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Purpose: Visualization of anatomical structures using radiological imaging methods is an impor-

tant tool in medicine to differentiate normal from pathological tissue and can generate large

amounts of data for a radiologist to read. Integrating these large data sets is difficult and time-

consuming. A new approach uses both supervised and unsupervised advanced machine learning

techniques to visualize and segment radiological data. This study describes the application of a

novel hybrid scheme, based on combining wavelet transform and nonlinear dimensionality reduc-

tion (NLDR) methods, to breast magnetic resonance imaging (MRI) data using three well-

established NLDR techniques, namely, ISOMAP, local linear embedding (LLE), and diffusion

maps (DfM), to perform a comparative performance analysis.

Methods: Twenty-five breast lesion subjects were scanned using a 3T scanner. MRI sequences

used were T1-weighted, T2-weighted, diffusion-weighted imaging (DWI), and dynamic contrast-

enhanced (DCE) imaging. The hybrid scheme consisted of two steps: preprocessing and postpro-

cessing of the data. The preprocessing step was applied for B1 inhomogeneity correction, image

registration, and wavelet-based image compression to match and denoise the data. In the postpro-

cessing step, MRI parameters were considered data dimensions and the NLDR-based hybrid

approach was applied to integrate the MRI parameters into a single image, termed the embedded

image. This was achieved by mapping all pixel intensities from the higher dimension to a lower

dimensional (embedded) space. For validation, the authors compared the hybrid NLDR with linear

methods of principal component analysis (PCA) and multidimensional scaling (MDS) using syn-

thetic data. For the clinical application, the authors used breast MRI data, comparison was per-

formed using the postcontrast DCE MRI image and evaluating the congruence of the segmented

lesions.

Results: The NLDR-based hybrid approach was able to define and segment both synthetic and clin-

ical data. In the synthetic data, the authors demonstrated the performance of the NLDR method

compared with conventional linear DR methods. The NLDR approach enabled successful segmen-

tation of the structures, whereas, in most cases, PCA and MDS failed. The NLDR approach was

able to segment different breast tissue types with a high accuracy and the embedded image of the

breast MRI data demonstrated fuzzy boundaries between the different types of breast tissue, i.e.,

fatty, glandular, and tissue with lesions (>86%).

Conclusions: The proposed hybrid NLDR methods were able to segment clinical breast data with a

high accuracy and construct an embedded image that visualized the contribution of different radiolog-

ical parameters. VC 2012 American Association of Physicists in Medicine. [DOI: 10.1118/1.3682173]

Key words: manifold learning, dimensionality reduction, machine learning, data fusion, wavelet

transform, image segmentation, visualization, multimodal medical images, multiparametric MRI,

tumor detection, diffusion-weighted imaging, breast, cancer

I. INTRODUCTION

Diagnostic radiological imaging techniques are powerful

noninvasive tools with which to identify normal and suspi-

cious regions within the body. The use of multiparametric

imaging methods, which can incorporate different functional

radiological parameters for quantitative diagnosis, has been

steadily increasing.1–3 Current methods of lesion detection

include dynamic contrast-enhanced (DCE) magnetic reso-

nance imaging (MRI) and=or positron emission tomogra-

phy=computed tomography (PET=CT) images, which

generate large amounts of data. Therefore, image-processing

algorithms are required to analyze these images and play a

key role in helping radiologists to differentiate normal from
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abnormal tissue. In multiparametric functional radiological

imaging, each image sequence or type provides different in-

formation about a tissue of interest and its adjacent

boundaries.4–7 For example, in multiparametric breast MRI,

diffusion-weighted imaging (DWI) and Dynamic Contrast

Imaging (DCE) MRI provide information about cellularity

and the vascular profile of normal tissue and tissue with

lesions.8–10 Similarly, PET=CT data provide information on

the metabolic state of tissue.11,12 However, combining these

data sets can be challenging, and because of the multidimen-

sional structure of the data, methods are needed to extract a

meaningful representation of the underlying radiopathologi-

cal interpretation.

Currently, most computer-aided diagnosis (CAD) can act

as a second reader in numerous applications, such as breast

imaging,13–15 Most CAD systems are based on pattern recog-

nition and use Euclidean distances, correlation, or similar

methods to compute similarity between structures in the data

segmentation procedure.13,16 It has been shown that methods

based on Euclidean distance and other similarity measures

cannot fully preserve data structure, which will negatively

affect the performance of a CAD system.17,18 To overcome

this limitation, we propose a new hybrid methodology, based

on advanced machine learning techniques, and called

“dimensionality reduction” (DR), which preserves the prom-

inent data structures and may be useful for quantitatively

integrating multimodal and multiparametric radiological

images. Dimensionality reduction methods are a class of

algorithms that use mathematically defined manifolds for

statistical sampling of multidimensional classes to generate a

discrimination rule of guaranteed statistical accuracy.19–23

Moreover, DR can generate a two- or three-dimensional

map, which represents the prominent structures of the data

and provides an embedded image of meaningful low-

dimensional structures hidden in the high-dimensional infor-

mation.19 Pixel values in the embedded image are obtained

based on distances over the manifold of pixel intensities in

the higher dimension, and could have higher accuracy in

detecting soft and hard boundaries between tissues, com-

pared to the pixel intensities of a single image modality. To

investigate the potential of DR methods for medical image

segmentation, we developed and compared the performance

of DR methods using ISOMAP, local linear embedding

(LLE), and Diffusion Maps (DfM) on high-dimensional syn-

thetic data sets and on a group of patients with breast cancer.

