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Abstract
Objectives—Optical coherence tomography, an imaging modality using near-infrared light,
produces crosssectional tissue images with a lateral pixel resolution of 10 μm. However,
normative data is first needed on epithelial thickness for lesion characterisation, and, to date, little
exists. The purpose of our study is to measure normal laryngeal epithelial thickness by in vivo
optical coherence tomography, and compare these values to those obtained from fixed ex-vivo
laryngectomy specimens.

Design and Setting—Prospective at a single medical center in California, United States.

Participants—A total of 116 patients undergoing operative endoscopy.

Main outcome measures—Optical coherence tomography images of clinically normal
laryngeal subsites were selected. Calibrated measurements of epithelial thickness at various
laryngeal subsites were recorded. Measurements of epithelial thickness from corresponding areas
were obtained using optical micrometry on histologically normal regions of 15 total laryngectomy
specimens. Descriptive statistics were performed.

Results—Mean epithelial optical coherence tomography thicknesses were: true vocal cords (81
μm), false vocal cords (78 μm), subglottis (61 μm), aryepiglottic folds (111 μm), laryngeal
epiglottis (116 μm) and lingual epiglottis (170 μm). Epithelial thicknesses in fixed tissues were:
true vocal cords (103 μm), false vocal cords (79 μm), aryepiglottic folds (205 μm) subglottis (61
μm), laryngeal epiglottis (38 μm) and lingual epiglottis (130 μm).

Conclusions—Optical coherence tomography does not have the artifacts associated with
conventional histologic techniques. The inevitable development of office-based optical coherence
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tomography devices will increase the precision of laryngeal measurements and contribute to the
clinical application of this technology in diagnosing laryngeal disease.

Optical coherence tomography (OCT) is a new imaging modality analogous to ultrasound,
with the exception that light from low-coherence sources rather than sound is used to create
cross-sectional images of tissue,1 with an axial resolution approaching that of light
microscopy (approximately 7 μm). This technology is already in clinical use by
ophthalmologists for examination of both retina and cornea.2 Applications in the areas of
cardiology, dermatology, urology, gastroenterology, and dentistry are in development.3–7 In
otolaryngology, OCT has been used to image the mucosa of the upper aerodigestive tract,
the middle ear, the cochlea, and the thyroid gland.8–11 OCT imaging is becoming
increasingly important technology for the upper airway, especially in the larynx, where
perhaps is the most promising application of this technology within the upper aerodigestive
tract, because OCT can identify key structural features such as the basement
membrane.8,12–14 This is particularly appealing for the management of early laryngeal
cancers, as distinguishing between benign lesions and early carcinoma can be difficult
without biopsy. Laryngeal microsurgery carries numerous risks including scarring and
permanent vocal quality changes, and these concerns combined with the difficulty of
diagnosing cancer on clinical examination alone have made the decision to pursue surgery
often a considerable undertaking.

Unlike advanced solid tumors of the head and neck whose boundaries and extension to other
structures can be determined or estimated using CT or MR imaging, there are no imaging
techniques in clinical use that can provide surgeons with the resolution needed to identify
the axial spread of early cancer through the basement membrane and into the lamina propria.
At present this information on tumor behavior at the tissue structural level requires a biopsy.
OCT has potential to provide a means to image with high resolution (~7 μm) the vertical
extension of early cancers and other neoplasms through the basement membrane of the
delicate laryngeal mucosa. The potential clinical utility of OCT in the larynx has already
been demonstrated in several publications. 8,12,14

However, while detailed OCT images of both benign and malignant laryngeal disease
continue to be acquired and published, little is known about the normative microstructure of
the laryngeal mucosa. This is important because the dimensions of the epithelium are
generally thicker in early T1 cancers, dysplastic lesions, and benign disease, which may
mimic cancer on clinical examination.8 If OCT is to evolve into a viable in vivo imaging
modality to provide valuable information on the cross-sectional anatomy of the larynx, then
it is absolutely necessary to know the dimensions of the tissue layers in the normal larynx.
Just as in previous decades when CT and MRI images were compared with gross anatomy
dissections and large whole body cross-sectional slices,15 with OCT the thickness of the
different layers of the laryngeal mucosa measured in vivo using OCT must be compared
with measurements made in ex-vivo histological specimens. The purpose of this study is to
accomplish this basic task. It is important to emphasise that although the ideal study would
be to correlate the in vivo OCT images with in vivo laryngeal histological specimens, but
this is unethical, because it requires performing total laryngectomies on healthy patients
after in vivo OCT images were taken.

