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Keeping a delicate balance in the immune system by eliminat-
ing invading pathogens, while still maintaining self-tolerance
to avoid autoimmunity, is critical for the body’s health. The gut
microbiota that resides in the gastrointestinal tract provides
essential health benefits to its host, particularly by regulating
immune homeostasis. Moreover, it has recently become
obvious that alterations of these gut microbial communities
can cause immune dysregulation, leading to autoimmune
disorders. Here we review the advances in our understanding
of how the gut microbiota regulates innate and adaptive
immune homeostasis, which in turn can affect the develop-
ment of not only intestinal but also systemic autoimmune
diseases. Exploring the interaction of gut microbes and the
host immune system will not only allow us to understand the
pathogenesis of autoimmune diseases but will also provide us
new foundations for the design of novel immuno- or microbe-
based therapies.

Introduction

The mammalian gastrointestinal (GI) tract is home to an
enormous and complex community of commensal bacteria.'”
This gut microbial community (microbiota) has co-evolved with
its host over millennia and provides benefits to its host in many
ways, including, but not limited to, digestion, production of
nutrients, detoxification, protection against pathogens and regula-
tion of immune system.'” The immune system plays a vital role
in keeping the body healthy by providing a fine balance between
the elimination of invading pathogens and the maintenance of
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tolerance to healthy self-tissue. However, in the case of patients
with autoimmune disorders, the mechanism to maintain self-
tolerance fails and the result is that the immune system mistakenly
attacks and destroys healthy self-tissue.®”

Given the intimate interplay between gut microbiota and the
host immune system, it is not surprising that some members of
the gut microbiota have been linked to autoimmune diseases.
However, only recently has the study of the gut microbiota and
autoimmunity become a more navigable field, owing to the
ground-breaking advances in “next-generation” sequencing tech-
nology, which have now provided culture-independent microbial
analysis that greatly facilitates the characterization of these com-
plex commensal communities.*'" Additionally, extensive progress
has been made as investigators have begun to reveal the cellular
and molecular interactions between commensals and the mucosal
immune system, particularly with the help of animal autoimmune
models. This review will discuss the rapidly advancing field of
host-microbiota interaction, with particular focus on the role of
gut microbiota in immune homeostasis and autoimmune diseases
both within and outside the intestine.

Gut Microbiota and Immune Homeostasis

Several approaches have been used to demonstrate that signals
derived from gut microbiota are critical for the development of
the immune system. Among them, germ-free (GF) models, where
animals are reared in a sterile environment and thus have never
been exposed to any microorganisms, are a powerful approach
that reveals the importance of the microbiota in shaping both
innate and adaptive immunity.'* Alternatively, the manipulation
of microbiota, either with antibiotic treatment or microbiota
reconstitution, also provides key evidence for the role of the
microbiota in immune homeostasis.">"® These approaches are also
useful in determining the role of the microbiota in autoimmunity,
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which will be discussed in a later section. One critical note is
that the gut microbiota can regulate not only the local intestinal
immune system but also can have a profound influence on
systemic immune responses. In this section, we will review how
gut microbiota shapes the innate and adaptive immunity to
achieve immune homeostasis.

Microbiota and innate immune homeostasis. Antigen present-
ing cells (APCs). Having co-evolved with microbiota, a key feature
of intestinal APCs is their ability to protect the body against
infection while still maintaining immune tolerance to the normal
gut microbiota. For example, dendritic cells (DCs) of Peyer's
patches (lymphoid nodules embedded in the gut wall) produce
high levels of interleukin-10 (IL-10), compared with splenic DCs
activated under similar conditions."” Similar to DCs, gut macro-
phages are located in close proximity to the intestinal microbiota,
and they develop a unique phenotype, so called “inflammation
anergy,” referring to the noninflammatory profile of intestinal
macrophages when they encounter microbial stimuli in homeo-
static conditions.”® For example, intestinal macrophages do not
produce pro-inflammatory cytokines in response to microbial
stimuli such as Toll-like receptor (TLR) ligands, a set of microbe-
associated molecular patterns.”'