II. METHODS AND MATERIALS

II.A. Dimensionality reduction

To detect the underlying structure of high-dimensional

data, such as that resulting from multiparametric MRI, we

used dimensionality reduction methods. Dimensionality

reduction (DR) is the mathematical mapping of high-

dimensional data into a meaningful representation of the

intrinsic dimensionality (lower dimensional representation)

using either linear or nonlinear methods (described below).

The intrinsic dimensionality of a data set is the lowest num-

ber of images or variables that can represent the true struc-

ture of the data. For example, T1-weighted imaging (T1WI)

and T2-weighted imaging (T2WI) are the lowest-dimension

set of images that can represent anatomical tissue in the

breast. Mathematically, a data set, X�RD(x1,x2,…xn)¼D(Images)

where, x1,x2,…,xn¼T1WI, T2WI, DWI, DCE MRI or others

and the data set has an intrinsic dimensionality, d<D, if X

can be defined by d points or parameters that lie on a mani-

fold. RD refers to D dimensional space with real numbers.

Typically, we use a manifold learning method to determine

points or locations within a dataset X (e.g., MRI, PET, etc.)

lying on or near a manifold with intrinsic (lower) dimension-

ality, d, that is embedded in the higher dimensional space

(D). By definition, a manifold is a topological space that is

locally Euclidean, i.e., around every point, there exists a

neighborhood that is topologically the same as the open unit

ball in Euclidian space. Indeed, any object that can be

“charted” is a manifold.24

Dimensionality reduction methods map dataset X¼fx1,

x2,…,xng�RD(images) into a new dataset, Y¼ fy1, y2,…,

yng�Rd, with dimensionality d, while retaining the geome-

try of the data as much as possible. Generally, the geometry

of the manifold and the intrinsic dimensionality d of the

dataset X are not known. In recent years, a large number of

methods for DR have been proposed, which belong to two

groups: linear and nonlinear and are briefly discussed in this

paper.

II.B. Linear DR

Linear DR methods assume that the data lie on or near a

linear subspace of some high-dimensional topological space.

Some examples of linear DR methods are: Principal compo-

nents analysis (PCA),25 linear discriminant analysis

(LDA),26 and multidimensional scaling (MDS).27

II.B.1. PCA

Principal component analysis finds a lower dimensional

subspace that best preserves the data variance, and where the

variance in the data is maximal. In mathematical terms, PCA

attempts to find a linear mapping, M, which maximizes the

sum of the diagonal elements (trace) of the following matrix:

MT � R �M; (1)

under the constraint that jMj ¼ 1, where R is the covariance

matrix of the D dimensional data and X ¼ ½x1; x2; :::; xN� is

zeroed mean. “*” represents the multiplication of two matri-

ces. Reports have shown that the linear map M could be esti-

mated using d eigenvectors, i.e., PCA, of the covariance

matrix of the data

R � V ¼ kV; (2)

k is the eigenvalue corresponding to the eigenvector V. The

data X now can be mapped to an embedding space by

Y ¼ M � X; (3)

where the first d largest PCAs are stored in the columns of

matrix M. If the size of the R is high, the computation of the

eigenvectors would be very time consuming. To solve this
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problem, Partridge et al. propsed an approximation method,

termed “Simple PCA,” which uses an iterative Hebbian

approach to estimate the principal eigenvectors of R.28 PCA

has been applied in several applications for pattern recogni-

tion and the intrinsic dimension of the data is distributed on

a linear manifold; however, if the data are not linear, then an

overestimation of the dimensionality could occur or PCA

could fail.29,30

II.B.2. Multidimensional scaling (MDS)

Classical MDS determines the subspace (Y�Rd) that best

preserves the interpoint distances by minimizing the cost

function of error between the pair-wise Euclidean distances

in the low-dimensional and high-dimensional representation

of the data. That is, given X�RD(images), MDS attempts to

preserve the distances into lower dimensional space, Y�Rd,

so that inner products are optimally preserved.

The cost function is defined as

EðX; YÞ ¼
X

ij

ð xi � xj

�� ��� yi � yj

�� ��Þ2; (4)

where xi � xj

�� �� and yi � yj

�� �� are Euclidean distances

between data points in the higher and lower dimensional

space, respectively. Similar to PCA, the minimization can be

performed using the eigen decomposition of a pairwise dis-

tance matrix as shown below

B ¼ sðDÞ ¼ XT � X;

B � V ¼ kV;

M ¼ ½V1;V2; :::Vd�;
Y ¼ M � X; (5)

where B is the pair-wise distance matrix, V is the eigenvec-

tors, M is the eigenvalues, and Y, the first d largest eigenvec-

tors stored in the columns of matrix M, and the embedded

data in the reduced dimension, respectively.

MDS has been applied in several applications in pattern

recognition and data visualization.19–22,31,32 We selected the

most frequently used linear DR methods (PCA and MDS) to

compare with nonlinear DR techniques in our application.

