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Plants require the contribution of three different genomes found 
in separate compartments. Chloroplasts and mitochondria, which 
are of endosymbiotic origin, contain only relatively few proteins 
encoded by their own genomes, following the transfer of a great 
part of the genetic material from the prokaryotic ancestors into 
the nucleus of the host. Consequently, most of the mitochondrial 
and chloroplast proteins are nuclear-encoded, synthesized in the 
cytoplasm and imported into organelles.1-3 Given that several cel-
lular functions are performed by proteins encoded in different 
compartments, the existence of mechanisms that coordinate the 
expression of nuclear and organellar genes should be necessary. 
One important question concerns the character (identity) of the 
signals responsible for interorganellar cross-talk able to direct the 
expression of a set of nuclear genes.

The intercompartment cross-talk includes anterograde 
(nucleus-to-organelle) and retrograde (organelle-to-nucleus) con-
trols. Anterograde mechanisms are responsive to endogenous and 
environmental signals received by the kernel and coordinate the 
expression of genes in chloroplasts and mitochondria. Retrograde 
signaling regulates the expression of nuclear genes in response 
to the physiological state of organelles. Besides the cross-talk 
between chloroplasts/mitochondria and nucleus, interactions 
between chloroplast and mitochondria has been established dur-
ing the evolution of plants to coordinate the activities of the two 
organelles which exhibit a high degree of metabolic indepen-
dence4 (Fig. 1).

Profound changes in gene expression of nuclear-encoded 
genes were observed in Arabidopsis plants exhibiting impaired 
mitochondrial function.5-12 The recent study of the transcriptome 
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in Arabidopsis plants carrying a mitochondrial dysfunction, 
revealed important modifications in the expression of some 
genes from the carbon metabolic pathways with inhibition of 
glycolysis and the induction of the MDH alternative pathways.13 
This model, where the mitochondrial flaw was induced by the 
expression of the unedited form of the ATP synthase subunit 9 
(u-ATP9),8 is useful to uncover the interactions between organ-
elles in plant cells.

A striking fact was the changes observed in the expression of 
genes related to carbon and nitrogen metabolism, and some genes 
involved in stress responses in plants. Particularly interesting is 
the behavior of some photosynthesis-related genes. To explore 
this prospect, we quantified chlorophylls from A9:u-ATP9 and 
apetala3:u-ATP9 transgenic plants according to the method of 
Moran.14 It was noticed that u-ATP9 transgenic plants showed 
a decrease of about 25% in the levels of chlorophyll A and B, 
and about 30% for total chlorophylls, per gram of fresh weight 
compared with untransformed control plants, suggesting that the 
production of chlorophyll is impaired or that there is an increase 
in its degradation (Fig. 2A).

It has been described that the biosynthesis and the degradation 
of chlorophylls occur through different processes.15 Among rel-
evant enzymes in chlorophyll catabolism, chlorophyllase (CLH) 
which catalyzes the hydrolysis of ester bond to yield chlorophyl-
lide and phytol, was found affected in the microarray experi-
ments of u-ATP9 plants, particularly AtCLH2 (At5g43860) one 
of two CLHs from Arabidopsis.13 Previous studies indicate that 
AtCLH2 is constitutively expressed throughout leaf development, 
and that its expression is unaffected by stress or senescence.16-18 
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chelating substances (MCS) or by Mg-releasing proteins (MRP), 
which differs by their substrate specificity.19,20 We found that 
A9:u-ATP9 and ap3:u-ATP9 plants presented an increase of 25 
and 40% of the Mg-dechelatase activity respectively compared 
with wild-type plants (Fig. 3).

It has been reported that the mRNA levels of some antenna pro-
teins were increased in plants with mitochondrial dysfunction.13 

In contrast with these observations, we found an increase of 6 
and 5 times in AtCLH2 mRNA levels in A9:u-ATP9 and ap3:u-
ATP9 plants respectively, compared with wild type plants (Fig. 
2B) which agrees with the results of microarray data.13

An indicator of the chlorophyll breakdown is the release of 
Mg atoms from these molecules. The Mg-dechelatase activity 
is performed either by heat stable low-molecular weight metal 

Figure 1. Communication between the different compartments in higher plants. Ascorbate has been proposed to act as a mitochondrial signal for 
plastids. OAA; oxaloacetate; Tetpy: tetrapyrroles. T6P: threalose-6P. Adapted from reference 4, 25 and 26.