Several reports provide direct evidence that demonstrates the
pivotal role of the gut microbiota in regulating the development
of APCs. A reduced number of intestinal but not systemic DCs
was observed in GF animals and the monocolonization of GF
animals with Escherichia coli was sufficient to recruit DCs to
the intestines.”>** Moreover, microbe-derived ATP has recently
been shown to stimulate a subset of DCs that express CD70
and CX3CR1 on their surface, which then induce the differ-
entiation of Th17 cells.* Intestinal macrophages represent the
largest population of tissue macrophages in the body.”> While the
numbers of gut macrophages were either normal in GF mice®
or decreased in GF pigs,”® systemic macrophages were reduced in
GF pigs.”® Additionally, macrophage functions such as chemo-
taxis, phagocytosis and microbicidal activities have been shown
to be compromised in peritoneal macrophages of GF mice.””*®
GF mice were also devoid of macrophage activation markers such
as major histocompatibility complex class I1.*

Neutrophils. Neutrophils are a crucial component of the innate
immune system and a systemic influence of microbiota in the
regulation of neutrophils has been demonstrated. One particularly
stark phenotype of GF rats is that they are neutropenic.*
Furthermore, impaired superoxide anion and nitric oxide genera-
tion and decreased phagocytic function were also observed in
the peripheral blood neutrophils of GF rats.”" Interestingly, the
transfer of GF rats back to the conventional or specific pathogen-
free (SPF) environment could not restore a normal superoxide
anion phenotype. A recent mechanistic study showed that the
recognition of peptidoglycan from the gut microbiota by the
cytosolic receptor-nucleotide oligomerization domain 1 (NOD1),
enhanced the killing activity of bone marrow neutrophils. This
data elegantly demonstrated how systemic immunomodulation by
intestinal microbiota could be achieved.”

Other innate cell types. Conventional natural killer (NK) cells

are innate lymphocytes that can detect and eliminate transformed
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and infected target cells by producing interferon-y (IFN7) or
perforin. Recently, studies have identified two types of NK cells
that express the NK cell natural cytotoxicity receptor NKp46 in
the gut mucosa.”® One type of gut NKp46* cell closely resembles
conventional NK cells; the other type differs from classical NK
cells by its limited IFNYy production and absence of perforin.
Additionally, these unusual gut NKp46* cells differ from classical
NK cells by their expression of the nuclear hormone receptor
retinoic acid receptor-related orphan receptor gamma t (RORyt)
and interleukin-22 (IL-22). As GF mice lack IL-22-producing
NKp46* cells, this suggests that the gut microbiota may play a
crucial role in promoting IL-22'NKp46" cell differentiation.*

Mast cells represent 2-3% of lamina propria (LP) cells in the
GI tract. Intestinal mast cells have a number of regulatory
functions, such as controlling blood flow and coagulation,
smooth muscle peristalsis, and permeability and electrolyte
exchange by intestinal epithelial cells (IECs).”> GF mice were
observed to have lower intestinal mast cell densities and higher
mast cell percentages in the blood than conventionally raised
mice. Further mechanistic studies have suggested that the gut
microbiota can promote the migration of mast cells into the
intestine through the induction of CXCR2 ligands from IECs
and this promotional effect was dependent on MyD88, an
adaptor molecule in the TLR signaling pathway.*®

The intestinal epithelium, consisting of a single layer of
IECs, provides the primary physical barrier that separates the
commensals harbored in the intestinal lumen from the underlying
sterile tissue. Aside from their mechanical protective function,
IECs, though typically not classified as immune cells, also have
a number of immunoregulatory roles such as the secretion of
antimicrobial peptides, cytokines and chemokines. A reduced
proliferation rate and lower expression of antimicrobial genes
of IECs was observed in GF and broad-spectrum antibiotic-
treated mice.”””® These data suggest that the gut microbiota can
condition the immunoregulatory roles of IECs by regulating the
expression of antimicrobial factors.

Microbiota and adaptive immune homeostasis. 7" cells. CD4"
T cells are a key component of the adaptive immune system.
Intestinal CD4* T cells are mostly located in the LP of the
intestine. Upon stimulation, naive CD4" T cells can differentiate
into four major subtypes: T helper 1 (Thl), Th2, Thl7, or
regulatory T cell (Treg). These various CD4" T cell subtypes are
distinguished by their expression of various transcription factors
and cytokines (Fig.1). The proper regulation and balance of
T-cell subtypes is a crucial factor in determining one’s health
status. For example, Thl cells are critical for the host defense
against intracellular microbial infection, while Th2 cells play an
important role in eliminating parasite infections. Uncontrolled
Th responses can be pathological, as the Th1 and Th17 responses
have been linked to autoimmune diseases while the Th2 response
has been associated with allergic reactions. Treg is a key mediator
of immune tolerance; its dysfunction can lead to autoimmune
disorders.