II.C. Nonlinear dimension reduction

Nonlinear techniques for DR do not rely on the linearity

assumption for segmentation and, as a result, more complex

embedding of high-dimensional data can be identified where

linear methods often fail. There are a number of nonlinear

techniques, such as Isomap,21,33 locally linear embed-

ding,22,34 Kernel PCA,35 diffusion maps,36,37 Laplacian

Eigenmaps,32 and other techniques.38,39

II.C.1. Isometric feature mapping (Isomap)

As mentioned before, DR technique map dataset X into a

new dataset, Y, with dimensionality d, while retaining the ge-

ometry of the data as much as possible. If the high-

dimensional data lies on or near a curved smooth manifold,

Euclidean distance does not take into account the distribution

of the neighboring data points and might consider two data

points as close, whereas their distance over the manifold is

much larger than the typical interpoint distance. Isomap over-

comes this problem by preserving pairwise geodesic (or curvi-

linear) distances between data points using a neighborhood

graph.21 By definition, Geodesic distance (GD) is the distance

between two points measured over the manifold and generally

estimated using Dijkstra’s shortest-path algorithm.40

GDs between the data points are computed by construct-

ing a neighborhood graph, G (every data point xi is con-

nected to its k nearest neighbors, xij), where, the GDs

between all data points form a pair-wise GD matrix. The

low-dimensional space Y is then computed by applying mul-

tidimensional scaling (MDS) while retaining the GD pair-

wise distances between the data points as much as possible.

To accomplish this, the error between the pair-wise distances

in the low-dimensional and high-dimensional representation

of the data are minimized using the equation below

X
ð xi � xij

�� ��� yi � yij

�� ��Þ2: (6)

This minimization is performed using various methods, such

as the eigen-decomposition of the pair-wise distance matrix,

the conjugate gradient method, or a pseudo-Newton

method.41 We used the eigen decomposition for our imple-

mentation and Fig. 1 demonstrates the steps used to create

the Isomap embedding.

II.C.2. Locally linear embedding (LLE)

In contrast to Isomap, LLE preserves the local properties

of the data, which allow for successful embedding of non-

convex manifolds. LLE assumes that the global manifold

can be reconstructed by “local” or small connecting regions

(manifolds) that are overlapped. That is, if the neighbor-

hoods are small, the manifolds are approximately linear.

LEE performs linearization to reconstruct the local proper-

ties of the data by using a weighted summation of the k near-

est neighbors for each data point. This approach of linear

mapping of the hyperplane to a space of lower dimensional-

ity preserves the reconstruction weights. Thus, this allows

the reconstruction weights, Wi, to reconstruct data point yi

from its neighbors in the reduced dimension.

Therefore, to find the reduced (d) dimensional data repre-

sentation Y, the following cost function is minimized for

each point xi:

eðWÞ ¼
Xn

i¼1

xi �
Xk

j¼1

wijxij

�����
�����

2

; (7)

subject to two constraints,
Pk
j¼1

wij ¼ 1 and wij¼ 0 when xj 62

RD(images). Where X is input data, n is the number of points,

and k is the neighborhood size. The optimal weights matrix

W (n� k), subject to these constraints, is found by solving a

least-squares problem.22

Then, we compute the embedding data (Y) by calculating

the eigenvectors corresponding to the smallest d nonzero

eigenvalues of the matrix
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E ¼ ðI �WÞT � ðI �WÞ;
E � V ¼ kV;

M ¼ ½V1;V2; :::Vd�;
Y ¼ M � X; (8)

where I is the identity matrix and W is the weights matrix

(n � k). Figure 2 shows the steps for LLE.

II.C.3. Diffusion maps (DfM)

Diffusion maps find the subspace that best preserves the

diffusion interpoint distances based on defining a Markov

random walk on a graph of the data called a Laplacian

graph.36,37 These maps use a Gaussian kernel function to

estimate the weights (K) of the edges in the graph

Kij ¼ e�
xi�xik k2

2r2 1 � i; j � L ; (9)

where L equals the number of multidimensional points and r
is the free parameter, sigma. In the next step, the matrix K is

normalized such that its rows add up to 1

p
ðtÞ
ij ¼

KijPL
n¼1

Kin

; (10)

where P represents the forward transition probability of

t-time steps of a random walk from one data point to another

data point. Finally, the diffusion distance is defined as

D
ð2Þ
ij ¼

XL

r¼1

ðpðtÞir � p
ðtÞ
jr Þ

2

WðxrÞ
;

WðxmÞ ¼

PL
j¼1

pjm

PL
k¼1

PL
j¼1

pjk

; (11)

Here, the high density portions of the graph defined by the

diffusion distance have more weight, and pairs of data points

with a high forward transition probability have a smaller dif-

fusion distance. The diffusion distance is more robust to

noise than the geodesic distance because it uses several paths

throughout the graph to obtain the embedded image. Based

FIG. 2. Steps of Locally Linear Embedding (LLE) algo-

rithm used for mapping data into lower dimension d (1)

search for K nearest neighbors for each data point Xi;

(2) solve the constrained least-squares problem in Eq.

