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Transposable elements (retrotrans-
posons and DNA transposons)

comprise a large proportion of animal
genomes, for example 20% in D. mela-
nogaster, 36% in X. tropicalis and 45% in
humans. After invading a new genome,
the transposable element increases its
copy number and subsequently accumu-
lates mutations. These may eventually
result in inactive copies. Until recent days
transposons have been considered “junk”
DNA and no clear function has been
assigned for this important amount of
information on genomes.

Due to the possible detrimental effects
transpositions can have on genomes, hosts
have developed different mechanisms to
silence active transposons, including small-
interfering RNAs (siRNAs) and PIWI-
interacting RNAs (piRNAs). The latter
are very often derived from transposable
elements and can abolish transposon
expression at both transcriptional and
post-transcriptional levels.1,2 Despite these
mechanisms, the regulated and localized
expression of transposable elements has
been reported in several species, suggesting
other possible functions.

Significant examples are reports on
differential expression of retrotransposon
families in Drosophila and mouse
embryos.3–5 In a screen for differentially
expressed genes in the dorsoventral axis
during early Xenopus tropicalis develop-
ment, we found a DNA transposable
element, from the Tc1 family (Tc1–
2_Xt), expressed specifically in the dorsal
region, which eventually forms the nerv-
ous system.6 Further analyses of this

transposable element showed that both
strands are expressed in the prospective
nervous system. Its transcript is not
fused to any other endogenous gene, and
piRNAs are derived from this element.7

Interestingly, we did not find this element
in Xenopus laevis, a closely related species.
However, we did find a very similar
expression pattern for two other transpos-
able elements of the Tc1 family (TXr and
TXz) in X. laevis. Here, we discuss these
results as well as recent evidence suggest-
ing that transposons can also have a
positive role in host genomes. We propose
that transposable elements can play a role
in the formation of the nervous system
and discuss possible experimental strat-
egies to investigate this hypothesis.

Expression of Transposable
Elements from the Tc1/Mariner

Family during Early Development

The regulated expression of different
families of retrotransposons and DNA
transposons has been described in different
tissues and species. However, a detailed
analysis of the transcripts or their temporal
and spatial expression patterns has been
reported in only a few cases. During
Drosophila embryogenesis, the differential
temporal expression of retrotransposons
has been characterized.3 Spatial differential
expression of the retrotransposon 412 has
been described, specifically in the gonadal
mesoderm.4 In mouse, retrotransposons
make a high contribution to the pool of
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maternal mRNAs in early embryos, and the
expression of these elements is develop-
mentally regulated.5 In Xenopus, the 1A11
retrotransposon-like element is specifically
expressed in the mesoderm and its expres-
sion is regulated by FGF.6 Likewise, the
expression of the retrotransposon family
Xretpos is restricted to ventro-posterior
regions during development.7

We extended these observations by
showing that a DNA transposable element
of the Tc1/mariner family is differentially
expressed during X. tropicalis develop-
ment.8,9 The general structure of Tc1/
mariner elements is shown in Figure 1A.
Transcripts for some Tc1-like elements
have been detected in other EST data-
bases,10-16 but no detailed analyses has
been performed. Our studies showed that

the Tc1-like element Tc1–2_Xt mRNA
(named according to the RepeatMasker
nomenclature) is specifically expressed
at the gastrula stage in the Spemann’s
organizer. This region is required for the
proper dorso-ventral and anterior-posterior
patterning of the embryo and the neu-
roectoderm, the tissue that will give rise to
the nervous system (Fig. 1B). Then as
development progresses, Tc1–2_Xt mRNA
is found restricted to neural tissue regions.
Both Tc1–2_Xt sense and antisense strands
present similar expression patterns. The
length of the mRNAs suggests that these
transcripts are not included in other genes.
Transcripts from Tc1–2_Xt are detected
mainly after zygotic transcription has
begun. piRNAs are specifically derived
from Tc1–2_Xt, and analysis of the

expression of selected Tc1–2_Xt-derived
piRNAs suggests that these elements
control its temporal expression.

In the X. tropicalis genome, 72% of
transposable elements correspond to DNA
transposons17 with seven families of Tc1-
like elements characterized.18 Our analyses
for these elements, albeit not detailed, have
shown that several of these families are trans-
cribed during X. tropicalis development.9

Interestingly, we could not find Tc1–
2_Xt in X. laevis by using RT-PCR or
in situ hybridization. Whether this is
explained because this element invaded
the X. tropicalis genome after both species
diverged, or to a high divergence in the
sequence in the X. laevis genome is not
known. The availability of the X. laevis
genome could be very useful to study these
alternatives. However, in X. laevis, two
Tc1-like elements have been described
in the genome, TXr and TXz.19 Our
studies have demonstrated that TXr and
TXz are also expressed during X. laevis
development. Importantly, the expression
pattern of these elements is very similar to
Tc1–2_Xt in X. tropicalis and both strands
are also expressed.

