Fine structural features of the chloroplast genome: comparison of the sequenced chloroplast genomes

Hiroaki Shimada and Masahiro Sugiura¹*

Mitsui Plant Biotechnology Research Institute, 2-1-6 Sengen, Tsukuba 305 and ¹Center for Gene Research, Nagoya University, Nagoya 464-01, Japan

Received December 21, 1990; Accepted January 31, 1991

EMBL accession nos X15901, X04465, Z00044

ABSTRACT

The entire nucleotide sequences of the rice, tobacco and liverwort chloroplast genomes have been determined. We compared all the chloroplast genes, open reading frames and spacer regions in the plastid genomes of these three species in order to elucidate general structural features of the chloroplast genome. Analyses of homology, GC content and codon usage of the genes enabled us to classify them into two groups: photosynthesis genes and genetic system genes. Based on comparisons of homology, GC content and codon usage, unidentified ORFs can also be assigned to each of these groups such that it is possible to speculate about the functions of products which may be produced by these ORFs. The spacer regions and intron sequences were compared and found to have no obvious homology between rice and liverwort or between tobacco and liverwort.

INTRODUCTION

Chloroplasts are intracellular organelles which contain their own genetic systems and a number of chloroplast components are encoded in their genomes (1,2). Most chloroplast genomes in land plants consist of homogeneous circular DNA molecules which range in size from 120 to 160 kbp. Determination and comparison of corresponding DNA sequences from a variety of chloroplast genomes reveal more accurate information on chloroplast gene structure and on the evolution of these genes. Since the entire nucleotide sequences of the chloroplast DNAs from tobacco, liverwort and rice have been determined (3-5), the structure of all chloroplast genes, open reading frames (ORFs) and spacer regions in these three species can be analyzed at the nucleotide sequence level. We made a complete sequence comparison of these three genomes. We have grouped the chloroplast genes and ORFs into two groups based on homologies, GC contents and codon usages. This classification scheme enables us to predict the function of unidentified gene products from ORFs present in the chloroplast genome.

The entire nucleotide sequences of the rice (*Oryza sativa* L., 134,525 bp) and tobacco (*Nicotiana tabacum*, 155,844 bp) chloroplast genomes (accession numbers x15901 and z00044, respectively, in the EMBL data library) were determined in our laboratory (3,5). The nucleotide sequence of the liverwort chloroplast genome (*Marchantia polymorpha*; 121,024 bp) was obtained from the GenBank database (release 58.0). Computer-aided analysis of nucleotide sequences was carried out using the GENETYX program (Software Development Co., Japan) on an NEC PC9801 computer.

RESULTS AND DISCUSSION

RNA genes

As with all higher plant chloroplast genomes examined to date, four kinds of rRNA genes, 23S, 16S, 5S and 4.5S rDNA are present in the rice, tobacco and liverwort chloroplast genomes. The deduced rRNA sequences of these four genes strongly resemble the corresponding counterparts among these three plant species (Table 1). Among them, the rice 23S rDNA is larger than the other two because an extra 68 bp sequence is present in the middle of the gene. This extra sequence is flanked by short direct GTA repeats and has a significant level of homology to the region immediately upstream of the 23S rDNA sequence (data not shown). This suggests that the 68 bp sequence originated by a duplication of the upstream region. A similar sequence has also been reported in the maize chloroplast 23S rDNA (6), so it seems that this extra 68 bp sequence could be specific in monocots.

Chloroplast tRNA genes (*trns*) are highly conserved (more than 80% homologous) between rice, tobacco and liverwort (Table 1). A unique tRNA gene, *trnR*-CCG, is present only in liverwort (4). Four pseudogenes corresponding to tRNA genes, $\Psi trnfM/G$, $\Psi trnG$, $\Psi trnT$ and $\Psi trnE$, have been identified in rice. These are proposed to have resulted from multiple genome rearrangements, which must have occurred more than four times if the initial rice chloroplast genome rearrangements and the presence of pseudogenes have also been reported in wheat (8,9).

MATERIALS AND METHODS

^{*} To whom correspondence should be addressed

Table 1. RNA genes in rice, tobacco and liverwort chloroplasts

Gene	Gene product	Nu	mber of bp		Homolo	ogy(%)
	-	Rice	Tobacco	Liverwort	T/R	L/R
Ribosomal RN	A genes					·
23S rDNA	23S rRNA	2884	2810	2811	94	91
16S rDNA	16S rRNA	1491	1489	1496	97	94
5S rDNA	5S rRNA	121	121	119	97	89
4.5S rDNA	4.5S rRNA	95	103	103	83	82
transfer RNA	genes					
tmA-UGC*	Ala-tRNA(UGC)	73	73	73	100	97
trnR-ACG	Arg-tRNA(ACG)	74	74	74	100	96
tmR-CCG	Arg-tRNA(CCG)	-	-	74	-	-
tmR-UCU	Arg-tRNA(UCU)	72	72	72	100	89
trnN-GUU	Asn-tRNA(GUU)	72	72	72	97	92
trnD-GUC	Asp-tRNA(GUC)	74	74	74	100	93
trnC-GCA	Cys-tRNA(GCA)	71	72	71	89	93
trnQ-UUG	Gin-tRNA(UUG)	72	72	72	96	93
tmE-UUC	Glu-tRNA(UUC)	73	73	73	96	89
trnG-GCC	Gly-tRNA(GCC)	71	71	71	82	83
trnG-UCC*	Gly-tRNA(UCC)	72	71	70	97	94
trnH-GUG	His-tRNA(GUG)	75	75	75	100	92
tml-CAU	Ile-tRNA(CAU)	74	74	74	92	91
tml-GAU*	Ile-tRNA(GAU)	72	72	72	100	99
tmL-CAA	Leu-tRNA(CAA)	81	81	80	98	94
tmL-UAA*	Leu-tRNA(UAA)	85	85	85	97	87
tmL-UAG	Leu-tRNA(UAG)	80	80	80	96	93
trnK-UUU*	Lys-tRNA(UUU)	72	72	72	97	97
tmfM-CAU	fMet-tRNA(CAU)	73	73	74	92	88
trnM-CAU	Met-tRNA(CAU)	73	73	74	97	96
trnF-GAA	Phe-tRNA(GAA)	73	73	73	97	96
trnP-UGG	Pro-tRNA(UGG)	74	74	74	99	96
tmS-GCU	Ser-tRNA(GCU)	88	88	88	94	94
trnS-GGA	Ser-tRNA(GGA)	87	87	88	97	89
trnS-UGA	Ser-tRNA(UGA)	88	92	88	91	85
tmT-GGU	Thr-tRNA(GGU)	72	72	72	96	94
tmT-UGU	Thr-tRNA(UGU)	73	73	73	93	85
trnW-CCA	Trp-tRNA(CCA)	74	74	74	99	93
trnY-GUA	Tyr-tRNA(GUA)	84	84	82	99	59
tmV-GAC	Val-tRNA(GAC)	72	72	72	100	97
tmV-UAC*	Val-tRNA(UAC)	74	73	72	97	92

*:genes containing introns

No similar pseudogenes have been found in the corresponding regions of the tobacco or liverwort chloroplast genome. However, unique pseudogenes corresponding to *trnR*-UCG and *trnP*-GGG have been reported in tobacco and liverwort, respectively (4,10).

Polypeptide genes and conserved ORFs

The chloroplast genome contains over 62 genes which encode polypeptides (including putative genes). The polypeptides encoded by these genes include ribosomal proteins, RNA polymerase subunits, photosystem components and polypeptides homologous to the mitochondrial NADH dehydrogenase subunits, among others. Among ORFs found in the three chloroplast genomes studied, those with similar sizes and which are located in the corresponding regions of the three genomes are designated as conserved ORFs. The sizes and homologies of the predicted translation products are listed and compared between rice and tobacco and between rice and liverwort in Table 2.