The gut microbiota plays an important role in the develop-
ment of CD4" T cells, both within and outside the intestine.
Thus, there is a marked decrease in the number of LP CD4" cells
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Figure 1. Commensal bacteria induce CD4'T cell differentiation. Naive
CD4'T cells can differentiate into four major cell types: Th1, Th2, Tregs
and Th17. The differentiation of each lineage requires the induction

of a transcription factor that is unique to each lineage. Once
differentiated, each lineage secretes a special (set of) cytokine, as shown
in the figure. Th1 cells play an important role in eliminating intracellular
pathogens while Th2 function to control parasitic infection. The primary
role of Th17 is to control infection and Tregs is to regulate immune
response. The type of bacteria species that has been shown to induce
a particular T cell differentiation pathway is indicated in the figure.

in GF mice.” Systemically, the spleens and mesenteric lymph
nodes of GF animals also exhibit defects, as lymphocyte zones are
absent in these animals.'® GF mice were also observed to have a
Th1/Th2 imbalance: their immune response is biased toward the
Th2 response. Recent studies even revealed the association of
specific bacterial species with the development of particular T-cell
subtypes. Bacteroides fragilis was shown to induce the develop-
ment of a systemic Thl response through its polysaccharide A
(PSA) molecules.”® In contrast, segmented filamentous bacteria
(SFB) were found to be potent inducers of LP Th17 cells.'”*
As IL-17 is a crucial pro-inflammatory cytokine, it will be of
interest to see if there are other intestinal bacteria that can also
induce Th17 cells. Identifying other microbes as Th17 inducers
is especially important in humans because a recent report
indicated that only a small number of reads corresponding to
0.31% of the mouse SFB genome were identified in the data set
of human gut metagenome sequences, suggesting other bacteria
may function as the main inducers of human Th17 cells.*"*
Alternatively, it is possible that no detection of SFB in human is a
result of the human metagenome data set not including samples
from children at weaning periods. In mice, SFB colonization
becomes prevalent at the weaning age. If mouse SFB colonize
humans at the same time period, fecal samples of weaning
children would be required in order to detect SFB in human.*'
Recently, Clostridia, particularly those of cluster IV and XIVa,
were shown to be capable of promoting the induction of colonic
Tregs.”® In another study, TLRY signaling induced by DNA from
the gut microbiota was shown to maintain immune homeostasis
by limiting Treg cell conversion in the intestinal sites.*
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Interestingly, the PSA of B. fragilis can signal through TLR2 on
Tregs to subsequently suppress a Th17 response.” Lathrop et al.
has recently demonstrated that colonic Tregs have a unique
TCR repertoire that mostly recognizes the bacteria of colonic
contents.” Moreover, colonic Tregs express low levels of the
transcription factor Helios, a putative marker for thymus-derived
Treg. If T cells with colonic-specific TCR fail to undergo Treg
development and instead become T effector cells, they have the
potential to induce colitis. Together, their findings suggest that
most colonic Tregs are of peripheral origin and are educated by
the gut microbiota to be tolerant to commensal-derived foreign
antigen. In summary, a shift in the composition of the gut
microbiota can cause either a pathological or beneficial outcome
mediated by the regulation of particular CD4* T cell subtypes
induced by the gut microbiota.

Intestinal CD8" T cells are mostly found in the intraepithelial
compartment of the gut. A reduced number and decreased
cytotoxicity of intestinal CD8* T cells in GF mice indicate that
signals from the microbiota are critical in maintaining the
population and function of intestinal CD8* T cells.””* These
defects might be due in part to the impaired clonal expansion
of intraepithelial CD8" cells in GF mice. Though not required for
shaping the systemic CD8* T-cell repertoire, the gut microbiota
plays an important role in conditioning CD8" T cells to modulate
other peripheral immune cells, such as marginal zone B cells,
plasmacytoid DCs, and invariant natural killer T cells.>*>

Gamma delta (y8) T cells are often considered to be the bridge
between the innate and adaptive immunity. The percentage of
vd T cells among intestinal intraepithelial lymphocytes is quite
high, compared with their percentage in the lymph nodes or
spleen (50% vs. 1-5%).% Intestinal intraepithelial v T cells
express CD8 and have lytic activity.*® Although the absence of
commensal microbiota had little effect on the pool size and
characteristics of Y8 T cells, the cytolytic activity of ¥ T cells was
reduced in GF mice, suggesting a key role of microbiota in
maintaining the function of yd T cells.

B cells. Gut-associated B cells can mostly be found in the
Peyer’s patches, most of which are immunoglobulin (Ig) A-
secreting plasma cells. An estimated 0.8 g of IgA per meter of
intestine is secreted each day, considerably exceeding the
combined production of all other Ig classes.”* The number and
cellularity of the Peyer’s patches were significantly reduced in GF
animals and as a result, a decreased level of IgA and reduced
number of plasma cells were observed in the intestine of GF
animals.”® Thus, the gut microbiota is a major driving force for
mucosal IgA production; a large dose (10 colony-forming unit
or CFU) of live bacteria was required to induce a high titer of
secretory IgA in GF mice.*® Mucosal IgA induction lacks a
memory response, which explains the recognition of intestinal
IgA to mostly the current existing microbiota. Systemically, the
spleens of the GF mice also contain fewer and smaller germinal
centers, where the differentiation and affinity maturation of B
cells occur.”” Accordingly, serum natural IgG level was severely
reduced while serum natural IgM level was normal in GF
%59 Tnterestingly, the allergy-associated Ig isotype, IgE
was found to be increased locally in the intestine as well as

animals.
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systemically in the serum of GF rats.®* This observation is
consistent with the Th2-predisposed phenotype of GF animals,
which can promote natural IgE induction, a Th2 humoral
immune response.