(7) to obtain weights Wij that best linearly reconstruct

data point Xi from its K neighbors, (3) Compute the

low-dimensional embedding vectors Yi best recon-

structed by Wij.

FIG. 1. The steps of Isomap algorithm used for mapping data into lower dimension d: (1) find K nearest neighbors for each data point Xi; (2) calculate pair-

wise geodesic distance matrix and reconstruct neighborhood graph using Dijkstra search algorithm; (3) apply Multidimensional scaling (MDS) on the recon-

structed neighborhood graph (matrix D) to compute the low-dimensional embedding vectors.
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on spectral theory about the random walk, the embedded

image of the intrinsic dimensional representation Y can be

obtained using the d nontrivial eigenvectors of the distance

matrix D

Y : x 7!fk2V2; :::kdVdg: (12)

The DfM graph is a fully connected, eigenvector v1 of the

largest eigenvalue (k1 ¼ 1) that is discarded, and the remain-

ing eigenvectors are normalized by their corresponding

eigenvalues.

II.D. DR-based manifold unfolding

As mentioned above, the DR methods map high-

dimensional data to a lower dimension while preserving data

structure. This property of DR can be used to unfold

N-dimensional manifolds into a lower dimension. To illus-

trate DR capabilities, the advantages and disadvantages of

each linear and nonlinear DR method for manifold unfold-

ing, three well-known synthetic datasets—the Swiss-roll,

3D-clusters, and sparse data sets—were used to test each of

the methods and determine which one(s) to use on the clini-

cal data.

II.E. DR-based multidimensional image data
integration

By using DR and its manifold unfolding ability, we can

integrate multidimensional image data for visualization. Our

proposed DR scheme is shown in Fig. 3(a) and includes two

stages: (1) preprocessing (enhancement, coregistration, and

image resizing); and (2) dimensionality reduction to obtain

an embedded image for soft tissue segmentation. Figure 3(b)

shows the steps for automated extraction of tumor bounda-

ries [A and B in Fig. 3(b)] from the embedded and postcon-

trast images. The same procedure is used for fatty and

glandular breast tissue. To test for overlap and similarity, we

used the Dice similarity (DS) metric.42 The DS measure is

defined as

DS ¼ 2
A \ B

Aþ B
¼ 2

TP

2TPþ FPþ FN
; (13)

where A is the tissue boundary in the embedded image, B is

the tissue boundary in the postcontrast image, TP is the true

positive, FP is the false positive, and FN is the false

negative.

II.F. Preprocessing steps

II.F.1. Image enhancement

Since artifacts and noise can degrade radiological images

and may make identification and diagnosis difficult. In par-

ticular, MRI images can have large B1 inhomogeneities that

can obscure anatomical structures. To estimate true signal

and correct B1-inhomogeneity effects, we used a modified

version of the “local entropy minimization with a bicubic

spline model (LEMS),” developed by Salvado et al.43 LEMS

is based on modeling the bias field, b, as a bicubic spline and

the RF coil geometry as a sufficiently close rectangular grid

of knots scattered across the image (X). Initialization of

LEMS begins with a fourth-order polynomial function esti-

mation of the tissue voxel, where the background is

excluded. Optimization of the bicubic spline model is per-

formed in piecewise manner. LEMS first identifies a region

within the image with the highest SNR and assigns it to Knot

K1 to ensure that a good local estimate of the field b is

obtained. LEMS then adjusts the signal at K1, based on an

8� 8 neighborhood of knots, to locally minimize the entropy

of X in K1 and its neighbors. LEMS repeats the same routine

for other knots with high SNR and minimizes the entropy

within the corresponding knot (Kt) neighbor, as well as in

prior knots (fKjg1�j<t) until either the maximum number of

iterations are reached or the knot entropies do not change

significantly.

FIG. 3. (a) Proposed schema for multidimensional image data integration

using the Non Linear Dimensional Reduction (NLDR) methods to construct

the embedded image and soft tissue segmentation; (b) Proposed schema for

extraction of tumor hard boundaries for direct comparison with the postcon-

trast image as the current standard technique. The same procedure is used

for the other breast tissue (fatty and glandular).

2279 A. Akhbardeh and M. A. Jacobs: Dimensionality reduction for breast MRI 2279

Medical Physics, Vol. 39, No. 4, April 2012



II.F.2. Equalizing image sizes using wavelet transform

As image sizes can vary, there is a need for a method to

equalize image sizes with less loss of spatial and textural

information. If any image is smaller than the desired size

(N), data interpolation should be used to upsize the image

to N. There are several well-known interpolation methods,

such as nearest-neighbor, bilinear, and bicubic. However, if

any of the images are larger than the desired size (N), the

image should be downsized, which causes loss of spatial

and textural information. To avoid this problem, a powerful

multiresolution analysis using wavelet transforms can be

used.44,45

Wavelets are mathematical functions that decompose data

into different frequency components, thereby facilitating the

study of each component with a resolution matched to its

scale.44 The continuous wavelet transform of a square-

integrable function, f(t), is defined as

wf ðs; tÞ ¼
ð1
�1

f ðtÞ 1ffiffi
s
p w

�
t� s

s

�
; (14)

where s and t are the scale (or frequency) and time variable,

respectively. The function wðtÞ, is called a wavelet and must

satisfy the admissibility condition, that is, it must be a zero-

meaned and square-integrable function.

