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Abstract Many metabolomics studies aim to find ‘bio-

markers’: sets of molecules that are consistently elevated or

decreased upon experimental manipulation. Biological

effects, however, often manifest themselves along a con-

tinuum of individual differences between the biological

replicates in the experiment. Such differences are over-

looked or even diminished by methods in standard use for

metabolomics, although they may contain a wealth of

information on the experiment. Properly understanding

individual differences is crucial for generating knowledge

in fields like personalised medicine, evolution and ecology.

We propose to use simultaneous component analysis with

individual differences constraints (SCA-IND), a data

analysis method from psychology that focuses on these

differences. This method constructs axes along the natural

biochemical differences between biological replicates,

comparable to principal components. The model may shed

light on changes in the individual differences between

experimental groups, but also on whether these differences

correspond to, e.g., responders and non-responders or to

distinct chemotypes. Moreover, SCA-IND reveals the

individuals that respond most to a manipulation and are

best suited for further experimentation. The method is

illustrated by the analysis of individual differences in the

metabolic response of cabbage plants to herbivory. The

model reveals individual differences in the response to

shoot herbivory, where two ‘response chemotypes’ may be

identified. In the response to root herbivory the model

shows that individual plants differ strongly in response

dynamics. Thereby SCA-IND provides a hitherto unavail-

able view on the chemical diversity of the induced plant

response, that greatly increases understanding of the

system.
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1 Introduction

Ronald Fisher, in his landmark paper introducing Analysis

of Variance (ANOVA), already stated that although men-

delian genetic variation is discrete, it may lead to contin-

uous phenotypic differences between replicates (Fisher

1918). Such individual phenotypic differences may be key

to biological success and survival (Steppan et al. 2002),

because individuals with a specifically fine-tuned response

that leads to higher fitness are favoured over their peers.

Individual differences are therefore the main driving force

for evolutionary change (Dall et al. 2004).

However, in life sciences (from agricultural to medical

research) the main goal is to find responses that are
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reproducible between most individuals. This stems from

the main objectives in these fields, i.e., providing consis-

tently high crop yields or curing as many people as possible

with a given treatment. This focus on reproducibility res-

onates into the statistical methods of choice: the heirs of

Ronald Fisher at Rothamsted Research Centre 100 years

later still quantify differences in plant phenotypes caused

by bacterial infection (Ward et al. 2010) with his ANOVA

method (Sokal and Rohlf 1995), although now with state-

of-the-art metabolomics technology.

Biological systems have become observable in much

more detail than in the time of Fisher. The full complement

of genes and a large number of proteins and metabolites

can be measured by ‘omics’ platforms, which in turn

become more and more high-throughput such that ever

larger numbers of individuals can be characterised. This

broadened view has induced modern systems biology to

embrace another biological principle into data analysis,

namely that all these genes, proteins and metabolites are

interrelated through biochemical pathways. Multivariate

methods such as partial least squares-discriminant analysis

(PLS-DA) and principal component analysis (PCA) (Jan-

sen et al. 2009a, b; Trygg et al. 2007; Lindon et al. 2000)

reflect these relations much better than ANOVA. However,

still the consistent differences induced by a treatment are

sought by these methods, such that patterns of individual

differences are lost.

The conceptual models behind many such individual

metabolic differences dictate that these should have a spe-

cific structure. For example, plants generally have a limited

amount of energy at their disposal, which they will have to

distribute among several processes upon herbivore attack.

Most importantly, they need to choose between defending

themselves chemically or to compensate the resulting

damage by growth (Herms and Mattson 1992), which will

induce a negative relationship between both mechanisms.

These relations will also be visible in the biochemical

profiles of mutually associated metabolites, proteins and

transcripts associated with the respective pathways. The

resulting structured variation is beyond reach of most

‘standard’ multivariate statistical methods, but may be

described by a dedicated data analysis method.