At present, we do not know how the
expression of these elements is controlled
and whether one or several loci are being
transcribed. The presence of regulatory
elements controlling gene expression in
the sequences of these Tc1-like elements
has not been studied. The expression
can be regulated by endogenous pro-
moters controlling neural-specific genes.
However, in contrast to the expression of
Tc1 elements in C. elegans, which occurs
by fortuitous read-through transcription,15

most Tc1–2_Xt RNA is not included in
other protein-coding transcripts, for which
read-through transcription is unlikely to
explain the bulk of Tc1–2_Xt RNAs.
Another alternative is the presence of
clusters of several copies of transposable
elements under the control of a single
promoter. The transcription of clusters of
transposable elements to generate piRNAs
has been described in Drosophila.20 It is
possible that these clusters can also be
regulated during development to produce
specific expression patterns. Another
explanation is that transcription is ubi-
quitous, and that Tc1–2_Xt RNAs are
degraded in ventral and posterior regions

Figure 1. Putative structure of Tc1–2_Xt transposable element and expression during development.
(A) The sequence analysis of the 116 copies of the Tc1–2_Xt transposable element in the X. tropicalis
genome showed the typical structure of Tc1-like elements. The length of this element is 1,581
bases. It is flanked by two inverted repeats (IR) containing two direct repeats (white triangles) for
the binding of the transposase. The transposase ORF (green) contains a putative DNA binding
domain (blue) and the catalytic triad (red, aspartic-aspartic-glutamic residues (DDE)). Five copies in
the genome could code for an intact transposase. (B) Schematic representation of the expression of
Tc1–2_Xt during X. tropicalis early development. The expression of Tc1–2_Xt is shown in blue
for early stages of X. tropicalis development. No expression is detected before the beggining of
the zygotic transcription (st.6 is shown as an example, lateral view). Expression is clearly detected
from gastrula stage (st.10) in the Spemann’s organizer and then in anterior and neural tissues.
Views are indicated in brackets. CNS, central nervous system. Figures were downloaded from
http://www.xenbase.org/anatomy/static/NF/NF-all.jsp and modified according to the expression
pattern obtained by in situ hybridization.
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by a piRNA dependent-mechanism. In
any case, the specific temporal and spatial
expression of all these elements strongly
suggests that they could play a role during
nervous system development.

Possible Roles of Transposable
Elements as Non-Coding RNAs

In the X. tropicalis genome, 111 out of 116
Tc1–2_Xt copies contain frame-shifts
and mutations rendering putative trans-
posase-inactive copies of the element.
Consistently, the analysis of 20 Tc1–2_Xt
cDNAs from gastrula stage embryos
indicates that none of them codes for an
active transposase. These results suggest
that Tc1–2_Xt could play a role as a non-
coding RNA. In mouse, the transcription
of the retrotransposon SINE B2 is neces-
sary for gene activation in the growth
hormone locus.21 In this case, the expres-
sion of this retrotransposon regulates the
formation of a euchromatin/heterochro-
matin boundary, resulting in the expres-
sion of genes in proximal regions. It is still
unknown whether this is the case for
Tc1–2_Xt expression, but we can propose
that some of the Tc1–2_Xt loci may be
regulating chromatin architecture, allow-
ing the expression of genes involved in the
formation of the nervous system.

Considering that piRNAs derived from
Tc1–2_Xt were detected, another possible
function is to generate piRNAs. The
expression of both strands is consistent
with the ping-pong model of amplification
of piRNAs.20,22 If this is the case, it is
worth noting that the Tc1–2_Xt RNA is
stable enough to be detected by RT-PCT,
RNA gel blot and in situ hybridization,
suggesting that the piRNAs produced are
most likely not enough to degrade all of
the Tc1–2_Xt RNA during early develop-
ment. In addition, the expression of sense
and antisense strands is specifically detec-
ted in neural tissues, and therefore, the
amplification of piRNAs could occur in
these tissues. Alternatively, piRNAs derived
from Tc1–2_Xt may not be involved in
the degradation of Tc1–2_Xt itself. Rather
than that, they may regulate endogenous
genes that contain sites complementary to
piRNAs. Although our analysis for two
Tc1–2_Xt-derived piRNAs showed that all
the piRNA sequences in the genome are