The gene encoding a 30S ribosomal protein 16, rps16, is present in the same region of the rice and tobacco chloroplast genomes. (It is also present in all other angiosperms analyzed to date). The corresponding region in the liverwort genome contains ORF513 which has no homology with rps16, suggesting that ORF513 and rps16 are of different origins. The gene for a unique 50S ribosomal protein, rpl21, is present in the liverwort genome and no corresponding sequence occurs in the rice or tobacco genomes.

A gene encoding an initiation factor, infA, appears to be incomplete in the tobacco genome and lacks a known translation initiation codon. The chloroplast genomes of other higher plants such as spinach have been reported to contain an *infA* reading frame starting from ATG (11). Therefore it seems that the tobacco gene may have lost a portion of its sequence and may thus be a pseudogene.

The following gene have listed in Table 2 as NADH dehydrogenase (ndh) sequences because they have some relation or homology to the mitochondrial NADH dehydrogenase genes (12-15): *psbG*, ORF393/393/392, ORF178/167/*frxB* and ORF159/158/169 (ORFs are listed as rice/tobacco/liverwort, respectively).

A conserved ORF, ORF63/55/69, in the small-single copy region has recently been identified as the gene encoding the 50S ribosomal protein CS32, (gene name: rpl32), which was purified from tobacco chloroplasts and subjected to amino acid sequence determination (16). The corresponding ORFs in rice and liverwort good homology to tobacco rpl32 gene, especially in the N-terminal region.

ORF2280 and ORF2136 are related and are present in the tobacco and liverwort chloroplast genomes, respectively. The

Genes	Gene products	Rice	Number o Tobacco	f codons Liverwort	Homolo T/R	gy(%) L/R	Remarks
			Cart	Suctors Come			
30S ribo	somal proteins		Genetic	System Genes			
rps2	CS2	236	236	235	79	65	
rps3	CS3	239	218	217	79	50	
rps4	CS4	201	201	202	80	70	
ms7	CS7	156	155	155	85	71	
mc8	CS8	136	134	132	75	50	
ms11	CS11	1/2	129	132	69	63	
<i>rps11</i>		145	136	150	00	03	
ps12 ⁺	CS12	124	123	123	89	80	1)
rps14	CS14	103	100	100	85	73	
rps15	CS15	78	87	88	80	53	
rps16*	CS16	86	86	-	90	_	
18	CS18	168	101	75	70	66	
ps19	CS19	93	92	92	68	65	
50S ribo	somal proteins						
vl2*	CS2	273	274	277	90	69	
m114	CS14	172	173	122	83	77	
p:17 m116*	CSIE	125	123	142	00	70	
µ10™ 100	C210	130	134	145	88	/9	
p120	CS20	119	128	116	69	52	
pl21	CS21	-	-	116	-	-	
pl22	CS22	103	155	119	61	55	
pl23	CS23	93	93	91	85	59	
- ซูเ32	CS32	63	55	69	70	65	
m/33	C\$33	66	66	65	73	50	
p136	CS36	37	37	37	92	87	
NA m	lymerase subunite	:					
noA	alnha	, 337	337	340	60	52	
mo ^D	heta	1074	1070	1045	07	54	
pob moC!*	ucia hoto/	10/3	10/0	1003	01	04	
poc1*	oeta	082	08/	084	/8	62	
poC2	oeta"	1514	1392	1386	64	47	
nitiatio	n factor						_
nfA	IF1	107	(96)	78	66	57	2)
			NADH Dehy	ydrogenase Gen	es		
idhA*	NDI	362	364	368	76	70	4)
ıdhB*	ND2	510	387	501	96	68	4)
ıdhC	ND3	120	120	120	87	72	4)
ıdhD	ND4	500	509	499	82	72	4)
ıdhE	ND4L	101	101	100	83	67	4)
ıdhF	ND5	734	710	692	67	53	4)
ndhG	ND6	176	176	101	76	55	4
shC's all	4D	244	204	242	0	55	7) 5)
SUCCIAL	uj 1202/2027 11 IN	240	204	243	02 00	04	5)
JKF393	1393/392(ndhH)	393	393	392	89	83	S)
JRF178	/167/frxB /159/160	178	167	183	81	78	5)
JKF139	138/109	129	158	169	85	72	
59 . 1			Photosy	nthesis Genes			
cibulose bcL	Large subunit	carboxyla 477	se/oxygenase 477	475	93	92	
-							
Thotosys	Rem I	750	750	750	04	01	
ouri DeaD	D700 (A1)	750	730	730	90 07	91 02	
sab	P/00 (A2)	/34	/34	/ 54	9/	92	
osaC	9 kDa protein	81	81	81	95	93	
osal	I protein	36	36	36	89	71	
saJ	J protein	44	44	42	89	76	
hotosys	stem II						
sbA	D1	353	353	353	9 9	97	
osb B	47kDa protein	508	508	508	97	91	
osbC	43kDa protein	473	473	473	97	95	
shD	D2	353	353	353	98	07	
shF	550/0 LDa	82	93	22	08	29	
SUL SAF	550(4 LD-)	20	20	20	70 100	00	
SOL	0339(4 KDa)	27	39	39	100	9/	
SDH	TUKDa protein	73	/3	/4	90	07	
sbl	I protein	36	52	36	97	94	
vsb(J)	J protein(?)	40	40	40	90	85	3)
⊳sbK	K protein	61	98	55	72	65	
	-						

Table 2.	. Polypeptide	genes and	conserved	ORFs in	rice.	tobacco	and	liverwort	chloropl	asts
		Acres			,					

Table 2. (cont	inued)
----------------	--------

Genes	Gene products		Number of	codons	Homolo	ogy(%)	Remarks
	-	Rice	Tobacco	Liverwort	T/R	L/R	
psbL	L protein	38	38	38	100	92	
psbM	M protein	34	34	34	100	88	
psbN	N protein	43	43	43	98	84	
Cytochr	omen b/f complex						
petA	cytochrome f	320	320	320	91	78	
petB*	cytochrome b6	215	215	215	99	96	
petD*	IV	160	160	160	99	94	
petG	v	37	37	36	100	87	
H+-ATI	Pase subunit						
atpA	alpha	507	507	507	88	83	
atpB	beta	498	498	492	92	88	
atpE	epsilon	137	133	135	73	53	
atpF*	Ī	180	184	184	79	53	
atpH	Ш	81	81	81	99	98	
atpI	IV	247	247	248	93	83	
			Conser	ved ORFs			
ORF29/2	29/29	29	29	29	100	86	
ORF31/2	31/31	31	31	31	90	77	
ORF35/2	34/35	35	34	35	100	89	
ORF62/	62/62	62	62	62	87	81	
IRF170/	168/167*	170	168	167	95	84	
ORF185	/184/184	185	184	184	80	60	
ORF216	/IRF196/203*	216	196	203	69	61	
ORF230	/229/434	230	229	434	62	46	
ORF321	/313/320	321	313	320	70	54	
ORF106	512/316	106	512	316	50	45	6)
ORF228	0/2136	-	2280	2136	-	-	
ORF542	/509/370	542	509	370	59	32	

Gene names are listed according to Hallick *et al.* (18,19). ORFs are shown listed as rice/tobacco/liverwort, respectively. Hyphens indicate genes or ORFs which are absent in a particular genome. IRF indicated an introncontaining reading frame. Asterisks indicate genes containing introns.

1) divided gene (20).

2) tobacco infA is assumed to be the largest reading frame.

3) see reference 19.

4) Liverwort ndh are called as ndh1-6. The ndh products were not identified.

5) see references 12-15.

6) There is local homology between 74 amino acids in the protein.

Table 3. Codon usages in rice, tobacco and liverwort chloroplasts.