Currently, no component analysis method is available

that both focuses on individual differences, while describ-

ing the specific response of each individual biological

replicate. The individual differences scaling (INDSCAL)

(Carroll and Chang 1970; Harshman and Lundy 1984)

method—recently proposed for metabolomics (Jansen

et al. 2011)—describes ‘between metabolite relationships’

(BMRs) that are closely related to the individual bio-

chemical differences between biological replicates. How-

ever, INDSCAL describes these differences on the level of

the experimental groups but does not reach the level of the

individual biological replicate. On the other hand, simul-

taneous component analysis (SCA) (Ten Berge et al. 1992;

Timmerman and Kiers 2003) may be used to identify the

distribution of the individuals within an experimental

group, which may lead to a priori unknown clusters

belonging to, e.g., non-responders to the experimental

manipulation. However, the results of SCA ‘with equal

profiles’ (SCA-P) (Jansen et al. 2005; Smilde et al. 2005b;

Jansen et al. 2004) do not give a straightforward interpre-

tation of the group-level differences. Because INDSCAL

and SCA-P are different methods, the individual and

group-levels do not commute between both models.

In this manuscript we propose a method to analyse and

interpret individual differences on the individual and

group-level simultaneously. This method is called SCA-

IND and mixes the specific constraints from INDSCAL

with the SCA model, such that entire experimental groups

and individual biological replicates can be analysed

simultaneously. Subsequently, we discuss whether covari-

ances or correlations better reflect the aspects of BMRs that

are most appropriate for the individual differences, which

is directly used in SCA-IND. Finally the SCA-IND model

is applied to reveal the intricacies of the chemical response

of cabbage plants to herbivory. The relations between

metabolites, tied tightly together with individual differ-

ences metabolomics, have been proposed before as a very

appropriate perspective to observe induced responses to

biotic and abiotic plant stress (Broeckling et al. 2005).

2 Theory

2.1 Different levels of individual biochemical

differences

Metabolomic data consists of comprehensive biochemical

characterization of biological samples, often as levels of

previously identified metabolites, present in a database (i.e.,

metabolic profiling) (Dunn and Ellis 2005). In metabolo-

mics studies experimental factors (such as doses of a toxi-

cant or the origin of a population) are manipulated and the

resulting metabolic change is then measured, generally for

multiple biological replicates. The subdivision of metabolic

variation with respect to experimental groups and natural

variation between biological replicates is given in Eq. 1.

Xk ¼ 1Ik
lT þ 1Ik

aT
k þ Bk ð1Þ

where Xk is the (Ik 9 J) matrix of measured levels of

metabolites 1…j …J for biological replicates 1k …ik …Ik

of experimental group k, l is the length J vector containing

the average metabolite levels of all replicates in all

experimental groups, vector ak contains the average

metabolite levels for all biological replicates of group k and
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ak is expressed as a deviation from l, leading to
PK

k¼1 IkaT
k ¼ 0T; matrix Bk contains the deviation of

each individual biological replicate from ak, such that

1T
Ik

Bk ¼ 0.

Equation 1 is central to most data analysis techniques in

current use for metabolomics: it defines a contribution

equal for all individuals l and disentangles the remaining

metabolic variation in matrix Xk into a contribution ak

equal for all individuals in one experimental group and a

contribution Bk specific for each individual within each

group. For complex experimental designs, k can be built up

from contributions by different factors [see e.g. (Smilde

et al. 2005a)]. In most metabolomics studies, interest lies in

characterizing and statistically assessing the differences

between different group means, i.e. between ak. The indi-

vidual differences in Bk are then treated as a nuisance.

Their contribution is either regarded in the light of clus-

tering individuals according to ak, e.g., by PCA and

ANOVA-SCA (Zwanenburg et al. 2010) or minimized to

describe the differences between ak, e.g., by the Fisher ratio

(Smit et al. 2008) in PLS-DA models.

The individual differences in Bk may contain three types

of insightful information that are of interest in metabolo-

mics studies. These three types of information refer to three

levels of variation related to

1. The individuals with the most pronounced response to

an experimental manipulation. That could be used to

select them for follow-up experiments.

2. The distribution of the response magnitude within the

experimental group. That could be used to distinguish

between a subdivision in responders or non-responders

or an axis of intensity between the responses of

different individuals.

3. A comparison between different experimental groups.

That could be used to show that the individual

differences within a group of treated individuals are

different from a comparable control group.

A single data analysis method should capture these three

levels of variation simultaneously, such that the levels can

be compared. SCA may be this method.

2.2 Simultaneous component analysis

SCA (Millsap and Meredith 1988; Ten Berge et al. 1992;

Timmerman and Kiers 2003; Kiers and Ten Berge 1994) is

the model of choice to describe the variation between

biological replicates. This model fits the natural variation

in all groups (i.e., matrices Bk) simultaneously, using

component variables familiar from PCA. This allows

comparison of the individual differences between groups.