included only in Tc1–2_Xt sequences, the
possibility that other Tc1–2_Xt-derived
piRNAs map to genes cannot be ruled
out. For example, piRNAs derived from
transposable elements regulate the expres-
sion of endogenous genes and allow the
clearance of maternal mRNAs during
early Drosophila development.23 Finally,
recently it has been published that
piRNAs derived from non-repetitive
regions have a role in spine morphogen-
esis in the central nervous system in
mice.24 Therefore, Tc1–2_Xt -derived
piRNAs may have a role in Xenopus
neural physiology. Similar scenarios can
be proposed for TXr and TXz in X. laevis.

Possible Roles of Transposable
Elements as Active Copies

Although all the Tc1–2_Xt cDNA copies
we analyzed do not contain a functional
transposase open reading frame, 5 out of
116 Tc1–2_Xt complete sequences in the
genome could putatively code for an open
reading frame containing the catalytic
triad and perhaps an active transposase
(Fig. 1A). We don’t know if these five
copies contain all the other residues
required for transposition, such us the
binding to DNA domains. However, the
presence of active copies in the genome
and its possible expression cannot be ruled
out.

Interestingly, work from the Gage
laboratory showed that endogenous
LINE-1 retrotransposition can occur dur-
ing mouse development.25 In addition,
LINE-1 retrotransposition in the vicinity
of neural genes can alter the expression
of these genes in neural precursor cells.
Furthermore, the same group showed that
LINE-1 retrotranspositions can also occur
in neural progenitor cells isolated from
human fetal brain, suggesting that de novo
LINE-1 retrotransposition events may
occur in the human brain.26 These events
produce mosaicism in the neurons due
to different genomic modifications on
different neurons in the same individual.
This has been suggested as a novel
mechanism involved in the generation
of the astonishing neuronal diversity
required for nervous system formation.25-27

Therefore, the specific expression of
Tc1–2_Xt (and TXr and TXz) in dorsal

and neural tissues allows speculation about
a similar role in Xenopus. As active
elements for transposition, these trans-
posons could be involved in the generation
of heterogeneity during Xenopus nervous
system development.

Experimental Approaches to
Study the Role of Transposable
Elements during Development

In this section we will briefly discuss
possible experimental approaches to evalu-
ate transposition of Tc1 elements during
nervous system development and deter-
mine its possible contribution to produce
neuronal diversity.

One of the first questions is to
determine whether expression of an active
DNA transposase occurs during early
development. After cloning the possible
candidates, transposase activity must first
be determined by in vitro assays.28 For
this, a plasmid reporter for excision events
needs to be prepared. Based upon the
white-peach allele studied in Drosophila,29

we devised the plasmidial DNA excision
reporter construct shown in Figure 2.
The egfp open reading frame contains an
insertion of a random sequence (same
length as the transposase) in between of
the inverted repeats the putative trans-
posase recognizes. Therefore, when co-
expressed with the transposase mRNA in
an exogenous system (e.g., cell culture),
successful translation into an active trans-
posase would render EGFP+ cells. Exci-
sion footprints would have to be devised
in frame with the egfp gene.

Experiments to demonstrate in vivo
transposition could be performed. For
this purpose, transgenic Xenopus embryos
containing the reporter construct in
Figure 2 can be obtained.30 A tissue-
specific promoter would allow us to follow
transposition in the central nervous sys-
tem. The presence of an endogenously
active transposase would render EGFP+
cells that we could observe in later deve-
lopmental stages, such as stage 50 tad-
poles. Furthermore, it would be possible
to characterize transposon insertion sites
in neural tissues of individual tadpoles
using deep sequencing of reverse PCR
amplicons (see Fig. 2). The comparison
of insertion sites in neural tissues with

298 Mobile Genetic Elements Volume 1 Issue 4



© 2012 Landes Bioscience.

Do not distribute.

non-neural tissues could be an indicator
of in vivo transposition events.

All of these approaches can be useful to
determine whether transposition events
occur during Xenopus development.
Although host cells contain mechanisms
to avoid the expression of transposable

elements, they could also be using these
elements for cellular functions. A proper
balance must exist to control these positive
and negative effects of transposable ele-
ments. Our work has shown that the specific
expression of Tc1 elements in neural tissues
and suggests that transposable elements

may play a role during the formation of
the nervous system in vertebrates.
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