(A) Rice geneti	c system gen	es											
UUU-Phe 168	UCU-Ser	104	UAU-Tyr	170	UGU-Cys	58	UUG-Leu 134	UCG-Ser	46	UAG-***	9	UGG-Trp	155
UUC-Phe 84	UCC-Ser	93	UAC-Tyr	61	UGC-Cys	26	CUU-Leu 145	CCU-Pro	137	CAU-His	127	CGU-Arg	90
UUA-Leu 200	UCA-Ser	90	UAA-***	31	UGA-***	12	CUC-Leu 44	CCC-Pro	70	CAC-His	46	CGC-Arg	44
UUG-Leu 132	UCG-Ser	45	UAG-***	8	UGG-Trp	72	CUA-Leu 94	CCA-Pro	73	CAA-Gln	164	CGA-Arg	60
CUU-Leu 119	CCU-Pro	93	CAU-His	123	CGU-Arg	111	CUG-Leu 39	CCG-Pro	43	CAG-Gln	60	CGG-Arg	19
CUC-Leu 46	CCC-Pro	60	CAC-His	43	CGC-Arg	41	AUU-Ile 260	ACU-Thr	176	AAU-Asn	175	AGU-Ser	97
CUA-Leu 81	CCA-Pro	74	CAA-Gln	216	CGA-Arg	120	AUC-Ile 101	ACC-Thr	84	AAC-Asn	67	AGC-Ser	28
CUG-Leu 49	CCG-Pro	36	CAG-Gln	61	CGG-Arg	55	AUA-Ile 106	ACA-Thr	92	AAA-Lys	153	AGA-Arg	71
AUU-Ile 262	ACU-Thr	118	AAU-Asn	224	AGU-Ser	91	AUG-Met 156	ACG-Thr	30	AAG-Lys	52	AGG-Arg	24
AUC-Ile 98	ACC-Thr	62	AAC-Asn	81	AGC-Ser	37	GUU-Val 161	GCU-Ala	265	GAU-Asp	194	GGU-Gly	219
AUA-Ile 178	ACA-Thr	98	AAA-Lys	379	AGA-Arg	193	GUC-Val 51	GCC-Ala	76	GAC-Asp	56	GGC-Gly	79
AUG-Met 129	ACG-Thr	49	AAG-Lys	150	AGG-Arg	65	GUA-Val 178	GCA-Ala	152	GAA-Glu	242	GGA-Gly	190
GUU-Val 156	GCU-Ala	115	GAU-Asp	182	GGU-Gly	115	GUG-Val 70	GCG-Ala	64	GAG-Glu	86	GGG-Gly	118
GUC-Val 45	GCC-Ala	53	GAC-Asp	65	GGC-Gly	33	AU: 4517						
GUA-Val 138	GCA-Ala	108	GAA-Glu	296	GGA-Gly	174	GC: 2149 (GC:	32.2%)					
GUG-Val 51	GCG-Ala	51	GAG-Glu	120	GGG-Gly	98							
AU: 4599							(C) Rice NADH	l dehydroge	nase	genes			
GC: 2099 (GC:	31.3%)						UUU-Phe 159	UCU-Ser	70	UAU-Tvr	107	UGU-Cys	38
							UUC-Phe 71	UCC-Ser	52	UAC-Tyr	30	UGC-Cys	5
(B) Rice photos	synthesis gen	es					UUA-Leu 157	UCA-Ser	56	UAA-***	4	UGA-***	1
UUU-Phe 262	UCU-Ser	115	UAU-Tyr	155	UGU-Cys	35	UUG-Leu 57	UCG-Ser	18	UAG-***	4	UGG-Trp	63
UUC-Phe 155	UCC-Ser	86	UAC-Tyr	55	UGC-Cys	14	CUU-Leu 106	CCU-Pro	50	CAU-His	30	CGU-Arg	19
UUA-Leu 261	UCA-Ser	48	UAA-***	11	UGA-***	9	CUC-Leu 30	CCC-Pro	24	CAC-His	13	CGC-Arg	12

Table 3. (continued)

			· · · · · · · · · · · · · · · · · · ·
CUAL In 67		CAA Cla 64	CCA Arr 26
CUA-Leu 07	CCC Pro 11	CAA-GIN 04	CGA-Arg 20
ATTU II. 144			ACU Ser 46
		AAC Asp 27	AGC Ser 18
AUC-IIC 01	ACC-TH 22	AAC-ASII 2/	
AUG Mat 101	ACA-THE 43	AAA-Lys 72	AGA-Alg 54
CUUVal 74	CCU Ala 77	CALLAS 82	COLI Chu 46
GUC Val 10	CCC Ala 16	GAC Asp 85	CCC Cly 00
GUA Val 51	GCA Ala 10	GAC-Asp 10	CCA Chy 104
CUC Val 14	CCC Ala 21	CAC Chu 103	CCC Clu 25
000-vai 14	OCO-Ala 21	GAG-Giu 2/	000-01y 55
AU: 2207			
GC: 876 (GC:	: 28.4%)		
(D) Tobacco	genetic system genes		
UUU-Phe 139	UCU-Ser 126	UAU-Tvr 178	UGU-Cvs 69
UUC-Phe 53	UCC-Ser 66	UAC-Tvr 29	UGC-Cys 15
UUA-Leu 188	UCA-Ser 79	UAA-*** 20	UGA-*** 1
UUG-Len 124	UCG-Ser 40	UAG-*** 3	UGG-Trp 58
CUU-Len 112	CCU-Pro 94	CAU-His 132	CGU-Arg 109
CUC-Len 34	5 CCC-Pro 57	CAC-His 34	CGC-Arg 31
CUA-Len 62	2 CCA-Pro 70	CAA-Gin 180	CGA-Arg 144
CUG-Len 3) CCG-Pro 40	CAG-Gln 61	CGG-Arg 45
AUU-Ile 278	ACU-Thr 107	AAU-Asn 224	AGU-Ser 81
AUC-Ile 9	ACC-Thr 55	AAC-Asn 65	AGC-Ser 24
AUA-Ile 176	ACA-Thr 116	AAA-Lvs 324	AGA-Arg 152
AUG-Met 132	ACG-Thr 35	AAG-Lvs 97	AGG-Arg 61
GUU-Val 120	GCU-Ala 120	GAU-Asn 185	GGU-Glv 127
GUC-Val 49	GCC-Ala 55	GAC-Asp 50	GGC-Glv 40
GUA-Val 137	GCA-Ala 110	GAA-Gh 262	GGA-Glv 199
GUG-Val 50	GCG-Ala 30	GAG-Ghu 76	GGG-Gly 76
	, eee/mu 50		
AU: 4430	2 02 02		
GC: 1/14 (GC	2:27.9%)		
	• • • •		
(E) Tobacco j	photosynthesis genes		
UUU-Phe 272	UCU-Ser 125	UAU-Tyr 157	UGU-Cys 36
UUC-Phe 153	UCC-Ser 71	UAC-Tyr 50	UGC-Cys 12
UUA-Leu 259	UCA-Ser 61	UAA-*** 13	UGA-*** 7
UUG-Leu 146	UCG-Ser 29	UAG-*** 9	UGG-Trp 153
CUU-Leu 146	CCU-Pro 145	CAU-His 127	CGU-Arg 105
CUC-Leu 42	CCC-Pro 46	CAC-His 46	CGC-Arg 26
CUA-Leu 98	CCA-Pro 83	CAA-Gln 176	CGA-Arg 65
CUG-Leu 46	CCG-Pro 46	CAG-Gln 61	CGG-Arg 14
AUU-Ile 239	ACU-Thr 170	AAU-Asn 182	AGU-Ser 97
AUC-Ile 104	ACC-Thr 100	AAC-Asn 69	AGC-Ser 30
AUA-Ile 112	ACA-Thr 87	AAA-Lys 159	AGA-Arg 67
AUG-Met 153	ACG-Thr 35	AAG-Lys 45	AGG-Arg 25
GUU-Val 166	GCU-Ala 272	GAU-Asp 190	GGU-Gly 250
GUC-Val 48	GCC-Ala 95	GAC-Asp 55	GGC-Gly 80
GUA-Val 196	GCA-Ala 153	GAA-Glu 244	GGA-Gly 193
GUG-Val 58	GCG-Ala 55	GAG-Glu 78	GGG-Gly 97
AU: 4642			-
GC: 2078 (GC	: 30.9%)		
20. 20.0 (00			
(F) Tohana	ADH dehudrogeness	conos	
	Marin ucuyun ugcilase	Bernes	
UUU-Phe 157	UCU-Ser 69	UAU-Tyr 122	UGU-Cys 34
UUC-Phe 60	UCC-Ser 35	UAC-Tyr 33	UGC-Cys 10
UUA-Leu 151	UCA-Ser 51	UAA-*** 5	UGA-*** 2
UUG-Leu 63	UCG-Ser 25	UAG-*** 3	UGG-Trp 59
CUU-Leu 92	CCU-Pro 53	CAU-His 33	CGU-Arg 28
CUC-Leu 21	CCC-Pro 19	CAC-His 11	CGC-Arg 7
CUA-Leu 54	CCA-Pro 49	CAA-Gln 60	CGA-Arg 38
CUG-Leu 16	CCG-Pro 7	CAG-Gln 17	CGG-Arg 9
AUU-lie 156	ACU-Thr 68	AAU-Asn 89	AGU-Ser 37
AUC-Ile 65	ACC-Thr 19	AAC-Asn 22	AGC-Ser 17
AUA-lie 122	ACA-Thr 58	AAA-Lys 78	AGA-Arg 36
AUG-Met 100	ACG-Ihr 12	AAG-Lys 18	AGG-Arg 8
GUU-Val 85	GCU-Ala 83	GAU-Asp 89	GGU-Gly 67
GUC-Val 15	GUU-Ala 32	GAC-Asp 20	GGC-Gly 21