The model is given in Eq. 2.

Model Bk ¼ TkPT þ Ek

Minimize f Tk;PjBk

� �
¼
PK

k¼1

Bk � TkPT
�
�

�
�2

subject to 1T Tk ¼ 0T8k

ð2Þ

where Tk is the (Ik 9 R) matrix containing the SCA scores

of group k, P is the (J 9 R) matrix of loadings and R is the

number of components chosen for the SCA model; Ek is

the (Ik 9 J) matrix of model residuals.

The SCA scores (contrary to those of a PCA model on

all Xk) explicitly describe the individual differences

between all individuals within the same experimental

group k in the scores Tk. The metabolites that exhibit many

individual differences obtain a large loading value in

matrix P and the relations between different important

metabolites can be interpreted from the signs of the load-

ings on the same SCA component. This makes the inter-

pretation of the model analogous to PCA—of which SCA

is a generalization—and other component models. Indi-

viduals with extreme score values of Tk on a specific

component can be identified as deviating from the other

individuals within the group. Also the distribution of the

individual-level scores Tk along the fitted component can

be established for each group k, to distinguish whether the

individual differences within a group can be associated

with responders and non-responders—which would lead to

score clusters—from a continuous range of individual

differences. However, the variation in individual differ-

ences between experimental groups, i.e., the third level of

Bk is not directly observable from the scores Tk. To com-

pare variation in individual differences between experi-

mental groups the individual-level scores Tk need to be

translated into group-wide descriptors. The magnitude of

the individual differences associated with each component

can be calculated by their inner product TT
k Tk.

The diagonal elements of this (R 9 R) symmetric

product matrix TT
k Tk describe the relative importance of

every SCA component r in the individual differences of

group k. However, the different components in matrices Tk

interact; the 1
2

R R� 1ð Þ off-diagonal elements of TT
k Tk

quantify the magnitude of this interaction. This hampers

model interpretation, because also combinations of the

components need to be taken into account. This is analo-

gous to the poorer interpretability of Tucker3 compared to

that of PARAFAC models (Smilde et al. 2004; Dyrby et al.

2005). This makes the most general variant of SCA—‘SCA

with equal profiles’ (SCA-P) which is a PCA model fitted

simultaneously on all matrices Bk—unfit for this

interpretation.

This poor interpretation can be alleviated by imposing

additional constraints on TT
k Tk, usually at the expense of

model fit. One such constraint is given in Eq. 3.

S96 J. J. Jansen et al.

123



TT
k Tk ¼ Dk8k; dkr � 08k; r ð3Þ

where Dk are (R 9 R) matrices with nonnegative diagonal

elements dkr and other elements are equal to 0.

This constraint is familiar from the INDSCAL method

(Jansen et al. 2011; Carroll and Chang 1970) and allows

interpretation of the biochemistry in each component

individually. The diagonal values of Dk have the same

interpretation as the INDSCAL scores. They are ‘group-

level scores’, that show how much variation associated to

the BMRs in loadings P is present in every group k. How-

ever, the INDSCAL method presented before does not give

any individual-level scores Tk that underlie Dk. The

implementation of this constraint in SCA has been

described before and is called SCA-IND (Timmerman and

Kiers 2003).

The SCA-IND model provides insight on all three levels

of information in Bk:

1. The individuals are characterized by scores Tk:

extremely high or low scores indicate individuals that

differ much from the average in group k. The biochemistry

of these differences are given in loadings P.

2. By comparing all Tk within an experimental group,

the number of individuals differing from the average and

the range of these differences among all individuals can be

determined.

3. Whether the amount of individual differences changes

upon experimental manipulation can be interpreted from

the scores Dk between groups k. The relations between

which metabolites are important in these individual dif-

ferences can be obtained from the matrix product prp
T
r ,

where pr is the column of P corresponding to the rth

component.

Although both INDSCAL and SCA-IND provide group-

level information through Dk, both methods generally do

not provide identical results. Both use the same constraint

in Eq. 3, yet their minimization criteria differ. The SCA

method minimizes f Tk;PjBk

� �
in Eq. 2, while INDSCAL

minimizes the ‘indirect’ criterion g P;DkjBk

� �
¼ I�1

k BT
k Bk

�
�

�PDkPTk2
, such that both models give different P and Dk.

