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Abstract

Background Fraser syndrome (FS) features renal agenesis
and cystic kidneys. Mutations of FRAS! (Fraser syndrome 1)
and FREM?2 (FRASI-related extracellular matrix protein 2)
cause FS. They code for basement membrane proteins
expressed in metanephric epithelia where they mediate
epithelial/mesenchymal signalling. Little is known about
whether and where these molecules are expressed in
more mature kidneys.

Methods In healthy and congenital polycystic kidney (cpk)
mouse kidneys we sought Frem?2 expression using a LacZ
reporter gene and quantified Fras family transcripts. Frasl
immunohistochemistry was undertaken in cystic kidneys
from cpk mice and PCK (Pkhdl mutant) rats (models of
autosomal recessive polycystic kidney disease) and in wild-
type metanephroi rendered cystic by dexamethasone.
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Results Nascent nephrons transiently expressed Frem?2 in
both tubule and podocyte epithelia. Maturing and adult
collecting ducts also expressed Frem2. Frem2 was
expressed in cpk cystic epithelia although Frem2 haploin-
sufficiency did not significantly modify cystogenesis in
vivo. Frasl transcripts were significantly upregulated, and
Frem3 downregulated, in polycystic kidneys versus the
non-cystic kidneys of littermates. Frasl was immunode-
tected in cpk, PCK and dexamethasone-induced cyst
epithelia.

Conclusions These descriptive results are consistent with
the hypothesis that Fras family molecules play diverse roles
in kidney epithelia. In future, this should be tested by
conditional deletion of FS genes in nephron segments and
collecting ducts.
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Introduction

Fraser syndrome (FS) is an autosomal recessive disease
characterised by cryptophthalmos (hidden eyes), cutaneous
syndactyly (fused digits), ambiguous genitalia and renal
and upper respiratory (larynx and trachea) tract malfor-
mations [1-3]. Up to about 30% of cases have bilateral
renal agenesis, while others have one or more of the
following: unilateral renal agenesis and uni- or bilateral
cystic, dysplastic or hypoplastic kidneys [2, 3]. FS is
rare, occurring in around 11/100,000 stillbirths and 0.4/
100,000 live births, and a significant subset of the latter
die in the first year with renal and/or respiratory failure
[2, 3]. Survival to old-age is, however, possible when
functional kidney tissue is present [4].
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Some individuals with FS have homozygous mutations
of either FRASI (Fraser syndrome 1) [5] or FREM?2
(FRAS1-related extracellular matrix protein 2) [6]. Mice
with homozygous null mutations of either gene have
developmental anomalies phenocopying human FS [5-8].
The penetrance of renal agenesis is strain dependant,
approaching 100% in the C57BL-6 J background [8]. Outbred
mice with Frasl or Frem2 mutations have a lower incidence
of renal agenesis and, in this context, mice with compound
Frasl/Frem2 mutations have kidneys with multiple cysts
arising from the distal nephron and collecting ducts, as
respectively assessed by uromodulin expression and
binding of Dolichos biflorus lectin [6].

Fras1 and Frem?2 proteins localise in embryonic basement
membranes where they are thought to mediate physical
(e.g. in skin) or signalling (e.g. in metanephric kidney
induction) interactions between epithelia and adjacent
mesenchymal cells [9, 10]. Delivery of Frasl to the
plasma membrane is mediated by interaction with glutamate
receptor-interacting protein 1 (Grip1) [11, 12]. Extracellularly,
Fras] and Frem2 associate with each other and also with a
related molecule called Freml [9, 10, 13, 14]. Mice with
homozygous mutations of Freml [15] or Gripl [11]
phenocopy human FS, and humans with FREMI muta-
tions have an FS-like syndrome with prominent hindgut
and renal tract anomalies [16]. Frem3 is another member
of the Fras protein family [10, 17], but human FREM3
mutations have yet to be reported.

Little is known about whether and where molecules
encoded by FS genes might be expressed in postnatal
kidneys. In this study, we investigated Frem2 expression
in healthy and congenital polycystic kidney (cpk) mouse
kidneys using a LacZ reporter gene and quantified Fras
family transcripts. Frasl immunohistochemistry was un-
dertaken in cystic kidneys from cpk mice and PCK
(Pkhd 1) mutant rats [models of autosomal recessive polycys-
tic kidney disease (PCD)] and in wild-type metanephroi ren-
dered cystic by dexamethasone exposure.