GUA-Val 55 GUG Val 15	GCA-Ala 42	GAA-Glu 99	GGA-Gly 103
AU: 2265	OCO-Ala 20		000-0iy 37
GC: 839 (GC: 2	27.0%)		
	,		
(G) Liverwort g	genetic system gen	es	
UUU-Phe 234	UCU-Ser 152	UAU-Tyr 195	UGU-Cys 60
UUC-Phe 13	UCC-Ser 20	UAC-Tyr 20	UGC-Cys 15
UUA-Leu 412	UCA-Ser 92	UAA-*** 25	UGA-*** 0
CUILLen 125	CCU-Sei IU	CALLHis 106	CGU-Arg 112
CUC-Leu 125	CCC-Pro 13	CAC-His 26	CGC-Arg 112
CUA-Leu 30	CCA-Pro 105	CAA-Gln 276	CGA-Arg 116
CUG-Leu 6	CCG-Pro 12	CAG-Gln 12	CGG-Arg 11
AUU-Ile 385	ACU-Thr 135	AAU-Asn 358	AGU-Ser 95
AUC-Ile 21	ACC-Thr 18	AAC-Asn 38	AGC-Ser 7
AUA-Ile 229	ACA-Thr 150	AAA-Lys 623	AGA-Arg 138
AUG-Met 116	ACG-Thr 17	AAG-Lys 15	AGG-Arg 7
GUU-Val 152 GUC Val 16	GCU-Ala 140	GAU-Asp 1/2	GGU-Gly 128
GUC-Val 10	GCC-Ala 2/	GAC-Asp 18	GGC-Gly 24
GUG-Val 108	GCG-Ala 124	GAA-Glu = 521 GAG-Glu = 22	GGG_GIV 203
AU. 5617	000-Ana 15	040-014 22	000-0iy 20
AU: 5017	0.6%)		
	10.0 %)		
(H) Liverwort	photosynthesis gen	es	
UUU-Phe 374	UCU-Ser 167	UAU-Tyr 165	UGU-Cys 33
UUC-Phe 47	UCC-Ser 17	UAC-Tyr 40	UGC-Cys 8
UUA-Leu 461	UCA-Ser 69	UAA-*** 27	UGA-*** 0
UUG-Leu 42	UCG-Ser 14	UAG-*** 1	UGG-Trp 155
CUU-Leu 156	CCU-Pro 171	CAU-His 147	CGU-Arg 124
CUC-Leu 3 CUA-Leu 32	CCC-PTO II	CAC-His 23	CGC-Arg 14
CUG-Leu 32	CCG-Pro 14	CAG-Gln 16	CGG-Arg 39
AUU-Ile 339	ACU-Thr 223	AAU-Asn 208	AGU-Ser 99
AUC-Ile 46	ACC-Thr 24	AAC-Asn 51	AGC-Ser 21
AUA-Ile 88	ACA-Thr 121	AAA-Lys 209	AGA-Arg 80
AUG-Met 161	ACG-Thr 11	AAG-Lys 22	AGG-Arg 6
GUU-Val 236	GCU-Ala 364	GAU-Asp 216	GGU-Gly 309
GUC-Val 14	GCC-Ala 19	GAC-Asp 30	GGC-Gly 28
GUA-Val 182	GCA-Ala 182	GAA-Glu 296	GGA-Gly 223
GUG-Val 19	GCG-Ala 20	GAG-Glu 29	GGG-Gly 31
AU: 5668			
GC: 949 (GC:14	1.2%)		
(I) Liverwort N	ADH dehydrogen	ase genes	
UUU-Phe 267	UCU-Ser 81	UAU-Tvr 130	UGU-Cve 32
UUC-Phe 13	UCC-Ser 12	UAC-Tvr 9	UGC-Cvs 6
UUA-Leu 297	UCA-Ser 59	UAA-*** 7	UGA-*** 1
UUG-Leu 26	UCG-Ser 5	UAG-*** 1	UGG-Trp 58
CUU-Leu 74	CCU-Pro 67	CAU-His 35	CGU-Arg 22
CUC-Leu 5	CCC-Pro 4	CAC-His 2	CGC-Arg 3
CUA-Leu 23	CCA-Pro 39	CAA-Gln 72	CGA-Arg 26
	ACULTER 67	CAG-GIN 2	AGU-Arg 3
AUC-Ile 12	ACC-Thr 1	AAC-Asii 121 AAC-Aen Q	AGC-Ser 5
AUA-Ile 118	ACA-Thr 63	AAA-Lvs 126	AGA-Arg 29
AUG-Met 92	ACG-Thr 4	AAG-Lys 4	AGG-Arg 3
GUU-Val 79	GCU-Ala 104	GAU-Asp 76	GGU-Gly 73
GUC-Val 7	GCC-Ala 7	GAC-Asp 6	GGC-Gly 9
GUA-Val 51	GCA-Ala 45	GAA-Glu 113	GGA-Gly 99
	UUU-Ala /	GAG-GIU 9	000-01y 19
AU: 2706			

GC: 347 (GC: 11.4%)

The total number of codons which have AU or GC in the third position are listed below each table. The genes used to determine the data in Table 3 are listed in Table 2.

GC content (%)

Figure 1. Plots of GC content of individual genes against the GC content of the third codon position in the same genes. A-C represent genes for the genetic system (open circles) and for photosynthesis (filled circles). D-F represent *ndh* sequences (filled circles) and unique ORFs in liverwort (*mbpX* and *frxC*; open circles). G-I represent conserved ORFs (filled circles) and unique ORFs in each genome (open circles). Vertical axes indicate GC content (%) in the third codon position and horizontal axes indicate GC content (%) in individual genes.

