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Abstract
Obesity is a risk factor for type 2 diabetes mellitus (DM) and is associated with chronic kidney
disease. Activation of the renin-angiotensin-aldosterone system (RAAS) is common in obesity.
The RAAS is an important mediator of hypertension. Mechanisms involved in activation of the
RAAS in obesity include sympathetic stimulation, synthesis of adipokines in the RAAS by
visceral fat, and hemodynamic alterations. The RAAS is known for its role in regulating blood
pressure and fluid and electrolyte homeostasis. The role of local/tissue RAAS in specific tissues
has been a focus of research. Urinary angiotensinogen (UAGT) provides a specific index of the
intrarenal RAAS. Investigators have demonstrated that sex steroids can modulate the expression
and activity of the different components of the intrarenal RAAS and other tissues. Our data
suggest that obese women without DM and hypertension have significantly higher levels of
UAGT than their male counterparts. These differences existed without any background difference
in the ratio of microalbumin to creatinine in the urine or the estimated glomerular filtration rate,
raising a question about the importance of baseline gender differences in the endogenous RAAS in
the clinical spectrum of cardiovascular diseases and the potential utility of UAGT as a marker of
the intrarenal RAAS. Animal studies have demonstrated that modifying the amount of
angiotensin, the biologically active component of the RAAS, directly influences body weight and
adiposity. This article reviews the role of the RAAS in renal injury seen in obesity and the
metabolic syndrome.
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Introduction
Chronic kidney disease (CKD) is widely recognized as a global health problem. Type 2
diabetes mellitus (DM) is the leading cause of end-stage renal disease (ESRD), and obesity
is a major risk factor for both DM and kidney disease. Currently, more than 1.6 billion
adults worldwide are over-weight, and over 400 million are obese [1, 2]. Obesity is
associated with insulin resistance, and the exponential increase in obesity is leading to an
increased incidence of DM, hypertension, and dyslipidemia [3, 4]. Several studies suggest a
link between obesity and CKD [5-9]. Baseline body mass index (BMI) has been suggested
as an independent predictor of CKD progression [10]. Abnormal activation of the renin-
angiotensin-aldosterone system (RAAS), oxidative stress, and environmental factors
(including excessive dietary intake of salt and fat) are all factors that contribute to the
pathology of CKD in obesity and metabolic syndrome. This review discusses the link
between the RAAS and renal injury in obesity and the metabolic syndrome.

Epidemiology of Obesity, the Metabolic Syndrome, and Chronic Kidney
Disease

Several epidemiologic and longitudinal studies [5-11] provide evidence for the association
of obesity and the metabolic syndrome with CKD. In the Kidney Early Evaluation Program
(KEEP) [11], 16% of the 6,071 screened eligible persons had a reduced estimated
glomerular filtration rate (eGFR) and 44% were obese. The Hypertension Detection and
Follow-Up Program (HDFP) [10] studied the incidence of CKD (defined by an eGFR less
than 60 mL/min or 1+ or greater proteinuria in urine analysis) in 5,897 hypertensive adults
during a 5-year follow-up period. The incidence of CKD at the end of year 5 was 34% in the
obese group. After excluding subjects with baseline DM, both the overweight and obese
categories were significantly associated with the incidence of CKD. A retrospective cohort
study [12] of 320,252 healthcare insurance participants in northern California observed the
participants for 15 to 35 years. This study revealed a stepwise increase in the rate of ESRD
with increasing BMI, even after adjustment for age, sex, and race. In persons with normal
weight (BMI, 18.5-24.9), the rate of ESRD per 100,000 person-years was 10; this rate
increased to 108 in persons with a BMI greater than 40. Thus, besides being a risk factor for
incident CKD, obesity also appears to accelerate the progression of CKD. A recent study by
Santos et al. [13] investigated the impact of obesity on abnormalities of systolic and diastolic
regional left ventricular function in patients with or without hypertension or hypertrophy and
without heart failure. Half of the subjects in this study were women. In the obese groups
with hypertension and hypertrophy, the results suggested impaired regional left ventricular
relaxation and segmental atrial and systolic dysfunctions.

