
glucosyltransferase domain. Interactions
between the C-terminus binding domain
and host cell receptors initiate receptor-
mediated endocytosis (Fig. 1). Although the
precise intracellular mode of action remains
unclear, the toxins undergo a conforma-
tional change in the endosome, leading to
membrane insertion. A cytosolic virulence
cofactor, myo-inositol hexakisphosphate
(InsP6), is then required to trigger an
allosteric structural change that activates
the cysteine protease domain (CPD) to
induce toxin self-cleavage and release of
the glucosyltransferase domain into the
cytosol (Fig. 1).7-14 In this instance, allos-
teric regulation or allostery refers to a change
in the shape and activity of the toxin
cysteine protease that results from mole-
cular binding with an inositol phosphate
regulatory factor at a site other than the
enzymatically active one (orthosteric site).
Once in the cytosol, this effector domain

Figure 1. Summary figure with video links of the toxin allosteric mechanism.
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mono-O-glucosylates and inactivates small
Rho GTPases, leading to alterations in the
actin cytoskeleton, diarrhea, inflammation,
and necrosis of the colonic mucosa.

Cysteine-dependent cleavage is a key
regulatory mechanism for C. difficile
virulence since it facilitates entry of the
glucosyltransferase domain into target cell
cytosol. Allosteric coupling by InsP6
activates the toxin cysteine protease
catalytic reaction to facilitate toxin self-
cleavage. Specific inhibition of this cleav-
age reaction by mutagenesis or alkylation
of the active site cysteine,5,7,12,13 or by
competitive peptide inhibition,23 signifi-
cantly attenuates cytotoxicity. Although
irreversible chemical modifiers of cysteine
thiol and peptide inhibitors of the cysteine
protease active site are known to inhibit
toxin virulence with great sensitivity, poor
selectivity for microbial over human
cysteine proteases remains a potential
concern. Also, it is desirable to design
non-peptide-based reversible inhibitors
for oral therapy so as to minimize the
potential toxicity that can be observed
with irreversible inhibitors.

High resolution CPD crystal structures
for TcdA and TcdB closely align with
the CPD crystal structure for RTXVC

(Fig. 2A), and show a well-defined cata-
lytic cleft that is structurally distinct
from a positively charged InsP6 binding
pocket abutting a flexible β-hairpin fold
(β-flap).12,22,24 A potential deficiency of
these TcdA and TcdB CPD crystal
structures is the lack of their native
N-terminus cleavage fragment that may
significantly alter the ordering of the
substrate cleft and catalytic triad. To gain
further structural insight into the toxin
allosteric mechanism, we used the coordi-
nates of the CPD crystal structures for
TcdA and TcdB, and the N-terminus
from RTXVC

11 to generate native struc-
tural models for TcdA and TcdB that
included the uncut N-terminus substrate
within the catalytic cleft. These toxin CPD
homology models spanned CPD residues
V534-S801 in TcdA and K535-T799 in
TcdB (Fig. 3). Because it has not yet been
possible to generate crystal structures of
the native InsP6 unbound toxin CPD
configuration, we performed molecular
dynamics (MD) structural simulations25,26

to better understand the structural basis

of the InsP6 allosteric mechanism. These
simulation models consistently demon-
strated two distinct allosteric mechanisms
that were highly dependent on whether

the uncut N-terminus substrate is absent
(short model simulation) or present (long
model simulation) in the catalytic cleft.
In the short model simulations (essentially