Table 4. G	C contents	(%) of	f whole	genes	(including	ORFs)	and	of	the	third	codon	positions.
------------	------------	--------	---------	-------	------------	---------------	-----	----	-----	-------	-------	------------

Genes	Ri	ce.	Toba	0000	Liverwort	Remarks	
	whole	3rd	whole	3rd	whole	3rd	
		Gene	tic system Gene	5		······································	
30S ribosomal proteins			•				
rps2	37.8	32.5	39.0	30.4	29.1	10.2	
rps3	33.3	25.8	36.1	26.0	29.8	10.6	
rps4	37.1	25.7	38.5	26.7	27.3	10.8	
rps7	39.7	23.6	40.4	23.7	32.5	13.5	
rps8	37.0	27.7	35.1	27.4	26.8	11.3	
rps11	42.8	21.5	45.3	36.6	38.4	16.0	
rps12*	42.1	26.4	42.2	23.9	36.0	13.7	
rps14	40.1	32.7	42.9	36.6	30.7	13.9	
rps15	34.1	28.6	30.3	23.9	22.9	10.1	
rps16*	31.8	19.1	37.6	23.3	-	_	
rps18	33.5	25.0	35.0	26.5	30.3	15.8	
rps19	39.4	31.9	34.4	23.7	30.5	9.7	
50S ribosomal proteins							
rpl2*	45.4	35.0	43.6	32.4	33.6	12.6	
rpl14	39.0	25.0	39.8	27.4	30.4	8.1	

Table 4.	(continued)
----------	-------------

Genes	F whole	tice 3rd	Tob whole	acco 3rd	Liverwort whole	Remarks 3rd
rpl16*	44.0	27.7	40.7	17.8	35.9	13.2
rpl20	36.1	30.0	37.0	29.5	28.5	8.6
rpl21			-	-	27.9	12.0
rpl22	36.2	32.7	35.5	26.9	30.8	10.0
rpl23	37.6	29.8	36.9	28.7	23.9	12.0
rpl32	34.4	25.0	32.7	26.8	24.3	7.1
rpl33	38.8	32.8	38.8	38.8	23.2	9.1
rpl36	37.7	23.7	37.7	23.7	35.1	15.8
RNA polymerase subunits						
rnoA	38.1	30.2	34.2	26.6	25.7	9.4
moB	39.7	31.2	38.8	26.9	30.1	10.1
m_0Cl^*	39.3	29.7	38.8	28.3	30.3	9.6
rpoC2	38.8	31.2	38.2	30.2	24.3	10.0
initiation factor						
infA	41.4	43.5	-	-	28.7	7.6
		NAD	H dehydrogena	ise		
ndhA*	34.5	24.8	36.3	23.6	27.3	10.0
ndhB*	38.0	32.7	38.1	30.2	25.2	11.6
ndhC	39.7	33.1	36.4	30.6	24.5	9.9
ndhD	36.5	32.1	34.9	27.3	27. 9	13.6
ndhE	33.3	27.5	32.3	25.5	26.7	10.9
ndhF	33.8	25.0	33.7	25.7	26.3	11.7
ndhG	35.4	25.4	33.0	21.5	22.7	8.3
nshG	38.1	29.2	37.9	28.1	28.8	13.5
ORF393/393/392	37.8	27.9	39.4	30.2	31.5	12.5
ORF178/167/frrB	35.2	28.5	35.5	28.0	26.8	92
OPE150/158/169	30.6	32.5	41 3	35.2	29.4	15 3
OKI 159/156/169	57.0	52.5	41.5	55.2	27.4	15.5
Ribulose 1 5 dinhosphate (arhovvlase	Photo /oxygenase	synthesis Gene	s		
rbcL	44.1	31.8	43.7	29.7	37.5	14.5
Photosystem I						
psaA	43.8	35.4	43.1	32.2	36.2	15.7
psaB	41.5	32.9	41.1	31.2	34.7	13.9
psaC	42.7	28.1	42.7	28.0	35.8	8.5
psal	34.2	37.8	34.2	29.7	24.3	5.4
psaJ	37.0	28.9	41.5	37.8	31.0	14.0
Photosystem II						
psbA	42.3	34.2	42.8	34.7	41.2	30.2
psbB	43.9	30.8	43.9	30.6	37.0	12.8
psbC	43.8	32.7	44.0	32.1	37.1	14.8
psbD	44.3	36.2	43.0	33.6	36.9	17.2
psbE	40.1	31.0	41.7	33.3	36.5	25.0
psbF	41.7	32.5	40.8	32.5	34.2	20.0
psbH	39.6	31.1	37.8	25.7	32.4	14.7
psbI	36.0	29.7	33.8	26.4	29.7	10.8
psb(J)	39.8	24.4	39.0	26.8	39.0	26.8
nshK	35.0	27.4	35.0	38.4	26.8	14.3
nshI.	31.6	30.8	33 3	35.9	25.6	12.8
nshM	30.5	22.9	35.2	34 3	25.7	8.6
psbN	43.2	36.4	42.4	31.8	34.1	15.9
Components of cytochrom	e b/f comp	lex				
petA	41.0	34.0	41.4	34.3	30.7	10.6
petB*	39.8	29.6	41.2	32.9	32.9	14.4
petD*	40.6	31.1	37.7	23.0	33.3	9.3
petG	38.6	34.2	35.1	23.7	33.3	15.8
H ⁺ -ATPase subunits						
atpA	42.3	30.9	40.8	26.8	33.5	8.9
atpB	42.2	30.5	43.1	30.3	34.1	10.3
atpE	42.8	35.5	41.0	29.1	30.2	14.7
atpF*	34.7	31.5	37.8	33.0	31.2	15.1
atpH	44.3	18.3	46.8	26.8	39.8	12.2
atpl	38.4	31.5	37.8	26.2	31.6	11.3
•						

		Conserv	ed ORFs			
ORF29/29/29	42.2	33.3	42.2	33.3	32.2	16.7
ORF31/31/31	33.3	25.0	32.3	21.9	20.8	12.5
ORF35/34/35	35.2	36.1	30.5	17.1	26.9	11.1
ORF62/62/62	35.5	25.4	36.5	28.6	33.3	15.9
IRF170/168/167*	39.4	32.8	39.3	31.4	31.6	10.7
ORF216/196/203	43.2	37.8	42.9	32.1	34.0	14.2
ORF185/184/184	41.0	33.3	38.7	30.8	26.9	9.2
ORF230/229/434	34.1	31.2	33.2	32.6	24.6	14.0
ORF2280/2136	-	_	38.3	37.4	17.9	9.9
ORF321/313/320	33.9	27.6	32.4	24.8	27.0	15.3
ORF106/512/316	37.7	31.8	36.5	32.2	30.9	11.7
		Uniqu	e ORFs			
ORF100	31.4	31.7	-	_	-	_
ORF91	34.1	35.5	-	-	_	-
ORF70	35.7	35.2	-	_	_	-
ORF42	32.6	37.2	-			_
ORF133	40.3	41.8		-	_	_
ORF85	33.7	40.7	_	_	_	_
ORF82	41.0	43.4	_	_	_	_
ORF137	48 1	39.9	_	_	_	- 1)
ORF28	36.8	34.5	_	_	_	- 2)
ORF64	36.4	32.3	_	_	_	- 2)
ORF249	43 5	47.2	_	_	_	
ORE72	41.2	47.2	_	_	_	_
ODE95	41.2	4J.1 27 7	_	-	_	-
ORF03	41.5	57.7	-	-	-	-
ORF23	44.4 22.6	02.5	-		-	-
ORF05	33.0	26.1	_	-	-	-
ORF30	40.9	55.1	-	-	-	- 3)
ORF64	-	-	29.2	33.8	-	-
ORF51	-	-	32.7	36.5	-	-
ORF41	-	-	33.3	40.5	-	-
ORF154	-	-	35.7	38.7		-
ORFIDS	-	-	36.5	40.6	-	-
ORF/UA	-	-	34.7	38.0	-	-
ORF99A	-	-	34.7	42.0	-	-
ORF99B	-	-	31.0	19.0	-	-
ORF103	-	-	29.8	27.9	-	-
ORF8/	-	-	46.2	44.3		-
ORF92	-	-	47.0	43.0	-	-
ORF115	-	-	46.0	45.7	-	-
ORF79	-	-	38.3	36.3	-	-
ORF70B	-	-	39.4	33.8		-
ORF131	-	-	39.1	37.1	-	-
ORF38	-	-	39.3	46.2	-	-
ORF75	-	-	45.6	48.7	-	-
ORF350	-	-	36.7	35.3	-	-
ORF228	-	-	29.8	27.5		-
ORF273(ssb)	-	-	25.8	21.9	-	-
ORF1244	-	-	32.3	27.6		-
ORF135*	-	-	-	-	22.3	11.0
ORF33	-	-	-	-	34.3	14.7
ORF30	-	-	-	-	20.4	19.4
ORF32	-	-	-	-	23.2	9.1
ORF513	-	-	-	-	31.3	11.5
ORF50	-	-	-	-	13.7	9.8
ORF42a	-	-	-	-	28.7	34.9
ORF288	-	-	-	-	28.6	12.1
ORF289(frxC)	-	-	-	-	31.3	9.0
ORF370(mbpX)	-	-	-	-	26.9	10.0
ORF464	_		-	-	19.3	8.8
ORF1068	-	-		_	21.3	10.4
ORF465	-	-	-	-	30.2	9.2
ORFs within the trn's introns						
ORF542/509/370	34.3	31.3	33.1	27.6	18.2	8.6 4)
ORF133	50.3	50.0	-	-	-	- 5)
ORF109	50.0	46.4	-	-	-	- 6)