Both methods are expected to give highly similar results

for data without outliers, but g P;DkjBk

� �
will give IND-

SCAL more bias towards individuals that differ consider-

ably from the group average than SCA-IND, because it

minimizes the sum-of-squares of the raw data values

squared. Furthermore, we cannot think of any pressing

biological or chemical grounds to prefer the interpretation

of either g P;DkjBk

� �
or f Tk;PjBk

� �
. Therefore, the

broader view on the individual differences provided by

SCA-IND may be preferred above INDSCAL in most

cases. This technical difference does not pose a limit for

most operations described before for INDSCAL: the

number of components can also be determined by fitting

models with increasing numbers of components and com-

paring the cumulative variation fitted by the model fitr,

using Eq. 4 (Timmerman and Kiers 2003).

fitr ¼ 1�

PK

k¼1

Bk � TkPT
�
�

�
�2

PK

k¼1

Bk

�
�

�
�2

0

B
B
B
@

1

C
C
C
A

ð4Þ

Also the jack-knife approach described before can be

applied in SCA-IND to quantify the confidence in observed

group-level differences, given that enough samples are

available in the group (Jansen et al. 2011).

The results of the SCA-IND analysis presented in this

manuscript have been obtained by algorithms in a package

for MATLAB (Mathworks, Natick, MA), which are

available for download on http://www.bdagroup.nl/content/

Downloads/software/software.php.

2.3 BMRs and individual differences

The BMRs focused upon by INDSCAL are also very rel-

evant to SCA-IND, through the group level of individual

differences described by Dk. Most literature uses the scalar

product matrix BT
k Bk to describe BMRs for simplicity of

notation, but because the ‘sample variance–covariance

matrix’ Sk ¼ I�1
k BT

k Bk can handle unequal numbers of

biological replicates per group k, this is much wider

applicable. Many studies that employ ‘correlation net-

works’ (see e.g. (Steuer et al. 2003; Weckwerth et al.

2004)) study correlation matrices that express the tightness

and linearity of the BMRs. Covariances and correlations

are closely related, as Eq. 5 shows.

Sk ¼ VkRkVk ð5Þ

where Sk is the (J 9 J) matrix of covariances between the

metabolites, Rk is the (J 9 J) matrix of Pearson correla-

tions between metabolite descriptors and Vk is the

(J 9 J) diagonal matrix containing the standard deviations

of each metabolite in group k.

Equation 5 shows that the covariance is a compound

measure that encapsulates the tightness of the relation

between two metabolites from the correlation matrix with

the magnitude of the individual differences in the levels of

these metabolites in matrices Vk. Covariances are therefore

most relevant to quantify individual biochemical differences

and of specific interest to implementation in SCA-IND.

Individual differences between the biological replicates

may change in several ways upon experimental manipu-

lation. First of all, experimental manipulations may cause a

relation between two metabolites to emerge or disappear,

as indicated in the transition from panel a to b in Fig. 1.

Individual differences in metabolomics S97
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The individual differences in both metabolites are just as

large in panel b as they are in a. In b the two are, however,

clearly related, but not in panel a. An appearance of a BMR

is reflected in both the correlation and the covariance, as

indicated in the corresponding coefficients.

However, many experimental manipulations of interest

in systems biology may cause relatively ‘soft’ changes:

dietary or lifestyle changes are expected to mostly affect

systemic pathways that are involved in the basic functions

of the organism. Such pathways are always active and

therefore relationships between metabolites may also exist

in unperturbed control individuals. A second aspect of such

a soft manipulation is that it may affect each individual to a

different degree. For example, each individual plant will

alter the balance between growth and defence differently

upon meeting herbivory. Therefore, the response to soft

manipulations may consist of a mutual level increase of

several metabolites for all individuals, but the intensity of

this increase may be different for each individual. Such a

transition is illustrated from Fig. 1b to c, where the rela-

tionship between both metabolites is conserved, but the

individual differences are much larger in panel c. This

transition is also represented well by covariances. Note that

the correlation coefficient between the levels of both

metabolites does not change, so that such changes cannot

be observed by this measure.

By covariances it is possible to pick up the BMR-related

variation patterns that are most relevant to individual dif-

ferences, which makes them preferable to correlation coef-

ficients. A well-known drawback of the covariance is its bias

towards metabolites with large concentration variations.