Materials and methods

Experiments were undertaken in accordance with the UK
Home Office Animal (Scientific Procedures) Act 1986. In
the my™5” mouse, Frem?2 is mutated by a gene trap, and
LacZ reporter gene expression mimics tissue patterns of
endogenous Frem2 transcripts [6]. Homozygous my*5”
mutants have the myencephalic blebs phenotype featuring
external eye anomalies, syndactyly and renal malformations,
similar to human FS. For simplicity, we hereafter refer to
this allele as Frem2"“““ and, as a prelude to studies
described below, it was propagated in a C57BL-6 J back-

ground for over six generations by crossing heterozygous
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(Frem2“*““"*) with wild-type mice. For some experiments,
we bred the Frem2“*? allele into mice carrying the cpk allele,
also maintained on a C57BL-6 J background. cpk mice have a
mutation of c¢ystin which encodes a protein localised to the
primary cilium [18]. Although a mutation of a homologous
human gene has yet to be reported, murine cpk/cpk kidneys
anatomically resemble those found in human autosomal re-
cessive polycystic kidney disease (PKD) (ARPKD) [19].

We used the X-gal technique to generate an easily
detected blue-coloured precipitate wherever the LacZ
reporter gene was expressed from the Frem2 locus [6].
This was undertaken in whole mounts, and histology
sections were prepared from these, as described [20].
Using this protocol, no unspecific staining was observed
in foetal or adult kidneys lacking the Frem™*“ allele as
has been demonstrated by Yuan et al. [20] and also in
the Results described below (see Fig. 2g, h; Fig. 3e-h).
Paraffin-embedded kidneys were sectioned (thickness 5 pm)
and, after dewaxing, were variously counterstained with (1)
haematoxylin to detect cell nuclei, (2) antibody to uromodulin
to detect thick ascending limbs of loops of Henle and (3)
antibody to aquaporin-2 to detect collecting ducts [20-22].
Other sections were reacted with anti-Frasl antibody
(HPAO11281; Sigma, St. Louis, MO) raised in rabbits against
a 102 amino acid human epitope that is 87% conserved in
murine Frasl. Primary antibodies were detected using
appropriate secondary antibodies and a peroxidase-based
system, generating a brown colour [20-22]. Representative
staining patterns for at least three organs for each time point
were obtained. In cystic kidneys, we quantified the propor-
tions of cross-sectional areas of kidneys which were occupied
by cysts, as described [22].

Glomerular numbers per kidney were counted after
gentle acid dissociation of 2-week-old kidneys, as previously
described [23]. RNA was extracted from wild-type and
cpk/cpk kidneys, and levels of Fras-related (i.e. Frasl,
Freml, Frem2, Frem3 and Gripl) were measured using
the RT? Profiler PCR Array system, as previously described
[22]. Levels were factored for a panel of transcripts encoded
by housekeeping genes, as described [22]. Student’s #-test was
used to compare data sets.

After determining that Frasl was prominently expressed
in cpk cysts (see Results), Fras] immunohistochemistry was
undertaken in two other cystic models. The first of these was
embryonic day 13 (E13) wild-type CD1 mouse metanephroi
explanted in organ culture and grown in serum-free, defined
media containing 0.47 uM dexamethasone, as previously
described [22]. In this model, which may represent a
paradigm for the modulation of cystogenesis by glucocorti-
coid “foetal programming” [24], nephrons become cystic after
6 days in culture [22]. The second model was 8-week-old
wild-type and PCK homozygous mutant kidneys (Charles
River) which contain predominantly distal nephron and
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collecting duct cysts [25]. These rats carry a mutation in Pkhd1,
the homologous gene being mutated in human ARPKD [26].