Materials and methods
Ethical considerations

This study was approved by the Institutional Review Board of the University of California,
Irvine.
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Subjects
Optical coherence tomography imaging was performed in 116 patients undergoing surgical
endoscopy of the upper aerodigestive tract under general anesthesia at the University of
California, Irvine (UCI) Medical Center. The larynxes of 83 patients were imaged with
OCT. While many patients exhibited some degree of laryngeal disease, thus the clinical
indication for endoscopy, not all subsites in every patient were abnormal. Only normal
subsites were used for this study, and laryngeal subsites with macroscopically abnormal
epithelium (e.g., clinical appearance of carcinoma, inflammation, or acute trauma produced
by intubation or suspension) on endoscopic examination were excluded. Thus OCT images
were analysed from only 64 patients for this study. Information obtained from OCT imaging
did not alter clinical decision- making in any way during the course of the study. Six of
these 64 patients later underwent total laryngectomy, which provided direct histologic
comparison with corresponding OCT images. All specimens were removed from the
individuals undergoing salvage surgery for squamous cell carcinoma of the larynx following
radiation therapy failure.

To increase the histologic measurements database, an additional nine total laryngectomy
specimens were obtained from the Department of Pathology at UCI Medical Center.
Histologic preparations from tumor-uninvolved regions of these specimens as well as the six
referred to above, for a total of 15, were examined with light microscopy. Table 1 outlines
the characteristics of the two patient populations: one which underwent OCT, and the other
from which laryngectomy specimens were procured.

OCT measurements
The OCT system used and the optical principles governing its performance have been
described previously, 16,17 and will only be briefly reviewed here. A low coherence light
source with central wavelength of λ = 1310 nm was used (AFC BT 1020, JDS Uniphase,
San Jose, CA, USA). The axial resolution of this system in tissue is 7 μm and is determined
by the coherence length of the optical source. The lateral resolution is diffraction-limited (10
μm). A handheld probe containing the OCT fiber was placed through the laryngoscope bore
(with or without the use of laryngeal suspension depending on the clinical need) in near, or
more often, light, contact with the area of interest. Raster scanned images were generated by
controlled motion of the imaging fiber using a piezoelectric stage (Model 663.4pr, Physik
Instrumente, Tustin, CA, USA). In constructing these images a refractive index of 1.4,
chosen to approximate that of most soft tissues in the body, was assumed.18,19 Signals were
acquired up to a depth of 1.6 mm while the lateral extent of each image was determined by
the length over which the fiber was translated by the stage, typically 6 mm. OCT images
were acquired with the left and right side of each image representing proximal (superior)
and distal (inferior) respectively. OCT imaging was performed simultaneously with
endoscopic visualisation of the laryngeal subsite under investigation. Due to operating room
time constraints, not all laryngeal subsites were imaged in all patients, however, for each
subsite imaged, more than one image was often acquired (see Table 2).

The OCT images were digitally captured and catalogued in a computer database into one of
six laryngeal subsites: true vocal cords, false vocal cords, aryepiglottic folds, laryngeal
epiglottis, lingual epiglottis and subglottis. Digital morphometry was performed using
Adobe Photoshop (Adobe System, San Jose, CA, USA) to obtain measurements of epithelial
thickness. For each image, five measurements were made at 1 mm intervals and mean
epithelial thickness was calculated. Measurements were not performed in laryngeal subsites
in which the demarcation between epithelium and underlying lamina propria could not be
identified conclusively.
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Histological measurements
Laryngectomy specimens were prepared for histological exam according to standard
protocol of the Department of Pathology at our institution which consists of immersion in
neutral buffered 10% formalin solution for 48 h, followed by embedding in paraffin,
sectioning, and staining with hematoxylin and eosin. Each specimen was examined under
light microscopy and epithelial thickness measured by dropping a line perpendicular to the
lumen surface and measuring a distance to the basement membrane, including any cilia. This
was repeated every 1 mm. Histologically abnormal areas were not measured. Areas in which
the quality of the specimen was judged inadequate to accurately determine epithelial
thickness (e.g., tissue layers had separated or relevant structures could not be discerned)
were also excluded. In order to standardise the artifact from preparation of the specimens,
only permanent sections were measured; frozen sections were excluded. Due to the policies
of the Department of Pathology regarding the retention /archival of slides in the specimen
storage facility, not all subsites were available for examination on every patient (the
remaining slides were destroyed prior to the time of this study). However, of the slides
available, more than one section per subsite per patient was often present (see Table 2).