Figure 2. (A) Determination of total chlorophyll, chlorophyll A and B levels in wt (white bars), A9:u-ATP9 (gray bars) and ap3:u-ATP9 (black bars) flowers 
(stage 12). Values are the mean ± SD of four independent replicates. (B) qRT-PCR analysis of AtCLH2 gene (At5g43860) in flowers (stage 12) from wt, 
A9:u-ATP9 and ap3:u-ATP9 lines. Columns represent mean values (error bars ± SD) of three independent experiments. Relative expression levels are 
shown as fold change values with respect to β-actin mRNA levels. The asterisk signals a statistically different result from the control value (p < 0.05).
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nuclear genes encoding proteins associated with photoshythe-
sis.23,24 In fact, the degradation of these pigments may be due to 
both, the increase of Mg-dechelatase activity (nuclear response to 
mitochondrial dysfunction) and ROS accumulation (mitochon-
drial product acting on chloroplasts), causing dysfunction of the 
light-harvesting (antenna) complex. A possible consequence of 
the chloroplasts dysfunction is the induction of a nuclear response 
that causes increased expression of LCHI and PBSQ2 genes.

There are several reports that address the relationship between 
mitochondrial respiration, photosynthesis and chloroplast func-
tions. The respiration process provides energy for biosynthesis, 
and its balance with photosynthesis determines the rate of plant 
biomass accumulation. These interactions involve transcriptional 
control, co-localization of proteins, distribution of biochemical 
pathways between organelles, and the impact of substrate and 
product concentrations (metabolic shuttles).25 The increased 
levels of malate observed in our experiments suggest it like 
another metabolite involved in the mitochondria/chloroplast 
communication.
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Particularly, the LCHI type II gene (At1g19150) coding for the 
chlorophyll A-B binding protein, which transfers the energy 
absorbed by chlorophylls to photochemical reaction centers. The 
qRT-PCR analysis of LCHI mRNA levels showing an increase 
of about 5-fold in both, A9:u-ATP9 and ap3:u-ATP9 lines com-
pared with wild type (Fig. 4) confirms the upregulation observed 
in microarray experiments. An induction of about 3-fold was 
also detected for the mRNAs of PSBQ2 (AT4g05180). This gene 
encodes the PsbQ subunit of the oxygen evolving complex of 
photosystem II, and this transcriptional response indicates that 
photosynthesis is affected (Fig. 4).

Since, u-ATP9 transgenic plants present altered levels of ROS 
and ascorbic acid concomitant with the increase in the mRNA 
levels of PER50 (At4g37520) and PER57 (At5g17820), it is plau-
sible to consider that the reduced levels of chlorophyll might 
result from bleaching by peroxidases. These enzymes are found 
in several subcellular compartments, including chloroplasts. 
Although the role of peroxidases in chlorophyll degradation is 
controversial, several studies have supported their possible par-
ticipation in chlorophyll catabolism.21

An interesting point of our work is the fact that mitochon-
drial dysfunction in transgenic plants, induced by an “unedited” 
version of the ATPase subunit 9 gene can affect photosynthe-
sis by reducing the chlorophyll levels.13 The chlorophyll meta-
bolic pathway has been associated with nuclear expression 
control.22 It has been postulated that the tetrapyrrole interme-
diate Mg-protoporphyrin IX acts as a signal molecule in one of 
the signaling pathways between the chloroplast and the nucleus 
and chloroplasts and mitochondria, and the accumulation of 
this metabolite is necessary to regulate the expression of several 

Figure 3. Magnesium dechelatase activity from wild type (wt), A9:u-
ATP9 and ap3:u-ATP9 lines analyzed in flowers extracts (stage 12). 100% 
of activity represents 0.03 ΔAbs686. g-1FWs-1. Values are the mean ± SD of 
four independent replicates. The asterisk indicates values statistically 
different from the control (p < 0.05).

Figure 4. qRT-PCR analysis of LCHI gene (white bars) and PSBQ2 gene 
(black bars) in flowers (stage 12) from wt, A9:u-ATP9 and ap3:u-ATP9 
lines. Columns represent mean values (error bars ± SD) of three inde-
pendent experiments. Relative expression levels are shown as fold 
change values with respect to β-actin mRNA levels. The asterisk signals 
a statistically different result from the control value (p < 0.05).
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