Figure 2. (A) The b-strand core region, the active site and the InsP6 binding site together with the
b-flap are conserved and align well for CPD’s of RTXVC (gray), TcdA (green) and TcdB (blue). Shown
are the crystal structures with the PDB-codes 3EEB (RTXVC), 3OH6 (TcdA) and 3PA8 (TcdB). They all
have InsP6 bound and the substrate is cleaved. Therefore, there are no peptides bound in the active
site (we refer to these structures as short). In TcdB the shown residues represent: C698, H653, D587,
E743 and W761. (B) Re-docking of InsP6 to the crystal structures of RTXVC (3EEB), TcdA (3HO6) and
TcdB (3PA8) with Autodock (blue) shows excellent agreement with the original position of InsP6
(green). (C) b-flap movement of the InsP6 free TcdA CPD (short form 3HO6) during a MD-simulation.
Shown residues are C700, H655, D589, E745 and W763. (D) Along with the b-flap the Asp (D589)
and His (H655) in the catalytic triad move drastically during an InsP6 free MD-simulation of TcdA
CPD (3HO6). Different snapshots at 3.5, 4.0, 5.0, 5.5 and 7.0 ns are compared with the crystal
structure positions (green).
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using CPD crystal structures lacking the
N-terminus substrate), in silico docking of
InsP6 bound accurately to the allosteric
pocket (Fig. 2B; Supplemental Material),
and induced conformational changes that
facilitated substrate access to the active
site cysteine by leveraging the flexible
β-flap away from catalytic cleft (Fig. 2C;
Vids. 1 and 3). Furthermore, InsP6
induced allostery may bolster cysteine
thiol reactivity toward the substrate by
promoting spatial proximity and align-
ment of catalytic residues (Fig. 2D).
Nevertheless, even in the InsP6 bound
crystal configuration, the catalytic cysteine
thiolate and the histidine imidazolium
remain . 6Å apart, raising the question
as to whether the toxin CPD functions as a
conventional cysteine protease. In the
related clan CD cysteine proteases, which
includes the caspases, the histidine norm-
ally lies within a 5Å radius of its catalytic
dyad partner to impart significant cysteine
thiol nucleophilicity.1,2 Thus, our short
model simulations show that InsP6 allos-
tery promotes both accessibility and cata-
lytic reactivity toward substrate, and in
general this is in agreement with a series of
elegant experiments that have recently
defined the allosteric circuit in the short
CPD domain of TcdB.24

In our Nature Medicine letter we
propose an alternate mechanism for the
InsP6 induced allostery based on our CPD
structural homology models that contain
the N-terminus glucosyltransfease domain
(Fig. 3A). It appears clear from these
studies that the toxin catalytic dyad does
not function via a conventional enzymatic
mechanism. Our long model simulations
show comparatively little evidence of
leveraging of the flexible β-flap away
from catalytic cleft as is evident in the
short CPD simulations (Fig. 3B; Vid. 2).
Furthermore, following conformational
coupling by InsP6, no interaction between
the catalytic cysteine and histidine is
evident because the N-terminus cleavage
substrate is positioned between these dyad
residues. Alternatively, the catalytic histi-
dine appears to play a major role in
guiding and orienting the cleavage sub-
strate within the catalytic cleft (Fig. 3C).
Our long models also show that hydro-
gen bonding exists between the catalytic
cysteine and a juxtaposed glutamic acid

Figure 3. (A) Model of the TcdB glucosyltransferase (light blue) and cysteine protease domains (gray).
Residues C698, H653 and D743 are shown in yellow, blue and red, respectively. (B) b-flap does not
move during a MD-simulation of the InsP6 free longer TcdB CPD (long form based on the crystal
structures 3PA8 and 3FYZ). Starting conformation is shown in green and snapshots at 1, 2, 3, 4 and 5 ns
are shown in blue. Residues E761 (red), C698(yellow), H653 (blue) and D587 (red) are highlighted
at the surface. (C) Active site of the InsP6 free longer TcdB CPD. Asparagine (D587 in red) and histidine
(H653 in blue) stabilize the substrate via hydrogen bonds (dotted green). The cysteine (C698 in yellow)
is inhibited by another hydrogen bond to the glutamic acid (E743 in red).
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in the simulated InsP6 unbound CPD
structure, and this interaction likely inhi-
bits the cysteine protease activity in the
inactive state. Thus, conformational coup-
ling by InsP6 regulates CPD hydrogen
bond interactions that on the one hand
suppress catalytic cysteine thiol reactivity,
while on the other align the N-terminus
substrate within the catalytic cleft (Fig. 3;
Vids. 2 and 4). Experimental site-directed
mutagenesis studies using TcdB confirmed
that toxin mutants lacking the catalytic
cysteine (residue 698) or histidine (residue
653) become enzymatically dead, whereas
toxin mutants lacking the juxtaposed
glutamic acid (residue 743) exhibit greatly
enhanced catalytic activity in response to
allosteric coupling by InsP6.27 This toxin
mutant is also prone to spontaneous
autocatalytic cleavage, indicating that
the regulatory glutamic acid governs the
equilibrium between catalytically active
and inactive states.