In practical applications, the parameters s and t must be

discretized. The simplest method is dyadic. By using this

method, the fast wavelet transform (FWT) is defined as

wf ½n; 2j� ¼
XN�1

m¼0

f ½m�wj½m� n� ¼ f ½n��wj½n�; (15)

where wj½n� ¼ wðn
2jÞ and f [n] is a sequence with a length of

N (discrete time function), and the * sign represents a circu-

lar convolution.

To implement a fast-computing transform, the FWT algo-

rithm was used. At each level of decomposition, the FWT

algorithm filters data with two filters, called h[n] and g[n].

The filter h[n], a conjugate mirror filter, is a low-pass filter,

and thus, only low-frequency (coarse) components can pass

through it; conversely, g[n] is a high-pass filter to pass high

frequency (detail) components. The dyadic wavelet repre-

sentation of signal a0 is defined as the set of wavelet coeffi-

cients up to a scale J (¼log2N), plus the remaining low-

frequency information [1� j� J].44,45

For image processing, we first applied the 1D FWT to

the rows of the image. Then, we applied the same transform

to the columns and diagonals of each component. There-

fore, we obtained three high-pass (detail) components cor-

responding to vertical, horizontal, and diagonal, and one

approximation (coarse) component. Figure 4 outlines with

block diagrams the procedure using the 1D and 2D FWT.

By using the inverse FWT (IFWT), we could reconstruct

the original image in a different scale and resolution (see

Fig. 4) and when we reformatted, there was no loss of

resolution.

II.F.3. Coregistration methods

For coregistration of the different modalities=parameters,

we used a modified nonrigid registration technique developed

by Periaswamy and Farid.46 The method is based on both

FIG. 4. Signal (a) and image (b) decomposition using Fast Wavelet Trans-

form (FWT); Signal (c) and Image (d) reconstruction using Inverse FWT

(IFWT). a0 is original signal (image). aj and dj, respectively, are the approxi-

mation (coarse or low pass) and detail (high pass) components correspond-

ing to vertical, horizontal, and diagonal at decomposition level j.
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geometric (motion) and intensity (contrast and brightness)

transformations. The geometric model assumes a locally

affine and globally smooth transformation. The local affine

model is based on motion estimation. Model parameters are

estimated using an iterative scheme that uses nonlinear least-

squares optimization to compute model parameters.47 In order

to deal with the large amount of motion and capture both large

and small-scale transformations, a Gaussian pyramid was built

for both source and target images. Model parameters were ini-

tially estimated at the coarsest level and were used to warp

the source image at the next level of the pyramid and update

the model parameters at each level of the pyramid. This multi-

scale approach enabled registration of different images, such

as T1WI, T2WI, and DWI. A set of derivative filters designed

for multidimensional differentiation was used to decrease

noise and to improve the resultant registration.

II.G. Embedded image and scattergram
reconstruction

After the preprocessing (e.g., image enhancement,

wavelet-based compression, and image registration), the radi-

ological images were used as inputs for DR methods. The em-

bedded image was constructed by projecting the features

(image intensities) from N-dimensional space to a one-

dimensional embedding space, using the results from the DR

methods [see Fig. 3(a)]. The resultant embedding points then

reconstructed the embedded image by reforming the embed-

ded data matrix from the size L� 1 to L
2
� L

2
. If we map data

from N-dimensional space into two-dimensional space, we

FIG. 5. Dimension reduction of the Swiss Roll (a) from 3 to 2 dimensions

using MDS, PCA, LLE, Isomap and diffusion maps (DfM). Neighborhood

size for LLE and Isomap, respectively, were 5 and 10. Sigma for DfM was

0.2. The linear methods (MDS and PCA) both failed to unfold the Swiss

Roll in the reduced dimension, while all nonlinear methods (LLE, Isomap,

and DfM) were able to unfold the data and preserve structure. The best

result was obtained by Isomap.

FIG. 6. Demonstration of dimension reduction of 3D clusters (a) from 3 to 2 dimensions using Multidimensional Scaling (MDS), Principal Component Analy-

sis (PCA), Locally Linear Embedding (LLE), Isomap and diffusion maps (DfM). Sigma for DfM was 0.2. Neighborhood size for LLE and Isomap, respec-

tively, were 5 and 10. In this example, all methods except LLE were able to preserve clusters in the reduced dimension. Isomap was not able to fully preserve

structure of for the cyan color cluster in the embedding space. LLE was not able to preserve structure of all three clusters and converted the clusters to points

in the embedding space.

2281 A. Akhbardeh and M. A. Jacobs: Dimensionality reduction for breast MRI 2281

Medical Physics, Vol. 39, No. 4, April 2012



will obtain an unfolded version of the data manifold with dif-

ferent clusters.21,22

II.H. Multiparametric breast MRI segmentation

II.H.1. Clinical subjects

Twenty-five women were scanned as part of a breast

research study. All subjects signed written, informed con-

sent, and the study was approved by the local IRB. Twenty-

three patients had breast tumors (19 malignant and 4 benign)

and two patients had no masses.