Optical coherence tomography morphometry and light microscopy morphometry, or
measurement of distances on each image / slide, were performed by two separate researchers
working independently of one another. Neither researcher was privy to the findings of the
other until the time of statistical analysis.

Epithelial thickness values were average by subsite for each patient in both OCT and
histologic measurements. If several histology slides were examined of a single subsite for a
particular patient, averages per slide were in turn averaged to produce one mean per subsite
per patient. These values were then used to calculate an overall mean per subsite for all
patients in each arm. Standard errors for each value were also derived.

Results
Figure 1 shows a representative histological coronal section of a true vocal cord in the axial
plane as viewed by light microscopy. The bracket marks the extent of the epithelium, with
an arrow demonstrating the locus of the basement membrane. Figure 2 shows an OCT image
in the coronal plane of the true vocal cords of the same patient. Again, the epithelium and its
basement membrane are plainly evident and are marked with a bracket and an arrow
respectively. In this patient, average thickness of the true vocal cord epithelium is 153 μm
by light microscopy and 161 μm by OCT.

Table 3 gives the mean epithelial thickness values for each subsite by both modalities and
the standard error of the mean associated with each value. Figure 3 graphically depicts the
mean thickness at each subsite obtained by light microscopy (x-axis) versus the mean
thickness obtained by OCT (y-axis) with their respective standard errors for each subsite
shown as cross-bars.

Discussion
Synopsis key /new findings

Previous OCT studies done in the larynx have largely focused on ex vivo qualitative
identification of histological features.12,13,20 Our study is the only to date to establish a
quantitative comparison between epithelial thickness in vivo with OCT, and ex vivo with
light microscopy in the larynx.
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Comparisons with other studies
Optical coherence tomography accurately depicts glands, vasculature, tissue layers and other
structures.8,13,14,20 In contrast, we have compared quantitative measurements obtained by
both OCT and light microscopy in the upper aerodigestive tract. Similar studies have been
done elsewhere in the body, particularly the eye. Chauhann and Marshall found that the total
thickness of both fixed and fresh bovine retinas as determined by OCT had a strong linear
correlation to measurements obtained by light microscopy, although this work has been
criticised as describing artifact.21 Wirbelauer et al. found that the thickness of diseased
human corneas measured by in vivo OCT was directly proportional to that measured by light
microscopy of the same specimens when fixed ex vivo.22 In the upper aerodigestive tract,
Wong et al. measured epithelial thickness by OCT, but did not correlate these findings with
histology.8

Strengths of the study
Histology is the gold standard for tissue diagnosis. However, the use of histological slides
examined with light microscopy for measuring normal epithelial thickness (as well as that of
neoplasms) is not without its disadvantages. For microscopic examination, tissue must first
be removed and then subjected to fixation, sectioning and staining, which may result in
artifacts. Johnson et al. found that canine labiobuccal mucosal margins on histological slides
were reduced to half their in vivo size, and tongue mucosal margins on histological slides
similarly shrunk by one-third.23 Formalin fixation shrinks laryngeal tissues grossly by 9–
42% (in the false vocal cord and true vocal cord respectively) relative to freshly excised
normal canine larynxes.24 Further manipulation for histologic preparation such as
embedding and sectioning may result in up to 20% additional reduction in size.24 Moreover,
different laryngeal subsites vary in the degree to which they are affected, creating
distortion.24 In contrast, OCT images areas of interest in vivo and in real time, without these
artifacts produced by histologic preparation.