Results
Frem2-*“"* kidneys are structurally normal

In preliminary experiments, we noted that E16 homozygous
Frem2*4<#L4¢Z mutant mice lacked kidneys (data not
shown). Conversely, no gross anomalies of shape or size
of either kidneys or lower renal tracts were observed in
several tens of autopsies of foetal and postnatal heterozygous
(Frem2-*“%* ) mice. With regard to kidney weights in 14-day-
old postnatal mice, after nephrogenesis has finished [27],
there was no significant difference (P=0.61) between
wild-type and heterozygous organs [mean = standard
deviation (SD); Frem2", 42+7 mg (n=8); Frem2"**"
40+5 mg (n= 9)]. Similarly, there was no significant
difference (P=0.45) between estimated numbers of glomeruli
per kidney between the two genotypes at this stage [Frem2*",
10.6£1.2x10° (n =13; Frem2"“*, 11.1+1.5%10° (n = 17)].
Frem2™““* kidneys could not be distinguished from wild-type
littermate organs based on histology (data not shown). These
results suggest that Frem2 haploinsuffiency does not overtly
affect nephrogenesis.

Frem?2 is expressed in epithelia in the nephogenic cortex
In mice, layers of nephrons are generated in the superficial

(nephrogenic) cortex beginning in the foetal period and
continuing until the middle of the first postnatal week
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Fig. 1 LacZ expression in histology sections of Frem2-“#" kidneys.

All sections were from kidneys stained using the X-gal procedure, with
a light-blue colour indicating sites of transgene expression. All sections
were counterstained with haematoxylin (dark-blue nuclei). a—c¢ Sections
from the same embryonic day (£16) metanephric kidney, moving from
superficial to deeper areas in the organ. In the nephrogenic (a) and deeper
cortex (b), Frem2/LacZ was expressed in ureteric bud branches (u), S-
shaped bodies (s) and subsets of podocytes (arrows) of immature
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[27, 28]. During this process, termini of ureteric bud
(UB) branches are flanked by primitive nephrons which
have been induced to differentiate into epithelia from
renal mesenchymal cells. In histology sections of E16,
E18 and postnatal day 3 (P3) Frem2-*“" kidneys, transgene
expression was detected in the nephrogenic cortex in UB
stalks and tips (Fig. 1a). Differentiating nephrons adjacent to
UBs also expressed LacZ, most prominently in the distal limb
of the S-shaped body where the proximal tubule forms
(Fig. 1a). Subsets of podocytes in maturing, capillary-loop
stage glomeruli also expressed the transgene (Fig. 1a, b). At
these stages, cortical (Fig. 1b) and medullary (Fig. 1c)
collecting ducts also expressed LacZ. These histological
expression patterns had counterparts that became evident
upon inspection of the whole mount preparations. At E16,
expression was prominent in arborising UB branches and
collecting ducts (Fig. 2a, b), and urothelium in the ureter also
expressed Frem?2 at this stage (Fig. 2a). Clusters of blue
“leopard spots” (each cluster representing a UB terminus
surrounded by primitive nephrons) were detected on outer
surfaces of E18 Frem2"““?* and P3 kidneys (Fig. 2c, ¢),
while sagittal sections at these stages revealed prominent
staining in the nephrogenic zone (Fig. 2d, ). As expected, at
P3 (Fig. 2g, h) and at other stages (data not shown), no specific
signal was detected after X-gal staining of wild-type kidneys.

Frem?2 is expressed in diverse structures
in the normal adult kidney

Inspection of whole mounts at 21 days and 6 weeks
(Fig. 2i, j and data not shown) revealed minimal transgene
expression in the outer cortex of the kidney. In contrast,
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glomeruli. The transgene was expressed by large medullary collecting
ducts (c). d—e Adult kidneys. In the outer medulla (d), tubules expressing
LacZ lie alongside thick ascending limbs of loops of Henle which express
uromodulin (brown). Tubules which express Frem2/LacZ also expressed
aquaporin-2 (brown), defining them as collecting ducts (e). f In adult
kidneys, podocytes do not express Frem2/LacZ. Transgene expression is
noted in smooth muscle cells in a nearby arteriole (arrows). a—e magni-
fication x40, f magnification xX63
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Fig. 2 Whole-mount X-gal staining. All images are of Frem2-*#*
kidneys, except for g and h which are wild-type organs. a, ¢, e, g, i
Views of outside surfaces of kidneys; all other images are of sagittal
sections. At E16, the arborising ureteric bud branches and their tips in
the nephrogenic zone express the reporter gene (blue colour). Note that
the urothelium of the ureter also expresses Frem2/LacZ at this stage
(arrow). At E18, the external pattern becomes more complex, with
clusters of blue, each representing a ureteric bud tip flanked by the
forming nephrons. A similar pattern is noted at postnatal day 3 (P3),
representing a later wave of nephrogenesis. In the adult kidney, trans-
gene expression is most prominent in the outer medulla and papilla,
representing collecting ducts (compare with Fig. le). Radial blue
streaks in the outer cortex represent expression in small arteries
(compare with Fig. 1f). g, h Wild-type kidneys; X-gal staining did
not result in a significant blue signal