However, this aspect transcends individual differences and

is relevant to all data analysis methods: large differences in

the variation of different metabolites are generally amelio-

rated by autoscaling, which incidentally corresponds to

changing focus from the covariance between metabolites to

their correlation. Disregarding this latter aspect, we pre-

scribe the analysis of mean-centered, unscaled data in the

search for individual metabolic differences, corresponding

to modeling the covariances between metabolites.

2.4 Plant data set

Cabbage plants (Brassica oleracea) produce glucosinolates

when subjected to herbivory (Bodnaryk 1994). These

compounds play a complex ecological role in the plant

defence against insect herbivores (Hopkins et al. 2009) and

are also of great interest to human health (Fahey et al.

1997). The study compared the effect that herbivory to the

shoot (SJA) or to the root (RJA) has on glucosinolate

composition, with that of control plants that did not receive

any herbivory. The herbivory was simulated by the appli-

cation of the hormone jasmonic acid (Bodnaryk 1994). A

glucosinolate profiling platform was used to measure the

glucosinolate concentrations at 1, 7 and 14 days after the

simulated attacks: 11 different glucosinolate species were

identified in the plants. This study was described in detail

in two earlier papers (Jansen et al. 2011; Jansen et al.

2009a, b): experimental and chemical analysis details

about the experiment can be found in the latter reference.

Supplementary Table 1 gives the number of biological

replicates in every experimental group.

3 Results and discussion

Both shoot herbivory (SJA) and root herbivory (RJA)

greatly affect plant metabolism, which was already shown

before in several PCA-based analyses (van Dam et al.

2010; Jansen et al. 2011; Jansen et al. 2009a, b) and has

been repeated in Fig. 2. The response to SJA consists of

higher Glucobrassicin (GBC) and Neoglucobrassicin

(NEO) levels throughout the experiment, where the levels

of both glucosinolates become negatively correlated before

day 7. Plants that received RJA also have higher levels of

NEO and GBC, although significantly lower than after SJA

Fig. 1 Individual differences: a relationship between metabolites X

and Y can emerge, such as the transition from panel a–b: the

individual differences in both individual metabolites are equally large

in both panels, but the relation is tighter in panel b. An alternative

transition would be that both metabolites vary more, while preserving

their relation as depicted between panels b and c. Both the Pearson

correlation (CORR) and the covariance (COV) increase for the first

transition, but the second transition is only reflected in the covariance

S98 J. J. Jansen et al.
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and without the negative relation between the two. In

addition, Progoitrin (PRO) and Glucobrassicanapin (GBN)

levels increase between 1 and 7 days after RJA.

3.1 Shoot induction

The group-level scores of the first two SCA-IND compo-

nents indicate relations between NEO and GBC after SJA.

The first component in Fig. 3, describes the negative

relation between the two. The leftmost panel of this figure

shows the group-level scores of this component and the

center panel the associated SCA-IND loadings. The right-

most panel shows the individual level scores and the

measured data of NEO and GBC for SJA and control

plants: in this case this is a valid representation of all

chemical information in this component, as these two

glucosinolates dominate its loadings. The circles and tri-

angles show relations between the measured NEO and

GBC levels for control and SJA plants. The levels of all

SJA plants measured after 7 and 14 days are connected to

dotted lines. These indicate the distance between the

measured NEO and GBC levels in each sample and their

prediction by the SCA-IND model that lies on the inter-

section with the continuous lines of each day. The direc-

tions of these continuous lines are the SCA-IND loadings

for this component—in this figure specifically for these two

glucosinolates. The dotted lines are not parallel to each

other and are not orthogonal to the continuous lines that

represent the loadings, which would have been the case for

orthogonal projections. This shows that the results of this

SCA-IND model are different from those obtained by

PCA-type methods that employ this orthogonality. The

length of these continuous lines, each corresponding to one

harvest day, indicates the score range for that day and

therefore correspond to the magnitudes of the individual

differences on that day and to the group-level scores in the

leftmost panel of Fig. 3. Figure 4 shows the same infor-

mation for the second SCA-IND component representing

the positive relation between NEO and GBC. Both figures

give an insightful view on the individual differences in the

way cabbage plants respond to jasmonic acid by producing

NEO and GBC.