II.H.2. Multiparametric MRI imaging protocol

MRI scans were performed on a 3T magnet, using a dedi-

cated phased array breast coil with the patient lying prone with

the breast in a holder to reduce motion. MRI sequences were:

fat suppressed (FS) T2WI spin echo (TR=TE¼ 5700=102) and

fast spoiled gradient echo (FSPGR) T1WI (TR=TE¼ 200=4.4,

2562, slice thickness, 4 mm, 1 mm gap); diffusion-weighted

(TR=TE¼ 5000=90 ms, b¼ 0,500–1000,1282,ST¼ 6 mm);

and finally, precontrast and postcontrast images FSPGR T1WI

(TR=TE¼ 20=4, matrix¼ 5122, slice thickness, 3 mm) were

obtained after intravenous administration of a GdDTPA con-

trast agent [0.2 ml=kg(0.1 mmol=kg)]. The contrast agent was

injected over 10 s, with MRI imaging beginning immediately

after completion of the injection and the acquisition of at least

14 phases. The contrast bolus was followed by a 20cc saline

flush. The DCE protocol included 2 min of high temporal reso-

lution (15 s per acquisition) imaging to capture the wash-in

phase of contrast enhancement. A high spatial resolution scan

for 2 min then followed, with additional high temporal resolu-

tion images (15 s per acquisition) for an additional 2 min to

characterize the wash-out slope of the kinetic curve. Total scan

time for the entire protocol was less than 45 min.

II.H.3. Multiparametric breast MRI segmentation and
Comparison

The nonlinear dimensionality reduction (NLDR) methods

and the embedded image and scattergram were applied to

the breast MRI data. To differentiate tissue types and soft

boundaries between them, a continuous RGB color code can

be assigned to the embedded image. To perform a quantita-

tive comparison between the embedded image and ground-

truth, we used similarity measures based on regional overlap

between hard boundaries. Ground truth was based on the

current clinical standard in breast imaging, which is the post

contrast MRI. We used the Dice similarity index, designed

to find the overlapping regions between two objects (see

Fig. 3). In our application, A and B are lesion areas obtained

by ground truth (postcontrast image) and the embedded

image, respectively. The lesion area for the postcontrast was

obtained by thresholding of the contrast image. The thresh-

old was obtained by evaluating the postcontrast MR image

histogram, and using the mean and a 95% confidence inter-

val. However, the embedded image returned a fuzzy bound-

ary with an RGB color code and the hard boundary was

obtained by converting the embedded image to a binary

image and assigning a “1” to the red color-coded pixels and

a zero to the pixels with other colors. If A and B have full

overlap, then the DS¼ 1.0. But if A and B do not intersect,

then the DS¼ 0. To evaluate the DR methods, we applied

them to segment and visualize breast tumors using multi-

parametric MRI data in a small series of patients and volun-

teers to discern the properties of each MR sequence in breast

lesion identification, no classification was performed and

under investigation.

III. RESULTS

III.A. Synthetic data

Figure 5 shows typical results for DR methods applied to

the Swiss Roll manifold. Both linear methods (PCA and

MDS) failed to unfold the manifold and preserve structure

when mapping from 3 to 2 dimensions. The nonlinear

method, Isomap, was able to unfold the Swiss roll with good

results: but, both LEE and DfM methods were able, in part,

to unfold the Swiss roll with most of the structure retained.

In the 3D point cluster model, most of the linear and nonlin-

ear DR methods, with the exception of LLE, were able to

maintain the 3D cluster structure when mapped to the lower

dimension, as demonstrated in Fig. 6. Notably, LLE con-

verted each cluster to points. Finally, the sparse (nonuni-

form) manifold data revealed the main difference and the

power of nonlinear DR methods compared to linear methods,

as shown in Fig. 7. The linear methods failed to unfold the

sparse data set, whereas, the nonlinear DR methods were

able to preserve, in most cases, the structure of the sparse

manifold. In particular, LLE performed the best, but Isomap

and DfM were able to partially preserve the structure.

FIG. 7. Embedding of sparse data (a) from 3 to 2 dimensions using MDS,

PCA, LLE, Isomap and diffusion maps (DfM). Neighborhood size for LLE

and Isomap, respectively, were 5 and 10. Sigma for DfM was 0.2. Both lin-

ear methods (MDS and PCA) failed to preserve the sparse data structure in

the reduced dimension. DfM was able to fully preserve the sparse data pat-

tern in the embedding space. LLE successfully mapped the sparse data struc-

ture to the embedded space. Isomap also was able to preserve most of the

data structure but was unable to correctly map the all the blue color to the

embedding space.
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III.B. Multiparametric breast MRI preprocessing steps

Based on our encouraging results from the synthetic data,

we applied the nonlinear methods to the multiparametric

breast data using our hybrid integration scheme outlined in

Fig. 3. The preprocessing of the T1WI (sagittal and axial)

before and after B1 inhomogeneity correction is shown in

Fig. 8. The coefficients of variation (COV) for fatty tissue,

as an example, before applying LEMS, were 98.6 and 67.2,

respectively, for T1WI and precontrast MRI images. The

COV improved to 49.3 and 39.2, after correction.