a band of prominent expression was detected in the outer
medulla, and there was also marked expression in the
deep medulla/papilla. Frem2"“““ was expressed in medullary
tubules which immunostained for aquaporin-2 but not
uromodulin, defining these structures as collecting ducts

@ Springer

and excluding the possibility that thick ascending limbs
of loops of Henle expressed Frem2/LacZ (Fig. 1d, e).
Walls of renal arteries expressed the transgene (Figure 1f),
but transgene expression was not detected within mature
glomerular tufts (Fig. 1f).

Frasl transcripts are upregulated and Frem3 downregulated
in cpk kidneys

Maintained on a C57BL-6 J background, cpk/cpk mice
undergo two phases of kidney cystogenesis [21, 29]: (1)
during the first postnatal week, proximal tubules form small
cysts; (2) thereafter, cysts derived from collecting ducts
cause massive nephromegaly, with death from renal
excretory failure occurring from the fourth postnatal
week onwards. Thus, for our analyses, we studied day 14
postnatal c¢pk/cpk mice, at which time the histology is
dominated by collecting duct cysts but the animals are
not yet overtly unwell from uraemia. As assessed by qPCR,
there was a significant (P=0.025) 3.5-fold upregulation of
Frasl, based on our comparison of four cpk/cpk Frem2™
kidneys with four kidneys from mice which were wild type at
the both the cpk and Frem2 loci. However, there were no
significant differences between polycystic and non-cystic
kidneys in the expression levels of Frem! (P=0.9), Frem?2
(P=0.5) or Gripl (P=0.3). Levels of Frem3 transcripts
were markedly and significantly (12.4-fold; P=0.001)
downregulated in cpk/cpk versus non-cystic kidneys.

Expression of FS molecules in polycystic kidney epithelia

We crossed the Frem2"“““ allele into cpk mice and examined
the kidneys of cpk/cpk mice which also carried one LacZ
allele. The transgene was expressed in epithelia of small
cortical cysts (Fig. 3a, b) and—but only faintly—in massive
cysts deeper in the organ (Fig. 3¢). Undilated tubules between
cysts strongly expressed Frem2/LacZ (Fig. 3¢, d). In histology
sections of cpk/cpk kidneys, there was no significant
difference between the area occupied by cysts in Frem2**
organs (65+11%; n = 9) compared with Frem2"““* (62+
6%; n = 8) organs. In sections of wild-type mouse kidneys
aged 14 days, Frasl was immunodetected in cortical and
medullary tubules with collecting duct profiles (Fig. 3e, f).
In postnatal day-14 cpk/cpk Frem2"”" kidneys, intense Frasl
immunoreactivity was noted in cyst epithelia (Fig. 3g). In
sections of cpk/cpk Frem2“*“?* Xidneys treated with X-gal
and then immunostained for Frasl, it was apparent that
undilated tubules between cysts expressed Frem?2 but not
Frasl (Fig. 3d). Sections of cpk/cpk Frem2*"* polycystic
kidneys which had undergone identical immunohisto-
chemical procedures but with the primary antibody omitted
showed, as expected, no signals (Fig. 3h). Frasl was also immu-
nodetected in cystic kidney epithelia within dexamethasone-
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Fig. 3 Fraser syndrome gene expression in congenital polycystic
kidneys (cpk). All frames depict histology sections cut from whole
mounts which had been reacted with X-gal to detect LacZ reporter
gene expression. All images show postnatal day-14 cpk/cpk kidneys
apart from e and f which are images of kidneys from non-cpk littermates.
Organs depicted in a—d are from mice which also carry one Frem2"“*
allele, whereas organs depicted in e~h are from mice which are wild type
at the Frem?2 locus. d—h Sections were immunostained for Fras1, but the
primary antibody was omitted in h. a, b. Frem2/LacZ expression (light blue)
in small cortical cysts. ¢ Less marked transgene expression in attenuated
epithelia lining massive cysts deep in the cpk kidney. ¢, d, note that
undilated tubules between large cysts express Frem2/LacZ. e, f Fras] was
immunodetected (brown) in subsets of cortical and medullary tubules in
non-cystic kidneys. d, g Fras] was intensely expressed in cystic epithelia
within cpk kidneys. In d, note that undilated tubules between cysts express
Frem2/LacZ but not Frasl, a result supporting the notion that the Frasl
antibody is non-reactive to Frem2 and specific for Frasl. In e-h, no
(light blue) X-gal reactivity was detected in these kidneys from mice
which did not carry the Frem2"“ allele. No immunohistochemical
(brown) signal was found when the primary antibody to Frasl was
omitted (h). Magnification of all images x40