Gut Microbiota and Autoimmunity

As the gut microbiota has such profound effects on both the
innate and adaptive immune system, it is not surprising that
some members of the gut microbiota have been linked to
autoimmune diseases. Significant attention has been focused on
the role of gut microbiota in Gl-related autoimmune diseases.
Remarkably, as discussed earlier, the gut microbiota has a role
beyond the local gut immune system and impacts many syste-
mic immune components. Accordingly, recent studies have also
unraveled the effects of gut microbiota in extraintestinal diseases.
Here, the roles of intestinal microbiota in autoimmune disorders
both within and outside the gut will be discussed (summarized
in Table 1). In particular, we focus on studies that show how
changing in a single microbial species and/or global commensal

Table 1. Effect of gut microbiota on autoimmune diseases

communities can alter the outcome of autoimmune diseases by
tipping the balance between a pathological or protective immune
response.

Gut microbiota and Gl-associated autoimmune disease.
Inflammatory bowel disease (IBD). An autoimmune disorder that
affects the GI tract, IBD consists of two main forms: Crohn
disease and ulcerative colitis. Several lines of compelling evidence
indicate that bacteria play a critical role in the pathogenesis of
IBD. For example, patients with IBD, as well as animal IBD
models, often benefit from antibiotic treatment.®"* In addition,
the phyla of gut microbiota differ greatly in patients with IBD
when compared with normal adults.®> Importantly, many IBD
animal models show either a milder form of disease (such as in
the IL-27/~ IBD model) or are protected against disease (such as
in the IL-10~"" or T-cell receptor a/g~'~ IBD models) after GF
rederivation, which indicates that the normal gut microbiota
contributes to the inflammatory state of IBD.**® Recently,
progress has been made in identifying the dysbiosis of specific
microbiota in IBD patients. A reduction in Firmicutes and
Bacteroides species and an overgrowth of proteobacteria has been

Disease Animal model Manipulation method Effects in GF animal Reference
of microbiota (signal)

IBD IL-27/~ GF less severity 64
TCRap ™~ GF no disease 66

IL-10~ GF no disease 65

Helicobacter hepaticus- introducing B. fragilis less severity 73

induced colitis in Rag™"~

DSS-induced colitis introducing Clostridium less severity 43

RA IL-1Rn~"~ GF no disease 84
IL-1Rn~"~ introducing Lactobacillus bifidus to restores disease 84

ex-GF IL-TRn"/~ mice

TLR27IL-1Rn~"~ n/a increased severity 84

TLR4~"~-IL-1Rn~"~ n/a less severity 84

K/BxN GF less severity 16

K/BxN introducing SFB to ex-GF K/BxN restores disease 16

T1D NOD GF severe disease to no difference*  88-90,92,93

NOD female SFB natural colonization protection by SFB 91

NOD male SFB natural colonization no difference 91

MyD88/"NOD GF severe disease 90

MyD88~/"NOD n/a no disease 90

Multiple sclerosis EAE GF less severity 95
EAE introducing SFB to GF EAE restores disease 95

EAE introducing B. fragilis less severity 96

Established EAE introducing 3 strains of Lactobacillus therapeutic effect 99

APECED AIRE™"~ GF no difference 101
MyD88 /" Aire ™/~ n/a no difference 101
Systemic lupus erythematosus MRL/1pr GF no difference 102
Autoimmune gastritis AID/~ GF no difference 103

*The discrepancy of difference in disease severity between GF and SPF NOD mice is likely due to the variability of microbiota composition among different

SPF facilities.
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characterized in IBD patients.®”® Interestingly, similar changes in
the microbial communities were found in a mouse model of
acute colitis, where inflammation was induced by the adoptive
transfer of transgenic CD8" T cells that attacked the intestinal
epithelium.®’

Despite compelling evidence that demonstrates dysbiosis in
patients and animals with IBD, it is difficult to assign host-
predisposing factors that cause dysbiosis. However, two animal
studies have elegantly demonstrated that intestinal inflammation
can be the major cause of dysbiosis, leading to the selection of
microbiota species with a colitogenic phenotype. T-bet is a
member of the T-box transcription factor family that plays a
crucial role in the regulation of immune cells. T-bet ’"Rag™/~
ulcerative colitis (TRUC) mice have colonic inflammation that
resembles ulcerative colitis in humans.”® The colitis in TRUC
mice is driven by the overproduction of the pro-inflammatory
cytokine TNE-o0 by colonic DCs and transfer of the microbiota
from TRUC mice into wild type recipients transmits colitis. A
later study discovered that the presence of Klebsiella pneumoniae
and Proteus mirabilis in TRUC mice can elicit colitis in SPF but
not GF wildtype mice.”* This suggested that Klebsiella pneumoniae
and Proteus mirabilis worked in concert with other members of
the endogenous microbial community to induce inflammation.