Given that histologic preparation generally results in tissue shrinkage, our findings are
somewhat surprising in that the OCT measurements are similar or even smaller than light
microscopy measurements for several subsites. Wirbelauer et al. found that thickness of
corneas measured in vivo by OCT was, in fact, greater than the thickness of the same
corneas measured ex vivo by light microscopy, by about 9%.22 This is keeping with a
setting of histologic shrinkage. However, Chauhann and Marshall, working only with ex
vivo bovine retinas, found the opposite: that light microscopy measurements were often
larger than OCT by a comparable factor.21 Our study appears to more closely reflect the
findings of Chauhann. Chief among the reasons for this is likely the specific technique of
OCT image acquisition. The in vivo study was performed on awake patients via slit lamp,
with no direct contact to the tissues measured, and thus no pressure exerted, whereas the ex
vivo study did not have to avoid direct contact given that there would be no concern for
irritation of the cornea and patient comfort.21,22 Although our work was performed in vivo,
it frequently involved direct contact of the probe with the tissue under investigation. Even
slight pressures created by the probe may be sufficient to alter the measurements, and it is
impossible to gauge the amplitude of pressures exerted by the hand-held probe.

There are several other points to bear in mind when analyzing these results. First, the study
populations in the two arms are different. The OCT group is a heterogeneous population that
includes individuals both with and without a history of laryngeal cancer, smoking (the
biggest risk factor for laryngeal cancer), and radiation therapy (which may cause permanent
damage in the tissues irradiated). In contrast, every patient in the light microscopy arm of
this study underwent total laryngectomy for carcinoma, which recurred or persisted
following radiation treatment. It is possible that their disease and previous therapies
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produced an increase in epithelial thickness via edema, inflammation, or fibrosis.25 In the
subsites of the larynx not affected by cancer, these alterations may be difficult to appreciate
clinically but nonetheless present; differences of 10–20 mm are imperceptible to the naked
eye. As noted in the methods, areas with histologically obvious abnormalities such as
dysplasia or inflammation on microscopy were excluded from measurements in an attempt
to reduce the potential impact of these effects. Ideally, we could measure the epithelial
thickness by light microscopy of larynxes taken from young healthy individuals, but, of
course, this is unethical because it will require that healthy individuals without any laryngeal
disease underwent total laryngectomy for further histological examination. So what it is
feasible to measure are larynxes from patients that underwent total laryngectomy for
malignant disease of the larynx, although these larynxes are usually distorted due to
radiation or surgical artifact.

Another source of possible error in the use of OCT concerns variability of the refractive
index. In processing the backscattering optical signal, we assume that the refractive index of
laryngeal soft tissue is uniformly 1.4. While practical use of the OCT device demands this
assumption be made, it is, nonetheless, a broad assumption as tissue is heterogeneous and
will have actual refractive index variations due to glands, ducts, dense connective tissue, and
different degrees of hydration. For example, Knuttel and Boehlau-Godau found that the
presence of an epidermal sweat gland containing a significant amount of water may lower
the refractive index at that point to 1.37, relative to 1.43 in the surrounding tissues. 19 This is
relevant to our study in a variety ways. Pressures exerted intraoperatively by
instrumentation, such as the endotracheal tube or laryngoscope, may result in altered tissue
perfusion. Post-radiation changes may vary from edema to fibrosis.25 Either may, in turn,
significantly dynamically affect the hydration level of the tissue, and thus the refractive
index. For instance, significant fibrosis and decreased tissue perfusion would both result in
an increased refractive index. Underestimating the refractive index would result in an
artificially thinned epithelium as measured by OCT, and may, in part, explain our data.
Likewise, trauma from intubation or instrumentation (such as the forces exerted on tissue
during suspension) could also produce the opposite effect, swelling, and lead to an over-
estimation of epithelial thickness. Such changes when obvious were excluded from our
analysis, however subtle changes may have been difficult to detect clinically.

Finally, OCT measurements are subject to a certain degree of bias as a consequence of
imaging being performed in areas most accessible to the probe. This is due to clinical
limitations on the amount of time available to image patients while under anesthesia. Hence,
there is a preponderance of true and false vocal cord measurements in contrast to
measurements of the lingual surface of the epiglottis which would generally require
repositioning of the laryngoscope. In contrast, laryngectomy renders all regions of the organ
readily accessible to the probe.