exposed explanted wild-type metanephroi and in larger cysts,
most likely collecting-duct derived structures [25], in the deep
cortex and outer medulla of adult PCK kidneys (Fig. 4).

Discussion

Frasl and Frem?2 transcripts are known to be expressed in
the E11 mouse UB [6, 8], and previous studies have immu-
nodetected Frasl in UB epithelia [7, 8]. In Frasl null
mutant embryos generated on a C57BL-6 J background,
the UB fails to penetrate renal mesenchyme, and this is
followed by apoptotic involution of the rudiment [5, 8]. Fras!
transcripts are also expressed in vesicles and S-shaped bodies,
early nephron structures and podocytes of foetal glomeruli
[8]. Notably, in outbred adult mice with compound Frasi/
Frem2 mutations, kidneys contain multiple cysts lined by
apoptotic and proliferative epithelia [6], and the same organs
contain glomeruli with perturbed nephrin, podocin, integrin
«3 and fibronectin expression [8].

Together, these previous observations lead to the hypothe-
sis that Frasl and Frem2 genes maintain the integrity of
diverse renal epithelia as well as being involved in the initia-
tion of the metanephric kidney. Until the study reported here,
however, little data have been available on the expression of
FS family molecules from late gestation through to postnatal
maturation. We found that Frem?2 has a complex and dynamic
expression pattern in maturing nephrons, including transient
podocyte expression, and that it is expressed in both maturing
and adult collecting ducts. Furthermore, Frasl protein was
detected in postnatal collecting ducts. A difference between
expression of the two genes was that only Frem2 was found in
the smooth muscle of arterial walls; apart from this, at least
within normal kidneys, the expression of both these FS
molecules is epithelial-specific.

In our study, we measured glomerular numbers in
postnatal kidneys and found that Frem2 heterozygous
mice did not have a significantly different result compared
with wild-type littermates. We used an acid dissociation
technique [23] rather than a non-biased sterology method
for counting glomeruli [30]. Although the latter is considered
the “gold standard”, given that tissue architecture was similar
in the heterozygous and wild-type mouse kidneys, the counts
using the acid dissociation method can be interpreted to mean
that Frem?2 halploinsuficiency is unlikely to confer an impor-
tant difference in numbers. Very recently, a heterozygous
missense FREM?2 mutation has been reported in a patient with
unilateral renal agenesis [31]. In the context of our study of
heterozygous Frem?2 mutant mice in the C57BL-6 J back-
ground, we have yet to observe either unilateral or bilateral
absent kidneys on autopsy. It remains possible that haploin-
sufficiency of Frem2 might cause renal malformations in mice
of different background strains, or that the missense FREM?2
change reported in a patient with agenesis [31] could be
operating in a dominant-negative manner. An alternative
explanation for the human finding is that the FREM2 missense
change simply represents a rare, non-pathogenic variant found
by co-incidence in an individual with agenesis.
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Fig. 4 Frasl immunohistochemistry in dexamethasone-induced and
Pkhd] mutant mice (PCK) cysts, a model of polycystic kidney disease.
All sections were counterstained with haematoxylin (blue nuclei).
Organs depicted in a—d are wild-type mouse metanephric organ cultures,
with a and b grown in vehicle-only and ¢ and d exposed to dexametha-
sone. a and ¢ Primary antibody was omitted, and no significant immu-
nohistochemical (brown) signal was detected in normal structures or cysts
(asterisks). In explants grown in vehicle only (b), weak Frasl signal was
noted in branching collecting ducts (cd). d Fras] was immunodetected in
epithelia of dexamethasone-induced cysts (asterisks). e Adult wild-type
rat kidney; no significant Fras] signal was detected. f PCK kidneys;
smaller cysts (+) displayed minimal Frasl immunostaining, while a
prominent signal appeared in epithelia lining large cysts (arrows). Mag-
nification of all images x40