Another study using mice deficient in the inflammasome
pathway also highlights the importance of inflammation as a
major cause of dysbiosis and disease. Inflammasomes are cyto-
plasmic multiprotein complexes that are composed of one of
several nucleotide-binding oligomerization domain-like receptor
proteins (NLRP), which function as sensors for stress stimuli.
In NLRP"" mice, a defect in the inflammasome pathway
resulted in an alteration of the gut microbiota—specifically, an
increase of Prevotella and TM7 species, rendering the NLRP~/"~
animal susceptible to colitis.”* As in the TRUC mice, the gut
microbiota in NLRP™/~ mice can also cause the disease in
wildtype animals. Importantly, both animal studies suggest that
once certain colitis-associated microbiota is created in IBD-
susceptible animals, they can transmit colitis horizontally to even
cause disease in wild-type animals that are not genetically
predisposed to IBD. These findings highlight that aggressive
microbiota species can be the real cause rather than just the result
of a disease.

Not surprisingly, there are also “beneficial” commensal bacteria
that can ameliorate disease. For example, B. fragilis can reduce the
colitis induced by Helicobacter hepaticus in immunocompromised
mice through its production of PSA, which suppresses disease by
both stimulating the ant-inflammatory IL-10 production from
CD4" T cells and downregulating the pro-inflammatory IL-17
production in the colonic tissue.”” Bacteroides thetaiotaomicron
was also demonstrated to attenuate Salmonella enterica-induced
inflammation by enhancing the nuclear export of peroxisome
proliferator activated receptor-y (PPAR-Y), a transcription factor
that plays key roles in the regulation of lipid metabolism and
inflammation.”*”> Short-chain fatty acids (SCFAs) produced by
the gut microbiota have also been shown to reduce inflammation
in the dextran sulfate sodium (DSS)-induced colitis model. This
anti-inflammatory effect required the interaction of SCFAs with
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G-protein-coupled receptor 43 expressed on immune cells.”®
The introduction of Clostridium upregulated the colon Treg
population and coincided with the reduction of DSS-induced
colitis, suggesting that Tregs might be responsible for the anti-
inflammatory effects mediated by Clostridium.*

An elegant study by Feng et al. demonstrated that microbiota-
derived innate and T'CR specific signals are both required for the
induction of disease using a murine model of IBD.”” Accordingly,
it was shown that homeostatic proliferation of transferred T cells
were only observed in SPF but not in GF Rag™’™~ mice, indicating
that the presence of the gut microbiota is required for the T cell
proliferation. This microbiota-mediated T cell proliferation requires
a MyD88-dependant IL-6 induction in DCs. Additionally,
transfer of CD4" T cells from CBirl TCR transgenic mice that
have a TCR specific for the microbiota flagellin, CBirl, induces
colitis in SPF Rag™'~ mice. This disease induction is driven by
an antigen specific response as co-transfer of CBirl T cells
with an abundance of OT-II transgenic T cells that recognizes
ovalbumin (which does not exist in the gut lumen) ameliorates
the colitis development due to a lack of cognate antigen recogni-
tion in the gut. These data indicate that microbiota-mediated
T cell spontancous proliferation and antigen-specific T-cell
activation both contribute to the disease pathogenesis.

Gut microbiota and extraintestinal autoimmune disorders.
Rheumatoid arthritis (RA). RA is an autoimmune disease that
causes chronic inflammation of the joints and affects approxi-
mately 1% of the world’s population. The low concordance
rate of RA in monozygotic twins (15%) compared with other
autoimmune diseases such as type I diabetes (-50%) suggests
that environmental factors must play a crucial role in the
etiopathogenesis of RA.”*”” Among the possible environmental
triggers of RA, the microbes we encounter in our surroundings
are a likely candidate.®” Attention has mostly been devoted to
disease correlations with infectious microbes® until recently; a
dysbiosis of gut microbial communities have been reported in
patients with early (< 6 mo duration) RA when compared with
patients of fibromyalgia, as assessed from the 16S rRNA com-
position of fecal samples.*” Additionally, the therapeutic effect
of some antibiotics (i.e., sulfasalazine and minocycline) for some
RA patients may be related to the bactericidal activity of these
molecules, as they are likely modulating gut microbiota.