This ORF lies in the strand opposite the *rpl2* gene.
 This ORF has local homology to tobacco ORF2280.
 This ORF corresponds to ORF393 in the other inverted repeat.
 Within *trnK*.
 Within *trnI*.
 Within *trnA*.
 * Genes containing introns.

tobacco sequence for ORF2280 has recently been revised, and defined as a single ORF which was previously thought contain two ORFs, ORF581 and ORF1708 (T. Wakasugi, personal communication). Though ORF2280 in tobacco corresponds in location to ORF2136 in liverwort, these ORFs have only local homology in common. Rice has no ORF which corresponds in size to ORF2280 and ORF2136 in tobacco and liverwort, however, it contains two short ORFs, ORF28 and ORF64, which bear homology to parts of tobacco ORF2280. Thus, these rice ORFs could be derived from an ORF similar to tobacco ORF2280 as a result of large deletions in the sequence.

Based on homology of translation products, the chloroplast genes from rice, tobacco and liverwort have been classified into two groups. One group includes the genes encoding ribosomal protein, RNA polymerase and NADH dehydrogenase. This group of genes include homologies of 70-80%, between rice, tobacco and liverwort. The second group of genes all have homologies of more than 80% and mainly encode components of the photosynthetic apparatus. The conserved ORFs are distributed into these two groups based on homology. Among them, ORF29/29/29, ORF31/31/31, ORF35/34/35 and IRF170/168/167 (IRF: intron-containing reading frame) have homologies of 80% or more and are grouped with photosynthesis genes. ORF542/509/370 lies within an intron in the *trnK*-UUU gene and has less homology than all the other genes and ORFs, suggesting that ORF542/509/370 may not be functional.

The average GC content of photosynthesis genes (excluding introns) in rice, tobacco and liverwort are calculated to be 41.9%, 41.6% and 34.8%, respectively. These values are substantially higher than those found in the ribosomal protein genes, 38.8%, 38.5% and 28.7% (in rice, tobacco and liverwort, respectively). The GC content of the ribosomal protein genes in comparable to GC content of the entire genomes which are 39.0%, 37.9% and 28.8% in rice, tobacco and liverwort, respectively.

The codon usage pattern (Table 3) suggests that the codons containing A or U on the third position are given preference in the chloroplast genome. Figure 1 shows the relationship between the GC contents of an individual genes (including ORFs) and

Table 5. Introns in rice, tobacco and liverwort chloroplasts.

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Gene	Rice		Tol	Tobacco		erwort	Remarks
TrnA-UGC 812 50.9 709 51.1 768 41.2 trnA-GAU 947 49.8 707 50.8 886 37.5 trnJ-GAU 947 49.8 707 50.8 886 37.5 trnJ-GUCC 678 32.5 691 32.1 593 19.2 trnK-UUU 2504 33.7 2526 33.0 2111 18.9 trnL-UAA 540 35.0 503 33.8 315 22.9 trnL-UAA 540 35.0 503 33.8 315 22.9 trnL-UAA 540 35.0 501 36.4 530 24.5 (50.6) (48.2) (52.9) trnV-UAC 597 38.0 571 36.4 530 24.5 mdhA 987 32.0 1107 32.1 712 22.8 mdhA 987 32.0 1107 32.1 712 22.8 mdhA 987		bp	%GC	bp	%GC	bp	%GC	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	trnA-UGC	812	50.9	709	51.1	768	41.2	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			(56.2)		(56.2)		(58.9)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	tml-GAU	947	49.8	707	50.8	886	37.5	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			(59.7)		(59.7)		(37.5)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	tmG-UCC	678	32.5	691	32.1	593	19.2	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			(54.2)		(53.5)		(51.4)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	trnK-UUU	2504	33.7	2526	33.0	2111	18.9	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			(54.2)		(54.2)		(56.9)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	tmL-UAA	540	35.0	503	33.8	315	22.9	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			(50.6)		(48.2)		(52.9)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	trnV-UAC	597	38.0	571	36.4	530	24.5	
atpF 828 32.7 695 32.2 587 24.9 ndhA 987 32.0 1107 32.1 712 22.8 ndhB 712 39.8 517 39.2 536 17.2 petB 811 33.4 753 32.9 495 18.6 (39.8) (41.2) (32.9) (41.2) (32.9) (32.9) (32.9) (41.2) (32.9) (41.2) (32.9) (41.2) (32.9) (41.2) (32.9) (41.2) (32.9) (41.2) (32.9) (41.2) (32.9) (41.2) (32.9) (41.2) (32.9) (41.2) (32.9) (41.2) (32.9) <td></td> <td></td> <td>(50.0)</td> <td></td> <td>(50.7)</td> <td></td> <td>(51.4)</td> <td></td>			(50.0)		(50.7)		(51.4)	
(34.7) (37.8) (31.2) ndhA 987 32.0 1107 32.1 712 22.8 (34.5) (36.3) (27.3) ndhB 712 39.8 517 39.2 536 17.2 petB 811 33.4 753 32.9 495 18.6 (39.8) (41.2) (32.9) petD 744 37.0 741 36.0 493 19.1 (40.6) (37.7) (33.3) 33.3 33.6 </td <td>atpF</td> <td>828</td> <td>32.7</td> <td>695</td> <td>32.2</td> <td>587</td> <td>24.9</td> <td></td>	atpF	828	32.7	695	32.2	587	24.9	
ndhA 987 32.0 1107 32.1 712 22.8 (34.5) (36.3) (27.3) ndhB 712 39.8 517 39.2 536 17.2 petB 811 33.4 753 32.9 495 18.6 (38.0) (38.1) (25.2) petB 811 33.4 753 32.9 495 18.6 (39.8) (41.2) (32.9) (32.9) (32.9) (32.9) (32.9) (32.9) petD 744 37.0 741 36.0 493 19.1 (40.6) (37.7) (33.3) (33.6) (7.7) (33.3) $7pS12$ 540 40.4 536 39.4 500 21.2 $(q42.1)$ (42.2) (36.0) 744 23.5 (37.6) (37.6) $rpl2$ 663 40.4 666 39.0 544 23.5 (44.0) (43.6) (33.6) 7916 r			(34.7)		(37.8)		(31.2)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ndhA	987	32.0	1107	32.1	712	22.8	
ndhB 712 39.8 517 39.2 536 17.2 (38.0) (38.1) (25.2) petB 811 33.4 753 32.9 495 18.6 (39.8) (41.2) (32.9) (32.9) petD 744 37.0 741 36.0 493 19.1 3'-rps/2 540 40.4 536 39.4 500 21.2 (42.1) (42.2) (33.3) 3 3 </td <td></td> <td></td> <td>(34.5)</td> <td></td> <td>(36.3)</td> <td></td> <td>(27.3)</td> <td></td>			(34.5)		(36.3)		(27.3)	
minute (38.0) (38.1) (25.2) $petB$ 811 33.4 753 32.9 495 18.6 (39.8) (41.2) (32.9) $petD$ 744 37.0 741 36.0 493 19.1 (40.6) (37.7) (33.3) 3' 3' 3' 3' $getD$ 744 37.0 741 36.0 493 19.1 (40.6) (37.7) (33.3) 3 3' 3' $getD$ 744 536 39.4 500 21.2 (42.1) (42.2) (36.0) 7 $psl6$ 878 34.6 860 35.9 $getD$ (31.8) (37.6) 7 7 $pll6$ 1059 29.9 1020 32.2 536 21.1 $getD$ (44.0) (40.7) (35.9) 7 7 7 $pcCl$ - - 738 38.5 608 25.2 1) (2) 729 37.3 783 32.2 <td>ndhB</td> <td>712</td> <td>39.8</td> <td>517</td> <td>39.2</td> <td>536</td> <td>Ì17.2</td> <td></td>	ndhB	712	39.8	517	39.2	536	Ì17.2	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			(38.0)		(38.1)		(25.2)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	netB	811	33.4	753	32.9	495	18.6	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<i>p</i> 012	••••	(39.8)		(41.2)		(32.9)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	netD	744	37.0	741	36.0	493	19.1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	poiz		(40.6)		(37.7)		(33.3)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3'-ms12	540	40.4	536	39.4	500	21.2	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<i>• • • • • • • • • • • • • • • • • • • </i>		(42.1)		(42.2)		(36.0)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	rns16	878	34.6	860	35.9		()	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			(31.8)		(37.6)			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ml2	663	40.4	666	39.0	544	23.5	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	· p•=		(45.4)		(43.6)		(33.6)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ml16	1059	29.9	1020	32.2	536	21.1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			(44.0)	1020	(40.7)		(35.9)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	moCl	_	(738	36.9	596	19.8	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.p		(39.3)		(38.8)		(30.3)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	IRF170/168/167(1)	745	40.5	738	38.5	608	25.2	1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(2)	729	37.3	783	32.2	_	_	2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ζ-γ		(39.4)		(39.3)		(31.6)	,
(2) 643 32.8 518 14.4 2) (43.2) (42.9) (34.0) IRF135* 18.8 (22.3)	ORF216/IRF196/203(1)	-	-	806	32.8	381	17.8	1)
(43.2) (42.9) (34.0) IRF135* 18.8 (22.3)	(2)	-	-	643	32.8	518	14.4	2)
IRF135* 18.8 (22.3)			(43.2)		(42.9)		(34.0)	
(22.3)	IRF135*						18.8	
							(22.3)	