Because this cysteine protease catalytic
motif is structurally conserved among
microbial CPDs, we have proposed that
the above structural features function as
a general allosteric switch mechanism to
prevent premature toxin self-cleavage by
InsP6 in the extracellular gut environ-
ment. Extracellular InsP6 concentrations
in blood and plasma are generally too low
(, 1 nM) to facilitate toxin self-cleavage.28

However, InsP6 can reach much higher
concentrations in the gut lumen from
dietary sources (micromolar range),29

where it may play a protective role in
some patients by prematurely inactivating
the toxin. Dietary InsP6 (phytate or phytic
acid) is the principle storage form of
phosphorous in many plants, especially
in bran and seeds.29 It is also available as a
dietary nutritional supplement. Thus, the
Achilles heel of the C. difficile toxins may
be their reliance on allosteric InsP6 as a
virulence sensor. Indeed, if this is the case,
then dietary InsP6 supplementation may
confer clinical benefits to symptomatic
CDI patients. This notion is supported by
a recent metabolomics approach that we
have used to demonstrate that dietary
InsP6 bioavailablity is markedly dimini-
nished in stool specimens from sympto-
matic CDI patients. As a result, we are
currently in the process of initiating a
clinical trial to test the efficay of dietary

InsP6 supplementation in symptomatic
CDI patients (http://www.its.utmb.edu/
mtts/clostridial_difficile_infection.html).

Host S-Nitrosylation:
A Gut Defense Mechanism

for Subverting Toxin Virulence

Other gut defense mechanisms that might
be employed to protect against CDI are
not well defined, although the toxins
induce potent mucosal antibody and nitric
oxide responses that may explain why this
disease is self-limited in some patients.
However, the precise protective mecha-
nisms are only just being defined. Elevated
nitric oxide production has been shown
to induce anti-inflammatory transcription
factor activity and inhibits leukocyte
homing in murine toxigenic ileal loop
models of CDI.30,31 Using a metabolomics
approach, we have confirmed in patient
stool specimens that biochemical mole-
cules associated with nitric oxide synthesis
are significantly elevated in symptomatic
CDI (Fig. 4). In our Nature Medicine
letter we additionally report that foreign
microbial protein, notably toxin itself,
is subject to functional regulation by
elevated nitric oxide production in the
infected host.27

It is increasingly appreciated that
many diverse signaling cascades asso-
ciated with nitric oxide production are
attributed to S-nitrosothiol species that
act via covalent modification of cys-
teine thiol groups in target molecules
(S-nitrosylation), and that aberrant S-
nitrosylation plays a major role in dis-
ease-etiology.32 Because cysteine residues
are often key regulators of protein func-
tion, S-nitrosylation represents a physio-
logically important signaling mechanism
that regulates virtually all known cellular
signaling pathways. The emerging mech-
anism for regulation of protein function
by S-nitrosylation is that it is governed
by structural motifs that are targeted by
nascent nitrosylases.33 The recent discov-
ery of specific nitrosylases that transduce
nitric oxide action places S-nitrosylation
firmly on the path of being the nitric
oxide signaling equivalent of phosphoryla-
tion and ubiquitylation (regulated by
protein kinases and ubiquitin E3 ligases,
respectively).33,34