PCA components are ordered according to the amount

of biochemical variation they explain, which is impossible

in SCA-IND components because of the method’s mathe-

matical properties. The biochemical background described

in each component loadings is given in the center panel of

both figures. Alternatively these could be represented as

outer-products prp
T
r , as was done before (Jansen et al.

2011). The group-level scores are very similar to those

obtained for INDSCAL described in detail before (Jansen

et al. 2011). The clear-cut choice for three components in

this earlier model implies that also for SCA-IND three

components is appropriate; the third component will be

Fig. 2 PCA model of

glucosinolate level changes:

average scores are given for

RJA upon root induction (RJA,

squares) and shoot induction

(SJA, triangles), together with

the control plants (crosses). The

first component shows a large

increase for SJA plants and a

smaller, significant increase for

RJA plants, in glucosinolates

NEO and GBC; the second

component shows a negative

relation between the same

glucosinolates that is unique to

SJA. The third component

shows an increase in mainly

PRO and GBN unique to RJA.

The crosses for each

experimental group indicate the

individual plant scores
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described later. Comparison to the PCA results shows that

the positive relation between both glucosinolates in the

second component can be most likely attributed to the

increase in NEO and GBC shared by all SJA plants. This

means that although all plants respond to SJA by increasing

their NEO and GBC levels, the differences in this response

between individual biological replicate plants lead to larger

individual differences in the levels of these glucosinolates

than between control plants.

The individual-level scores also provide additional

information about the individual differences: those of the

first component in Fig. 3 show that the negative relation

between NEO and GBC is associated with a continuous

distribution of plants along the axis 7 days after SJA.

However, 14 days after SJA, two distinct groups emerge

along the axis, one of which has hardly-elevated GBC

levels compared to control plants but considerably more

NEO (e.g. sample A in Fig. 3). The other group has hardly

increased NEO levels compared to control, but much more

GBC—see plant B in the same figure. The positive relation

between both glucosinolates is not associated with the

emergence of such biological replicate groups (see right-

most panel of Fig. 4).

The first component shows that possibly two types of

response emerge, although the number of plants in this

study is relatively low. By the individual-level SCA-IND

scores, each plant harvested 14 days after SJA can be

identified as NEO or GBC-responder. Such subgroups of

otherwise comparable biological replicates are called

‘chemotypes’ and their evolutionary reasons for existence

are widely studied in chemical ecology (van Leur et al.

2006). The role of chemotype differences in the context of

induced responses to herbivory are a biological concept of

emerging interest (Wu et al. 2011): the SCA-IND method

is tailor-made to find patterns of metabolic variation

associated with such concepts.

Fig. 3 SCA-IND component 1 describes the negative relation

between NEO and GBC. Left group-level scores, where circles

indicate control plants, squares the RJA plants and triangles the SJA
plants grey labels show plants harvested after 1 day, white labels after

7 days and black labels show plants harvested after 14 days; the bold
time trajectory belongs to SJA plants. Center SCA-IND loadings for

component 1 that show the negative relation between NEO and GBC.

Right Measured NEO and GBC levels for the SJA plants harvested at

all 3 days (indicated by the symbols, see leftmost panel for legend).

The lines indicate the SCA-IND loadings for this component per day,

specifically for NEO and GBC. The length of each line shows the

range of the individual-level scores for that day, which relate to the

group-level scores in the leftmost panel. The dotted lines indicate

the distance between the measured NEO and GBC levels in plants

harvested 7 and 14 days after SJA and the prediction of these levels

by the SCA-IND model that lie on the continuous lines. Along the line

belonging to 14 days, plant a is indicated as a NEO responder and

plant b as GBC responder. Note that to make the model results

comparable to the measured data, they had to be adjusted with the

experimental group-specific values ak for NEO and GBC
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3.2 Root induction

Root induction leads to changes that are different from those

after shoot induction. The SCA-IND model shows the

individual differences in NEO and GBC levels are larger for

RJA than for control plants until after 7 days (Fig. 4), and

that the negative relation between both glucosinolates is

absent (Fig. 3). However, the response to RJA involves

individual differences in PRO, GBN and several other

glucosinolates. Figure 5 shows these differences in the third

SCA-IND component—the large increase 14 days after SJA

is treated in the supplementary material. These individual

differences increase already 1 day after RJA, where the PCA

model shows increased levels of these glucosinolates only

after 7 days. This implies emerging individual differences

may precede consistent level changes in all individuals. The

individual differences may therefore provide valuable clues

to the metabolic dynamics of induced response.

