Embedding of sparse data (a) from 3 to 2 dimensions using MDS, PCA, LLE, Isomap and diffusion maps (DfM). Neighborhood size for LLE and Isomap, respectively, were 5 and 10. Sigma for DfM was 0.2. Both linear methods (MDS and PCA) failed to preserve the sparse data structure in the reduced dimension. DfM was able to fully preserve the sparse data pattern in the embedding space. LLE successfully mapped the sparse data structure to the embedded space. Isomap also was able to preserve most of the data structure but was unable to correctly map the all the blue color to the embedding space.