The GC content of exons are shown in parentheses. Hyphens indicate that no intron in present in the corresponding gene or ORF.

1) First intron in the IRF.

2) Second intron in the IRF.

* only in liverwort.

Table 6. Spacer regions in rice, tobacco and liverwort chloroplasts.

Spacer regions		Number of bp		Remarks
opueer regions	Rice	Tobacco	Liverwort	
		5	220	1)
rps19(rpl2) – trnH-GUG	52	5 453	239	1)
$psbA = trn K_{-} IIIIII$	229	214	105	
trnK-UUU – trnO-UUG	2683	3008	2164	2)
trnQ-UUG-psbK	345	347	198	_,
psbK-psbI	389	329	330	
psb1-trnS-GCU	110	123	17	
psbD-psbC	-53	-53	-53	
psbC - tmS - UGA	1/0	239	121	
ORF62/62/62 - trnG-GCC	205	275	199	
trnG-GCC - trnfM-CAU	437	213	50	3)
trnT-GGU-trnE-UUC	518	848	1579	4)
trnE-UUC-trnY-GUA	61	59	71	
trnY-GUA-trnD-GUC	363	108	77	
psbM-ORF29/29/29	766	1132	1063	
ORF29/29/29 - tmC-GCA	413	6/U 1281	393	
$m_{C} - m_{C} = m_{C} $	1084	1281	138	
rpoCl - rpoC2	199	153	50 73	
rpoC2 - rps2	271	226	83	
rps2-atpI	250	226	127	
atpI-atpH	794	1158	377	
atpH-atpF	456	401	208	
atpF-atpA	98	54	45	
atpA-trnR-UCU	132	123	72	
rps14 - psab psbB - psaA	25	25	88 26	
$p_{sbA} = ORF170/168/167$	600	752	20	
ORF170/168/167- <i>trnS</i> -GGA	600	852	245	
trnS-GGA–rps4	285	330	492	
rps4-trnT-UGU	299	371	227	
trnT-UGU-trnL-UAA	770	710	188	
trnL-UAA - trnF-GAA	242	356	76	
OPE150/158/160 = ncbC	490	0/0	162	
psbG-ndhC(3)	-10	-121	-10	
ndhC(3) - trnV-UAC	704	1087	173	
trnV-UAC-trnM-CAU	181	190	148	
trnM-CAU-atpE	112	221	80	
atpE-atpB	-4	-4	5	
atpB-rbcL	784	817	508	-
rbcL-psal	1693	3054	1410	5)
ORF185/184/184 - ORF230/229/434	509 417	222	71	
ORF230/229/434 – petA	231	230	185	
petA-psb(J)	1001	1065	190	
psb(J) - psbL	126	124	119	
psbL-psbF	22	22	21	
psbF-psbE	10	9	9	
PSOE = OKF51/51/51 OPE31/31/31 = patG	1190	1103	597 122	6)
petG-trnW-CCA	116	131	69	
trnW-CCA-trnP-UGG	126	164	88	
trnP-UGG-psaJ	318	438	238	
psaJ-rpl33	441	432	117	
rpl33-rps18	242	186	27	
rps18 - rpl20	222	199	81	
$rp_{120} = 5^{-} rp_{512}$ 5'- $rp_{512} = ORF216/196/203$	075 134	811 140	/80 72	
ORF216/196/203-psbB	510	445	385	
psbB-psbN	320	378	310	
psbN-psbH	103	111	97	
psbH-petB	129	129	107	
petB-petD	192	189	148	
peu – rpoA rpoA – rps11	219	187	32	
rps11-rp31 rps11-rp136	174	101	50	
rpl36—infA	111	12	36	
infA-rps8	136	134	86	
rps8—rpl14	139	168	81	

994 Nucleic Acids Research, Vol. 19, No. 5

Table 6.	(continued)
-----------------	-------------

Spacer regions	Rice	Number of bp Tobacco	Liverwort	Remarks			
rpl14—rpl16	109	124	97				
rpl16—rps3	145	146	57				
rps3—rpl22	55	-16	48				
rpl22-rps19	68	53	17				
rps19—rpl2	261	60	36	7)			
(rps19-trnH-GUG	131	_	-)	,			
(trnH-GUG-rpl2	55	60	-)				
rpl2-rpl23	18	18	36				
rpl23-tml-CAU	174	165	158				
trnL-CAA-ndhB(2)	603	539	123				
ndhB(2) - rps7	304	647	154				
rps7-3'-rps12	58	53	49				
3'-rps12-trnV-GAC	1722	1607	801	8)			
trnV-GAC-16SrRNA	231	227	223	-,			
16SrRNA-trnl-GAU	310	300	273				
tml-GAU-tmA-UGC	64	64	76				
trnA-UGC – 23SrRNA	145	153	159				
23SrRNA – 4.5SrRNA	95	101	107				
4 SSrRNA – SSrRNA	227	256	226				
5SrRNA $-tmR-ACG$	256	250	204				
tmR-ACG-tmN-GUU	251	581	705				
trn N-GUU = ndh $F(5)$	2145	1366	768	0)			
ndhF(5) = rnl32	714	768	706	10)			
$rn/32 - trn I_{-}U\Delta G$	530	932	1178	11)			
tmL-UAG-ORE321/313/320	82	103	178	11)			
ORF321/313/320 - ndbD(4)	106	237	220				
ndhD(4) = nsaC	110	257	124				
nsaC - ndh F(4I)	446	260	222				
psuc = hand(4L) ndhE(4L) = ndhG(6)	200	200	53				
ndhC(6) = OPE178/167/frr B	209	306	00				
$OPE179/167/fm P_n dh A(1)$	04	94	51				
OR(1/8/10/1)/AD = num(1) ndh A(1) = OPE303/303/302	74	04	1				
OPE303/303/302 - me15	128	111	52				
$m_{1}/(5-m_{1})/(5-m_{1})$	1520	6/21	8088	12)			
10515-11124-000	1550	0451	0000	12)			
Spacer that contains an inversion breakpoint							
tmS-GCU-psbD	983	-	_	13)			
tmfM-tmG-UCC	9/	_	-	14			
tmG-UCC-tmT-GGU	1307	-	-	14)			
tmR-UCU-rps14	371	_	_	15)			
tmS-GCU-tmG-UCC	-	779	845				
tmG-UCC-tmR-UCU	-	169	64				
psbM-tmD-GUC	-	380	1074				
tmT-GGU-psbD	-	1218	416				
trnL-CAA—psbM	-	-	242				
trnfM-rps14	-	149	103				
tml-CAU-tmV-GAC	-	_	756				
trnI-CAU-trnL-CAA	1498	7656	-	16)			
trnH-GUG-ORF2136	-	_	239				
ORF2136-tmD-GUC	-	-	91				
rps15-ndhF	614	-	-				

1) rps19 in rice and rpl2 in tobacco and liverwort.