Early GF studies using different RA models showed a
discrepant role of the microbiota on disease severity, ranging
from inhibition to augmentation.* However, the significance
of these studies is difficult to assess because in general, they relied
on the administration of bacterial products (often Complete
Freund’s Adjuvant, or CFA) for the induction of disease, which
could complicate the effect of commensal bacteria on RA. More
recently, a spontaneous T cell-mediated arthritis model, the IL-1
receptor antagonist deficient (IL-1Rn""") mouse model, was
used to examine the importance of microbiota in autoimmune
arthritis.** The gut microbiota was required for the arthritis
development in IL-1Rn"’" mice as GF IL-1Rn"’" mice did not
develop disease. Additionally, monocolonization of GF IL-1Rn™"~
mice with Lactobacillus bifidus restored the disease. The reduction
of Tregs and Th17 cells in the spleens and lymph nodes were
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found to be associated with disease enhancement in non-GF
TLR2™~ IL-1Rn~"~ mice and disease amelioration in non-GF
TLR4™"~ IL-1Rn""" mice. Together, these observations suggest
that the gut microbiota or microbial signals such as TLR stimuli
can affect a non-gut disease by regulating systemic immune
components. However, it is not clear how the microbiota located
in the gut can modulate systemic immune cells, which in turn
regulate a non-gut disease.

Recently, the K/BxN mouse, another spontaneous arthritis
model, was used to provide a mechanism to explain the missing
links among gut microbiota, systemic immunity and autoimmune
arthritis.'® At first, arthritis was shown to be reduced in K/BxN
mice housed under GF conditions, which indicated a pathological
role for microbiota. Mechanistic studies then revealed that a distal
augmentation of disease by gut microbiota on the joints was made
possible through the gut microbiota-mediated induction of LP
Th17 cells of small intestine, which subsequently migrate into the
peripheral lymphoid tissue and secrete 1L-17 (Fig.2). IL-17, in
turn, acts directly on B cells to provide help in systemic B cell
differentiation and autoantibody production that ultimately lead
to the development of disease. Importantly, the introduction of
a single gut microbiota species, SFB, into GF K/BxN mice was
able to trigger disease development. The tie lies within the unique
ability of SFB to induce the robust differentiation of LP Th17

cells. The mechanism of how the gut microbiota exerts its effects

at systemic sites remains largely unknown. While it was postulated
that the effect of the microbiota on the systemic immune response
is mediated by the circulation of microbiota-derived soluble
factors from the gut into the periphery,” the K/BxN study clearly
provides an alternative mechanism where microbiota-derived
products can affect the immune system at a distal sites without
leaving the gut.

Type 1 diabetes (T1D). T1D is an autoimmune disease that
results from T cell-mediated destruction of insulin-producing
B-cells in the pancreas. A significant reduction of intestinal Tregs
was observed in T1D patients, suggesting the possible involve-
ment of the gut microbiota in T1D.** While many of the
autoimmune models mentioned above display a weaker disease
phenotype in the GF environment, T1D—especially in the
prototypic spontancous NOD mouse model—provides a clear
exception to this “rule.” The diabetic incidence of NOD mice in
the GF facility is often significantly higher when compared with
their SPF counterparts, an observation that is consistent with the
finding that T1D is more prevalent in countries with stringent
hygiene practices.**™® In non-GF conditions, disease incidence
can vary by facility but is still generally higher in the NOD
females than males.*® Consistent with the above results, another
study indicated that the gut microbiota might have a protective
role, as MyD88 '~ NOD mice have been shown to be protected
from diabetes onset in an SPF environment.”® Interestingly, the
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protective effect of MyD88 deficiency required
the presence of gut microbiota, since
MyD88 '~ NOD mice readily developed
diabetes in the GF facility. These results
indicate that the protective effect of MyD88
deficiency is not due to the prevention of
MyD88 signaling from detrimental bacteria
but rather the induction of MyD88-
independent signaling from the expansion of
beneficial bacteria, which would have been
otherwise kept in check by MyD88. Moreover,
an attenuation of diabetes was observed in
GF NOD mice colonized with the microbiota
from SPF MyD88 '~ NOD mice. An increase
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conditions. A more recent study reported that
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Figure 2. An autoimmune arthritis model that demonstrates the link between gut microbiota
and an extraintestinal disease. The K/BxN arthritis model was used to demonstrate how the
gut microbiota can influence a non-gut-associated disease. K/BxN mice express a transgene-
encoded T-cell receptor that reacts to a self-peptide. Colonization of SFB on the gut induces
the differentiation of Th17 cells (step 1 and 2), which subsequently exit the gut and migrate
into the peripheral lymphoid tissue. The gut-origin of Th17 cells can be identified by their
expression of the 047 receptor, imprinted on these T cells by intestinal-mucosa-associated
DCs (step 3). IL-17, in turn, acts directly on B cells to provide help in the differentiation of
germinal center B cells and the production of autoantibody in spleen (step 4). The
autoantibody then circulates into its target organ joints, which ultimately leads to the
development of disease.
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female NOD mice against diabetes.”’ The
authors observed a strong cosegregation of
SEB-colonization and diabetes protection in
NOD females where males were highly
protected regardless of their SFB status. As
in other experimental contexts, SFB also
promoted a robust induction of SI-LP Th17
cells in NOD mice. While Th17 cells appeared
to be likely mediators for SFB-associated