It may be valuable in the future to image a larynx during surgery, and then immediately after
each step in the histologic processing cascade to determine the effect perfusion, formalin
fixation, ethanol dehydration and paraffin embedding on the epithelial thickness measured.
Nevertheless, morphometry of histological specimens will always be subject to highly
variable shrinkage artifacts, and these can vary considerably depending on the nature of the
tissue (e.g., lamina propria versus epithelium) and the details of the chemical processing
route. This is a contributing factor to the large histologic measurement error bars in Fig. 3.
In contrast, in vivo OCT may more accurately represent the true morphology of the targeted
region since no chemical process (fixation) or volume contraction (dehydration) is involved.
Our findings suggest that the impact of the probe contacting the tissue surface still remains a
potential source of artifact, but we are presently working on the development and evaluation
of a clinical OCT device mounted on a surgical microscope which may eliminate this effect.
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Likewise, the placement of the laryngoscope or endotracheal tube may cause subtle swelling
in tissue; we are therefore currently engaged in the design of an OCT device that works in
tandem with a rigid videostroboscopy system, though this is a formidable optomechanical
engineering task.

Clinical applicability of the study
Regardless, the clinical impact of OCT in laryngology will be its ability to interrogate and
image the epithelium and its demarcation with the superficial lamina propria. Knowledge of
the normal thickness of these layers is critically important as they thicken in pathologic
conditions, in particular dysplasia and chronic inflammation. Previous decades saw the
verification of CT and MR imaging as clinically useful tools through the rigorous
comparison of these modalities to macroscopic anatomy; OCT images must be likewise
legitimised by reference to histology.

Conclusion
This study reports the in vivo thickness of the laryngeal epithelium in six distinct subsites
measured using OCT, a non-invasive imaging modality. OCT does not have the artifacts
associated with conventional histologic techniques and can be performed in living tissues.
Knowledge of the normal thickness of the epithelium may be the first sign of early
malignancy. The inevitable development of office-based OCT devices will increase the
demand for precise measurements of the laryngeal microstructure and its correlation with
histopathology. This innovation will likely accelerate the application of the OCT technology
in both diagnosing laryngeal disease and monitoring its progressions.
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Fig. 1.
Histological coronal section of a true vocal cord, as seen by light microscopy. The bracket
marks the extent of the epithelium, with an arrow indicating the basement membrane.
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Fig. 2.
Optical coherence tomography image in the coronal plane of the true vocal cords of the
same patient as in Fig. 1. The bracket marks the extent of the epithelium, with an arrow
indicating the basement membrane. A length of 1 mm is shown for reference.
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Fig. 3.
Mean epithelial thickness at each laryngeal subsite measured by light microscopy (LM) and
optical coherence tomography (OCT), with standard errors. TVC, true vocal cords; FVC,
false vocal cords; AEF, aryepiglottic folds; SG, sublgottis; LarEpi, laryngeal epiglottis;
LinEpi, lingual epiglottis.
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Table 1

Characteristics of patients included in study

LM, n (%) OCT, n (%)

Number in population 15 64

Gender: male 10 (71) 38 (60)

Mean age (years) 66 61

Confirmed histological diagnosis of carcinoma (laryngeal origin or locally invasive from thyroid) 14 (100) 35 (56)

LM, light microscopy; OCT, optical coherence tomography.
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Table 3

Mean epithelial thicknesses (μm)

LM (SEM) OCT (SEM)

TVC 103 (18.2) 80.9 (5.6)

FVC 79 (15.2) 77.8 (6.2)

AEF 205 (15.2) 111 (19.7)

SG 61 (3.6) 61.5 (7.7)

LarEpi 38 (6) 116 (13.8)

LinEpi 130 (13.2) 170 (9.5)

LM, light microscopy; OCT, optical coherence tomography; TVC, true vocal cord; FVC, false vocal cord; AEF, aryepiglottic fold; SG, sublgottis;
LarEpi, laryngeal epiglottis; LinEpi, lingual epiglottis.
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