As discussed in the Introduction, Frasl and Frem?2 code
for basement membrane-associated proteins [9, 10]. Nota-
bly, there exists a human genetic disease called HANAC
(hereditary angiopathy with nephropathy, aneurysms and
muscle cramps) syndrome in which the dominant mutation
of another basement membrane gene, COL4A1, coding for
procollagen type IV «l, is associated with the postnatal
growth of kidney cysts [32]. In this disease, tubule dilatation
is perhaps triggered by weakened physical support
conferred by a defective basement membrane, and it
is possible that this change serves as a paradigm for
cystogenesis associated with Frasl/Frem2 mutations.
Previous studies have shown that the manipulation of
specific genes expressed in cpk kidney epithelia can modify
the size of kidney cysts. As examples, haploinsufficiency
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of the Paired box-2 transcription factor reduces cysto-
genesis, probably by enhancing apoptosis in cystic epi-
thelia [33], whereas genetic downregulation of galectin-3,
a secreted molecule located in the cilia and basal surfaces
of collecting ducts, increases cyst growth by unknown
mechanisms [21].

Based on the fact that Frasl/Frem2 mice can have cystic
kidneys [6], and our current observations that (especially
non-massive and thus presumably growing) cysts in cpk/cpk
kidneys clearly express Frem2, we predicted that a reduction
in expression level of Frem2 might lead to a more severe
cystic phenotype. This was not, however, found to be the
case, at least as assessed by the measurement of kidney
cross-sectional areas occupied by cysts in 14-day-old mice.
Perhaps a more profound experimental reduction of
Frem?2 expression would affect cpk cystogenesis but because
homozygous null mutant Frem2 mice do not develop kidneys,
this idea can not be tested with the experimental tools
currently available to us.

Frasl transcripts were significantly upregulated in
cpk/cpk kidneys compared with those of non-cystic litter-
mates. A trivial explanation for increased Fras/ mRNA
levels would be that, at 14 days of age, a greater pro-
portion of the polycystic kidney is occupied by collecting
duct epithelia compared with a non-cystic organ and that
collecting ducts normally express this gene. On the other
hand, we also found that Frasl was immunolocalised in
cpk cysts, with intense signals. Having made this observation,
we undertook Frasl immunostaining in two other renal
cystic models and detected the protein in dexamethasone-
induced cysts in explanted wild-type organs and in larger
cysts in the PCK rat model of human ARPKD. These
observations, namely, that Frasl is expressed in diverse
models of kidney cysts, can be interpreted in two ways.
Firstly, Frasl expression may be an unspecific reaction in
cystic epithelia. Alternatively, Frasl may be playing active
roles in the biology of cyst growth. In the current study,
we did not have access to a reliable antibody to Frem2,
and thus could not determine Frem?2 tissue localisation in
the two extra models.

Finally, of note, cpk/cpk kidneys showed marked down-
regulation of the Fras family gene, Frem3. Although the
function of this gene in mammals is yet to be defined, it has
been reported that the protein is widely expressed in base-
ment membranes [10, 17] and that fiem3 is required for skin
integrity in embryonic fish [34].

Collectively, the results of our study are consistent with
the hypothesis that FS family molecules may play roles in
diverse kidney epithelia. In future studies, this contention
would be best tested by conditional deletion of specific
genes in specific nephron segments [35] and collecting
ducts [36] in healthy and cystic kidneys.
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