Figure 9 demonstrates the wavelet compression and

decompression methods applied to a DWI (b¼ 500) image.

The original size was 256� 256, and was resized (compressed

and decompressed) to 64� 64. The reconstructed image was

identical to the original image with no errors. Finally, registra-

tion of the breast MRI was achieved using a locally affine

model, and typical results are shown in Fig. 10. The mean

square error between the predicted intensity map of the refer-

ence image and original reference image was 0.0567.

III.C. Multiparametric breast MRI segmentation

Figures 11 and 12 demonstrate the power of using nonlin-

ear embedding of multiparametric breast MRI in several

dimensions, for example, in Fig. 11, there are nine dimen-

sions: T1WI; T2WI; precontrast; postcontrast; DWI (4-b val-

ues) and ADC maps into a single image that provided a

quantitative map of the different tissue types for abnormal

(malignant) and normal tissue. All images were resized to

256� 256 using the methods outlined in Fig. 4. After scaling

the intensity of the embedded images (range of 0–1000), the

lesion tissue appeared red, with normal fatty tissue appearing

blue. The embedded scattergram was useful in classifying

the different tissue types (see Figs. 11 and 12). The Dice

similarity index between the lesion contours defined by the

embedded image demonstrated excellent overlap (>80%)

with the DCE-MRI-defined lesion. Table I summarizes the

Dice similarity index on 25 patients (19 malignant and four

benign cases, and two cases with no masses).

FIG. 8. Correction of B1 inhomogeneity in the MRI data with the local en-

tropy minimization with a bicubic spline model (LEMS) method: Shown are

original and corrected images, respectively, for T1-weighted images. After

correction, better visualization of breast tissues is noted and they isointense

across the image, compared with the images on the left.

FIG. 9. Typical diffusion-weighted image (b¼ 500) in the original size 256� 256, after compression (64� 64) and decompression (reconstructed image:

256� 256). For compression, 2D biorthogonal spline wavelets were used. d
ðhÞ
j; d

ðvÞ
j andd

ðdÞ
j , respectively, are detail components corresponding to vertical, hori-

zontal, and diagonal. aj, is the approximation (coarse) component at decomposition level j.
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Comparison of the computational loads for the NLDR

methods indicated that the load for Isomap was very high

compared to DfM and LLE. For example, for breast MRI

images with a matrix size of 256� 256, the computation

times for DfM, Isomap, and LLE were 19.2, 508.4, and 78.6

s, respectively, using an Intel quad-core with 8 Gb RAM and

a Nvidia Quadro 4000 (256 cores, 2 GB) video card. To

determine the robustness of the NLDR methods to their input

parameters, we varied the different input parameters. These

parameters are defined in Isomap and LLE as the neighbor-

hood size [K], and defined in DfM as the sigma parameter.

Figure 13 shows how the Dice similarity index changed with

each of the NLDR parameter [neighborhood size [K] in Iso-

map and LLE; sigma in DfM] variations. As shown, the

neighborhood size K for Isomap should be chosen to be

greater than 10, and, for LLE, it should vary from 20 to 60.

However, the DfM is very sensitive to sigma in the Gaussian

kernel, and, based on our investigations, sigma should range

between 100 and 1000, but a sigma of at least 100 would be

sufficient for complex data, such as MRI.

IV. DISCUSSION

In this paper, we developed a novel hybrid scheme using

NLDR methods to integrate multiple breast MRI data into a

single embedded image. The resultant embedded image

enabled the visualization and segmentation of breast lesions

from the adjacent normal breast tissue with excellent overlap

and similarity. To determine which DR method to use, we

compared the performance of both linear and nonlinear DR

methods using synthetic and multiparametric breast MRI. In

the synthetic data, the three nonlinear DR methods, namely

DfM, Isomap, and LLE, outperformed the linear methods

(PCA and MDS) in all categories. The NLDR methods, in

general, were able to segment and visualize the underlying

structure of the Swiss Roll, point clouds, and, more impor-

tantly, sparse data. This is important because the sparse data

represents a real-world scenario and the NLDR methods

were able to unfold the underlying structure. This led us to

choose the NLDR methods for the breast data. Multipara-

metric breast data represent complex high-dimensional data,

and no single parameter conveys all the necessary informa-

tion. Integration of the breast parameters is required and our

methods provide an opportunity to achieve such integration.

Our results demonstrate that when the NLDR methods are

applied to breast MRI data, the DR methods were able seg-

ment the lesion and provide excellent visualization of the tis-

sue structure.

This mapping of high-dimensional data to a lower dimen-

sion provides a mechanism by which to explore the underly-

ing contribution of each MR parameter to the final output

image. Indeed, each one of these methods is designed to pre-

serve different data structures when mapping from higher

dimensions to lower dimensions. In particular, DfM and Iso-

map primarily emphasize the global structure within the

multidimensional feature space and are less sensitive to var-

iations in local structure. However, LLE has greater sensitiv-

ity to the variations in local structure and is less sensitive to

variations in global structure. In general, DfM and Isomap

returned images similar to the embedded images from LEE,

FIG. 10. Demonstration of the coregistration of the

MRI data using a locally affine model: (a) the T2WI

source image; (b) the T1WI reference image; (c) warp-

ing map; (d) the final coregistered image and (e) the

difference image obtained from subtracting the refer-

ence image from the registered image.
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using the breast MRI data. Therefore, each of the methods

was able to differentiate the breast lesion cluster within the

scattergram, suggesting that, for computer-assisted diagno-

sis, either of the three DR methods (DfM and Isomap for

global structures and LLE for local structures) could be

applied to better assist the radiologist in decision-making.