The individual-level scores (Fig. 5, lower center panel)

show that 1 day after RJA, plants 1–3 have clearly lower

levels of PRO and GBN than plants 5–9. One day after RJA

only the latter group of plants responded to RJA, confirmed

by the measured PRO and GBN levels (Fig. 5, right).

These glucosinolate levels are comparable to control plants

for plants 1–3. The individual differences 7 days after RJA

are much lower than after 1 day, as the group-level scores

in Fig. 5 show. The grouping has therefore disappeared and

together with the increased PCA scores (Fig. 2) this shows

that all plants harvested 7 days after RJA have responded

by increasing their PRO and GBN levels. The response

time of plants to RJA for these glucosinolates therefore lies

between 0 and 7 days.

The induced plant response, even when ‘only’ measured

in 11 different but related metabolites gives rise to a series

of relevant biological concepts. Involving the glucosinolate

levels and their individual differences in control plants in

the interpretation of response dynamics from the SCA-IND

model leads to the putative distinction between early and

late responders in Fig. 5. Further involvement of the a pri-

ori biochemical relation between NEO and GBC allowed

the distinction of response chemotypes. The number of

biological replicates in this dataset proved too low to

quantify the confidence in the observed changes in indi-

vidual differences (and BMRs): the jackknife approach

described before (Jansen et al. 2011) lead to convergence

problems. However, since also the PCA model and the raw

data show the—very large—individual difference and

BMR changes, the model results are reliable. The data

analysis techniques already in use for metabolomics do not

focus on the individual differences related to the BMRs and

therefore SCA-IND gives a complementary, extremely

insightful view on metabolism.

Fig. 4 SCA-IND component 2

describing the positive relation

between NEO and GBC, where

the legend is identical to Fig. 3.

Left group-level scores of

component 2. The trajectory of

SJA is given in bold. Center the

loadings that indicate the

positive relation between NEO

and GBC. Right Measured NEO

and GBC levels of the SJA
plants (equal to the right panel

of Fig. 3) now with the loadings

and scores of component 2

superimposed. The dotted lines
now indicate the distance

between the measured and

predicted NEO and GBC levels

for plants harvested on all

3 days
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3.3 Individual differences vs. group differences

The new view on metabolism that SCA-IND (and the indi-

vidual differences) bring, turn metabolic heterogeneity—

generally considered a major weakness in data analysis of

biological experiments—into an invaluable information

source. The most widely used methods for clustering (e.g.,

with PCA) and discriminant analysis aim for consistent

responses between all individuals, responses in only a few of

the biological replicates within the experimental group are

generally disregarded. The response in PRO and GBN 1 day

after RJA for example is not obvious in the PCA model

(Fig. 2, PC 3) because these individual differences are

embedded with the much larger responses in these gluco-

sinolates that occur later for RJA and SJA plants. However,

we showed here that SCA-IND can highlight these indi-

vidual differences in the group and individual-levels (Fig. 5)

and together with the responses shared by all individuals

(e.g., described by PCA) can be used to further under-

standing of the metabolic behavior of biological systems.

4 Conclusions

Individual differences are an innovative and complementary

source of information that can be harvested to observe and

interpret the biochemistry of metabolism. Such differences

employ the natural variability that is inherently present as an

evolutionary-driven pattern in all biological systems and

complement consistent differences shared by all biological

replicates. The SCA with individual differences scaling

constraints (SCA-IND) models such individual differences.

It combines the view on biological replicates of PCA with

the BMRs that are targeted by INDSCAL.

The SCA-IND model of the metabolic response of

cabbage plants to herbivory, revealed a negative relation

between the levels of NEO and GBC that indicated two

‘response chemotypes’ to shoot induction, which is a

concept of emerging interest. The method also revealed

early and late responders to root induction, which makes

SCA-IND highly fit to study dynamics with metabolomics.

The SCA-IND model thereby provides insight in the

chemical ecology of cabbage plants that was hitherto out-

of-reach.

Individual differences are, however, of specific interest

in many other fields, such as personalized nutrition and

medicine. Metabolomics technology may therefore be

brought to the point of direct application in, e.g., thera-

nostics (Picard and Bergeron 2002), through individual

differences metabolomics and the SCA-IND method.
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