We have reported that S-nitrosylation
may also function as a gut defense
mechanism for subverting microbial
pathogenesis in CDI.27 Small peptide
S-nitrosothiols (the most significant
being S-nitrosoglutathione or GSNO) are
endogenous inhibitors of C. difficile
toxin action, acting in significant part by
S-nitrosylation of the cysteine protease
active site thiol. This active site cys-
teine forms part of a novel microbial S-
nitrosylation-catalytic motif that co-serves
as a regulator of InsP6 induced toxin self-
cleavage (Fig. 3). Physiological context is
provided by showing that InsP6 and
inositol pyrophosphate (InsP7) are specifi-
city-determinants of toxin S-nitrosylation.
Further, because plasma membrane-
associated InsP7 is the more cogent
allosteric activator of the toxin cysteine
protease, this phylogenically ancient family
of inositol phosphates may constitute
the preferred specificity-determinant for
toxin virulence. Thus, GSNO attenuates
the C. difficile toxins by a novel, dual
orthosteric and allosteric mechanism of
action: InsP6 enables S-nitrosylation of
the toxin cysteine protease active site,
which then displaces the allosteric acti-
vator (Fig. 1). S-nitrosylation of the active
site cysteine may itself alter the allosteric
transition of the toxin cysteine protease by
masking existing (or revealing new) bind-
ing sites, or by changing surface charge
distributions in the catalytic cleft.

Perspectives: New Therapeutic
Concepts for Gut Microbial

Pathogenesis

Host S-nitrosylation is not a random
event, but is most often governed by con-
sensus motifs that encompass the cysteine
residue targeted for posttranslational
modification.32,33 Protein S-nitrosylation
is often also subject to regulation by host
allosteric cofactors. The novelty of our
work may be viewed in the broader context
in which hypo- and hyper-nitrosylation of
specific bacterial proteins represent dis-
ease-modifying events. We demonstrate
that a structurally conserved microbial
catalytic motif is targeted for inactivation
by host nitrosylases, and that endogenous
inositol phosphate cofactors act as speci-
ficity determinants in the S-nitrosylation
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action. A physiological correlate may be
drawn from the structurally related cas-
pase family of allosterically regulated
cysteine proteases, as these may be main-
tained in a constitutively S-nitrosylated
and inactive state in the inner mitochon-
drial membrane.32 Our studies show that
under certain pathophysiological condi-
tions, the plasma membrane compart-
ment may also facilitate privileged access
of host nitrosylases and allosteric cofactors
to exogenous microbial proteins in order
to maintain these in an avirulent state.
Because the structurally conserved bac-
terial catalytic-S-nitrosylation motif is
found in abundantly diverse disease-
associated cysteine proteases, we have
proposed that host S-nitrosylation may
play a universal role in subverting gut
microbial pathogenesis.27

As a direct counter measure to evade
host S-nitrosylation defenses, bacterial
nitric oxide detoxification strategies appear

to have evolved in several gut pathogens
to inhibit cellular S-nitrosothiol forma-
tion.35 Therapeutic strategies that elevate
S-nitrosothiol bioavailability may therefore
enhance the clearance of certain gut
bacterial infections. GSNO is well toler-
ated in humans, and is already known to
be a multifaceted protective agent that
exhibits broad-spectrum anti-microbial
activity.32 Studies by our group and other
investigators have demonstrated that exo-
genous GSNO provides potent disease-
attenuating signals in the gastrointestinal
tract.36-38 A primary goal in nitric oxide
therapeutics is to identify the nitrosylation
state of proteins that are identified with
pathophysiology, and to selectively and
specifically control this modification. We
have shown that GSNO can function as
the physiological corollary of therapeutic
inhibitors currently being developed to
treat CDI. Furthermore, allosteric regula-
tion of S-nitrosylation by inositol phosphate

cofactors (which has not been previously
demonstrated), suggests new therapeutic
approaches to regulate the S-nitrosylation
state of specific disease-related targets.
Therapeutic context for the principle that
allosteric modulation of S-nitrosylation can
be employed to treat CDI is demonstrated
by the efficacy of exogenous GSNO and
InsP6–separately or in a combined form —
in treatment of experimental CDI.
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Figure 4. Arginine Metabolism. C. difficile is known to be the primary causative agent for pseudomembranous colitis and indicators of inflammation
including significantly elevated levels of citrulline in stool of infected patients compared with non-infected patients with antibiotic-associated diarrhea.
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