This was confirmed by the congruence between each embed-

ded image and breast DCE MRI with the Dice similarity

metric. The Dice similarity metric showed excellent results

with a little variation in the segmented lesion areas between

the embedded and DCE MRI. One potential advantage of

using an embedded image created from the breast MRI

would be to create tissue masks for automatic overlay onto

functional MRI parameters, such as ADC or sodium maps to

FIG. 11. (a) Typical multiparametric MRI data and (b) resulting embedded images and scattergrams for a malignant breast case from three NLDR algorithms

Diffusion Maps (DfM), Isometric feature mapping (ISOMAP), Locally Linear Embedding (LLE). The lower scattergram shown is derived from Isomap. Clear

demarcation of the lesion and surrounding breast are shown.
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develop an automatic quantification system that could be

used to monitor treatment response.12

Other applications for DR methods with MRI data that

have been published include the differentiation of benign

and malignant tissue on magnetic resonance spectroscopy

(MRS) data. Tiwari et al.48 used DR methods to separate the

different peaks of metabolites (choline, citrate, etc.) into dif-

ferent classes and then overlaid the results onto the T2WI of

the prostate with increased sensitivity and specificity. How-

ever, these investigators only utilized the frequency domain

of the spectra and not the entire dimensionality of the pros-

tate data set, that is, combined MRI and MRS. Nevertheless,

they did demonstrate the power of DR methods consistent

with our results. Other recent applications for DR methods

include use on diffusion tensor magnetic resonance images

(DT-MRI). DT-MRI cannot be analyzed by commonly used

linear methods, due to the inherent nonlinearity of tensors,

which are restricted to a nonlinear submanifold of the space

in which they are defined. To overcome this problem, Verma

FIG. 12. (a) Typical axial multiparametric MRI data from a patient with no breast lesion. (b) resulting embedded images and scattergrams demonstrating the

separation of fatty and glandular tissue in the embedded image, the scattergram shown is derived from Isometric feature mapping (ISOMAP).

TABLE I. Dice similarity metric.

Benign (4 cases) Malignant (19 cases)

DfM (%) Isomap (%) LLE (%) DfM (%) Isomap (%) LLE (%)

Mean 81.18 80.61 81.49 87.40 86.70 85.50

Median 82.08 79.97 82.74 86.72 86.15 86.31

SD 6.35 8.51 6.91 5.81 6.83 8.57

Note: 2 cases did not have masses and are not shown. Isometric feature map-

ping (ISOMAP), Locally Linear Embedding (LEE) Diffusion Mapping

(DfM).
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et al.50 and Hamarneh et al.49 calculated the geodesic dis-

tance using Isomap to perform tensor calculations and color-

ize the DTI tensor data. DT-MRI represents tensor data and

step 3 of the Isomap and other NLDR algorithms (embedded

space reconstruction) cannot be applied to integrate diffusion

tensor images. Therefore, the full use of any DR techniques

on DTI data is not feasible. Compared to previous work, in

this manuscript, we compared six types of DR techniques

(three linear and three nonlinear techniques) using both real

and synthetic data and use the power of the DR methods to

segment breast tissue and create an embedding image of

each parameter. Future work is ongoing to discern the impor-

tance of each parameter in the MRI data space. In another

report, Richards et al.,51 demonstrated that DfM outper-

formed PCA (linear DR) in the classification of galaxy red-

shift spectra when used as input in a regression risk model.

In addition, DfM gave better visualization of the reparame-

terized red-shift separation in the embedded image, but both

methods were able to separate the first few components to

identify the different subgroups, which are consistent with

our results. Similarly, we have demonstrated a method by

which to reconstruct an embedded image from the higher-

FIG. 13. Demonstration of the sensitivity of NLDR

methods to control parameters: (a) effects of Sigma

value on the dice similarity index between Diffusion

Maps (DfM) based embedded image and the postcon-

trast; (b) and (c) effects of neighborhood size (K) on

the dice similarity index between the embedded image

and the postcontrast, respectively, for Isomap and LLE.

Example input MRI data for the NLDR methods are

shown in Fig. 11.
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dimension MRI data space into a reduced (embedded)

dimension to use for tumor segmentation and visualization.

Moreover, to deal with the high computational load of DR,

we tested the stability of each method in relation to the input

parameters to determine the optimal range for correct seg-

mentation as defined by the current clinical imaging standard

and found ranges that can be utilized for as starting points

for other applications using breast MRI or other related data

sets. In summary, by combining different MRI sequences,

using dimensionality reduction and manifold learning techni-

ques, we developed a robust and fully automated tumor

segmentation and visualization method. This approach can

be extended to facilitate large-scale multiparametric=
multimodal medical imaging studies designed to visualize

and quantify different pathologies.52
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