2) rps16 in rice and tobacco, ORF513 in liverwort are present within the spacer.

3) $\Psi trnG$ in rice.

4) ¥trmT, ¥trmE in rice, ORF370(mbpX) in liverwort.
5) ¥rpl23, ORF133 and ORF106 in rice, ORF512 in tobacco, trmR-CCG and ORF316 in liverwort.

6) $\Psi rps 12$ in rice.

7) Junction between IR and LSC in rice and tobacco, *trnH* in rice.
8) Junction between IR and LSC in liverwort.

9) Junction between IR and SSC in rice and tobacco, rps15 in rice and ORF350 in tobacco.

10) rpl21 in liverwort.

11) ORF288 and tmP-GGG in liverwort.

12) Junction between IR and SSC in three genomes, ORF228, ORF273(ssb) and ORF1244 in tobacco, ORF464, ORF1068 and frxC in liverwort.

13) ORF100 in rice.

14) $\Psi rps12$ in rice.

15) $\Psi trnfM/G$ in rice.

16) ORF249 in rice, ORF581 and ORF1708 in tobacco.

the numbers of codons in the same gene with use G or C in the third position. Plots of this relationship for most genes are localized in the lower right quadrant of the graph (when both axes are extended to 100%), indicating a strong tendency to use A or U in the third codon position. This tendency is strongest in liverwort. The photosynthesis genes show high homology among the three chloroplast genomes (see Table 2), higher overall GC contents and higher GC preferences in the third codon position than do other genes (Table 4). Thus, photosynthesis genes can also be considered to constitute a distinct and single group based on GC content (they are plotted in higher positions in Figure 1A-C).

It has been reported that nuclear genes in higher plants tend to use G or C in the third position of codons. Especially in most monocot nuclear genes, the GC content of the third codon position is more than 80% (17). The fact that the chloroplast genome tends to use A or U in the third codon position suggests the chloroplast genome is derived from different origins than the nuclear genomes or has been affected by different evolutional forces.

The *ndh* sequences are placed in the lower sequence homology group, separate from the group of photosynthesis genes. The GC content of these genes also supports this classification since the relationship between GC content and codon usage among these gene is more similar to that of ribosomal protein genes than that of photosynthesis genes (Fig. 1D-F). These observations suggest that *ndh* products have different functions or locations than photosynthesis proteins.

Plots for the GC content and codon usage for the conserved ORFs also show that these genes fall into lower homology group along with most of the chloroplast genes (Fig. 1F-I). However, dots representing some unique ORFs are dispersed in these plots. ORFs with exceptional values in GC content and GC usage in the third codon position are thought to be unfunctional. Conversely, conserved ORFs showing similar features to photosynthesis genes may encode photosynthesis proteins. These include ORF29/29/29, IRF170/168/167 and ORF216/IRF196/203. The the other conserved ORFs similar to ribosomal protein genes or *ndh* sequences are ORF31/31/31 and ORF321/313/320.

Some chloroplast genes contain introns. Introns from rice and tobacco are, in most cases, larger than those of liverwort (Table 5). The rice RNA polymerase gene, *rpoC1*, and ORF216 lack introns and liverwort IRF167 lacks the second intron. The GC contents in introns is lower than that of exons.

Spacer regions

The size of the chloroplast genomes in rice, tobacco and liverwort are different. These differences in genome size are largely accounted for by differences in the inverted repeat regions (IRs) and spacer regions. As shown in Table 6, most of the spacer regions in liverwort are shorter than those in rice and tobacco. The liverwort spacers are highly rich in A and T, and although promoters and terminators are included in the spacer regions between genes, little homology exists between the spacers in rice and tobacco and the spacers in liverwort (data not shown). It is therefore assumed that the structure of chloroplast promoters and terminators in liverwort are quite different from those found in the chloroplasts of higher plants.

REFERENCES

- 1. Palmer, J.D. (1985) Annu. Rev. Genet., 19, 325-354.
- 2. Sugiura, M. (1989) Annu. Rev. Cell Biol. 5, 51-70.
- Shinozaki, K., Ohme, M., Tanaka, M., Wakasugi, T., Hayashida, N., Matsubayashi, T., Zaita, N., Chunwongse, J., Obokata, J., Shinozaki, K.Y., Ohto, C., Torazawa, K., Meng, B.Y., Sugita, M., Deno, H., Kamogashira, T., Yamada, K., Kusuda, J., Takaiwa, F., Kato, A., Tohdoh, N., Shimada, H. and Sugiura, M. (1986) EMBO J., 5, 2043-2049.
- Ohyama, K., Fukuzawa, H., Kohchi, T., Sano, T., Sano, S., Shirai, H., Umezomo, K., Shiki, Y., Takeuchi, M., Chang, Z., Aota, S., Inokuchi, H. and Ozeki, H. (1988) J. Mol. Biol. 203, 281-298.
- Hiratsuka, J., Shimada, H., Whittier, W.F., Ishibashi, T., Sakamoto, M., Mori, M., Kondo, C., Honji, Y., Sun, C.R., Meng, B.Y., Li, Y.Q., Kanno, A., Nishizawa, Y., Hirai, A., Shinozaki, K. and Sugiura, M. (1989) Mol. Gen. Genet., 217, 185-194.
- 6. Edward, K. and Koessel, H (1981) Nucl. Acids Res., 9, 2853-2869.
- 7. Shimada, H. and Sugiura, M. (1989) Curr. Genet. 16, 293-301.
- 8. Howe, C.J. (1985) Curr. Genet., 10, 139-145.
- 9. Howe, C.J., Barker, R.F., Bowman, C.M. and Dyer, T.A. (1988) Curr. Genet., 13, 343-349.
- Kato, A., Takaiwa, F., Shinozaki, K. and Sugiura, M. (1985) Curr. Genet., 9, 405-409.
- Sijben-Mueller,G., Hallick,R.B., Alt,J., Westhoff,P. and Herrman,R.G. (1986) Nucl.Acids Res. 14, 1029–1044.
- 12. Fearnley, I.M., Runswick, M.J. and Walker, J.E. (1989) EMBO J., 8, 665-672.
- Nixon, P.J., Gounaris, K., Coomber, S.A., Hunter, C.N., Dyer, T.A. and Barber, J. (1989) J.Biol.Chem., 264, 14129-14135.
- 14. Wu,M., Nie,Z.Q. and Yang,J. (1989) Plant Cell, 1, 551-557.
- 15. Mayers, S.R., Cook, K.M. and Barber, J. (1990) FEBS Lett. 262, 49-54.
- Yokoi, F., Vassileva, A., Hayashida, N., Torazawa, K., Wakasugi, T. and Sugiura, M. (1990) FEBS Lett. in press.
- 17. Campbell, W.H. and Gorwi, G. (1990) Plant Physiol. 92, 1-11.
- 18. Hallick, R.B. and Bottomley, W. (1983) Plant Mol. Biol. Repr. 1, 38-43.
- 19. Hallick, R.B. (1989) Plant Mol. Biol. Repr. 7, 266-275.
- Torazawa,K., Hayashida,N., Obokata,J., Shinozaki,K. and Sugiura,M. (1986) Nucl. Acids Res., 14, 3143.