protection in female NOD mice, male NOD mice that lacked
SEB and Th17 cells still displayed a low disease incidence when
compared with GF male NOD mice, suggesting that other
microbial species and immunoregulatory pathways are responsible
for the protection of NOD males from diabetes. In addition, the
role of IL-17 in diabetes is still a topic of debate. The effect of
IL-17-producing cells on diabetes ranges from inhibition to even
exacerbation of disease. Importantly, this study also offered an
explanation for the discrepancy in disease severity between GF
and SPF NOD mice observed by several groups.®*”%?*® Because
of a near complete penetrance of diabetes in SFB-negative NOD
females and an almost full protection from diabetes onset in
SEB-positive NOD females, one can expect that disease exacerba-
tion in GF mice will be more obvious when comparing a GF to a
SPF-housed SEB-positive but not SFB-negative NOD colony.

Experimental autoimmune encephalomyelitis (EAE). EAE is a
mouse model of multiple sclerosis (MS), where an autoimmune
response causes demyelination in the central nervous system
(CNS). Although EAE is generally accepted as a murine model
for human MS, the pathological mechanism of EAE might differ
significantly from human MS, as EAE is not a spontaneous model
and disease induction requires the bacterial adjuvant CFA. With
these points in mind, there is still valuable information that has
been obtained using the EAE model and several studies have
indicated a role for microbiota in EAE. Antibiotic-mediated
modification of the gut microbiota can significantly dampen the
disease severity.”* GF mice induced for EAE had an attenuated
disease phenotype, which is consistent with their lower produc-
tion of pro-inflammatory cytokines, such as IL-17.”° Finally,
monocolonization of GF mice with SFB increased the number of
Th17 cells in the CNS and restored their development and
progression of EAE, suggesting a pathological role for the SFB
in EAE.

In contrast, some commensals can have a beneficial role in
EAE development. The introduction of the human commensal
B. fragilis can ameliorate disease through its expression of PSA.”*"
This protection was associated with an enhanced number of
Treg cells and CD5* B cells in the B. fiagilis-treated group.”®*®
Excitingly, it was found that treatment with a combination of
three Lactobacillus strains, L. paracasei DSM 13434, L. plantarum
DSM 15312 and DSM 15313, suppressed and reversed the
clinical symptoms of established EAE, and IL-10-producing
Tregs were found to be involved in this Lactobacillus-mediated
therapeutic effect.”

Microbiota-independent Although

many autoimmune diseases result from the interaction of both

autoimmune  disease.
genetic and environmental factors, there are some exceptions.
Sometimes, only the genetic factor contributes to disease deve-
lopment. Accordingly, it is important to keep in mind that the
severity of some autoimmune disorders does not differ depending
on the presence or absence of commensal bacteria, such as in
autoimmune regulator (Aire) deficient mice. The Aire™’~ mouse is
an animal model of human autoimmune polyendocrinopathy-
candidiasis-ectodermal dystrophy (APECED), a polyendocrine
autoimmune disease that occurs from mutations in the Aire
protein, a transcriptional regulator that plays an important role in
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T cell tolerance induction in the thymus.'® Re-deriving Aire™~

mice into a GF condition or crossing these mice into a MyD88 '~
background did not alter the disease phenotype of Aire™'~
suggesting that the breaking of central tolerance in the thymus
alone can lead to autoimmunity that overrides peripheral tolerance
mechanisms without the need for microbial stimulation.''
Additionally, the MRL/lpr mouse model of human systemic
lupus erythematosus and activation-induced cytidine deaminase
(AID) deficient mice, an autoimmune gastritis model, both
exhibit comparable disease phenotypes in the GF condition.'**'*

mice,

These findings demonstrate that live commensal organisms are
not involved in the pathology observed in these models and it is
primarily the genetic factors that play the major role in the
development of some autoimmune diseases. However, these
studies do not exclude the possibility of immune stimulation by
low level of microbe-derived products in the diet, that may fill in
the requirement of environment stimuli for the development of

disease in GF mice.'”

Human Practices that Influences the Composition
of Microbiota Communities

There are many practices adapted during the development of
human civilization that pose a dominant effect on the composi-
tion of gut microbiota. Serious attention needs to be paid to these
practices because alterations in the gut microbiota cannot only
impact the development of autoimmune diseases, as discussed in
this review, but can also affect many other health-related issues,
such as allergy and obesity. For example, dietary habit is one of
the major factors influencing the diversity of gut microbiota. By
using GF mice that were fecal-transplanted with human gut
microbiota, one study demonstrated that switching from a low-
fat, plant polysaccharide-rich diet to a high-fat, high-sugar diet
can shift the configuration of the microbiome in one day.'** This
diet-altered microbiome was able to rapidly promote obesity in
the mice within two weeks.

In another study, the gut microbiota was compared in fecal
samples of children from Europe and rural Africa.'® The diet of
African children is rich in fiber, starch and plant polysaccharides
and low in fat and animal protein, whereas the diet of European
children is high in sugar, starch and fat and low in fiber. As
compared with the European cohort, the microbiota of the
African cohort showed a significant depletion in Firmicutes and
an increase in Bacteroidetes. Interestingly, species of the bacteria
Prevotella and Xylanibacter, which are known to encode genes
required for metabolizing plant polysaccharide, were observed in
the African cohort but completely absent in the European cohort.
A significantly higher level of anti-inflammatory molecules, like
SCFAs, was also found in the African cohort. Moreover, an
animal study showed that NOD mice fed with a special soy-based
diet had a significantly lower incidence of diabetes, which was
associated with reduced pro-inflammatory cytokines, IL-17 and
IL-23 in colon.'*

Antibiotic treatments, vaccinations and hygiene practices all
can alter gut microbiota composition. Antibiotic use was associ-
ated with the reduction of Bacteroides and Bifidobacterium and
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the outgrowth of Campylobacter, Streptococcus, Leuconostoc or
yeasts such as Candida albicans in the intestinal microbial
communities." %71 As we are born sterile, bacterial colonization
during and shortly after birth also plays an important role in
shaping the communities of gut microbiota. Thus, the prematu-
rity of an infant’s birth, the method of delivery, and the infanc’s
food source (e.g., breast milk, commercial formula, etc.) all have
a major impact during the acquisition phase of the gut micro-
biota development. For example, vaginally-born infants were
dominantly colonized by bacteria communities that resembled
their mother’s vaginal microbiota which includes Lactobacillus,
Prevotella, or Sneathia spp, while caesarean section (C-section)-
born infants harbored bacteria mostly found on the skin surface
such as Staphylococcus, Corynebacterium and Propionibacterium
spp''® Furthermore, premature infants had a predominant coloni-
zation of C. difficile.’” Formula-fed infants were often asso-
ciated with the colonization of Staphylococci, E. coli, C. difficile,
Bacteroides, Atopobium and Lactobacilli and a delayed coloniza-
tion of Bifidobacterium species.'””!"'"'"* Some of the changes in
microbial communities in early life due to certain practices such
as C-section might increase one’s risk in developing asthma,
allergy and autoimmune disease in the later childhood.''*'"®

Conclusion

The influence of commensals on health and disease through
the regulation of immune function has emerged as an area of
scientific and clinical importance. The recent advancements
in “next-generation” sequencing have led to a revolution in
developing a culture-independent and thorough method to
characterize gut microbial communities. It is now evident that
the gut microbiota has a profound effect on the host immune
system and can affect autoimmune-related diseases both within

and outside the gut. Aside from the genetic factors, environmental
factors play an important role in shaping the microbiota as
well. These factors should be treated with caution as inappro-
priate practices such as overuse of antibiotics might increase
the risk of autoimmune disease by the microbiota-mediated
immunomodulation.

The challenge lying ahead is to distinguish cause from effect,
i.e., whether the gut microbiota is the cause of the disease or a
result of the disease status. The use of animal models where the
intestinal flora can be manipulated, such as in GF animals,
provides a power tool for such mechanistic studies. Another
daunting task is to consider the effect of the intestinal microbiota
on the results of every animal experiment, as the composition of
the microbiota can vary in different animal facilities: we know
now that even a change in a single bacterial species within the
gut can have a drastic impact on host immunity and pathology.
Greater attention will be necessary in order to interpret results
and compare published studies correctly. This practice has already
been demonstrated to be critical when comparing the disease
incidence of GF NOD mice with NOD mice from various SPF
facilities.”’ Understanding the interaction of gut microbes with
the host immune system is a timely and important health topic as
the rate of many diseases such as numerous immune disorders are
rising at an alarmingly high speed and may result from dysbiosis

of commensals.®®
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