According to The National Cholesterol Education Program Adult Treatment Panel III Report
[14], diagnosis of the metabolic syndrome can be made if three of the following five
characteristics are present: (1) Abdominal obesity, given as waist circumference greater than
102 cm (40 in.) for men or 88 cm (35 in.) for women; (2) triglycerides 150 mg/dL or higher;
(3) high-density lipoprotein (HDL) cholesterol less than 40 mg/dL for men or 50 mg/dL for
women; (4) blood pressure 130/85 mmHg or higher; and (5) fasting glucose 110 mg/dL or
higher. Listing abdominal obesity (recognized by increased waist circumference) as the first
criterion reflects the priority given to it as a contributor to metabolic syndrome. The
hallmark of the metabolic syndrome is insulin resistance. Both obesity and metabolic
syndrome are increasingly prevalent and are risk factors for cardiovascular disease and
hypertension [15]. Hypertension affects more than 65 million adults in the United States [16,
17]. According to the 2003-2004 National Health and Nutrition Examination Survey
(NHANES) [16], non-Hispanic blacks have the highest prevalence of hypertension (39.1%),
whereas analysis of data from NHANES II [18] identifies an increased risk of CKD in the
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morbidly obese group (BMI≥40). A study in Japan by Ninomiya et al. [19] demonstrated
that the multivariate-adjusted mean GFR slope decreases significantly in persons with four
or more components of the metabolic syndrome, compared with those who have no more
than one component. Chen et al. [7] investigated the development of CKD in a cohort of
participants of NHANES III study who had normal baseline kidney function and were
observed for more than 21 years. The multivariate-adjusted odds ratio (OR) for CKD was
2.6 in participants with the metabolic syndrome, compared with participants without the
metabolic syndrome. The OR also increased from 1.89 to 5.85 as the number of components
of the metabolic syndrome that were present increased. Prospective studies, such as one
done by Kurella et al. [20], have documented a higher rate of CKD in participants with the
metabolic syndrome even after adjustment for consequent development of DM and
hypertension. This finding suggests that the metabolic syndrome by itself is an independent
risk factor for incident CKD, and the onset of kidney disease may long precede the diagnosis
of DM and hypertension. A nationwide Danish study [21] examined more than 40,000
patients in a stroke registry (47.9% women) for the prevalence of cardiovascular risk factors.
Women more often had hypertension and obesity. Men and women show significant
differences in obesity prevalence by age group after adjustment for race/ethnic group [22];
African American women have the highest prevalence of obesity [23]. There are data in the
literature about differences between the sexes in cardiovascular risk factors and macro-
vascular disease, but little about such differences in microvascular disease.

Pathology of Renal Injury in Obesity
The mechanism by which the metabolic syndrome causes CKD and leads to its progression
is probably multifactorial. Activation of the RAAS is common in patients with the metabolic
syndrome despite sodium retention and clearly increased extracellular fluid volume [24, 25].
Several mechanisms have been postulated to explain the activation of the RAAS [26••]: (1)
sympathetic stimulation [27]; (2) synthesis of adipokines in the RAAS by visceral fat [28];
(3) hemodynamic alterations (interference with renal blood flow) [29].

With regards to hemodynamic changes, obesity leads to increased renal plasma flow, GFR,
glomerular pressure, and filtration fraction, with resultant net afferent dilatation [30, 31].
These changes could be due to excess excretory load, increased intake of energy, and tissue
turnover [32]. Consequences of glomerular hyperperfusion, hyperfiltration, and hypertension
are an increase in urinary albumin excretion and glomerulosclerotic damage. Clinically, the
first sign of renal injury in patients with obesity is progressive proteinuria, which may
precede the decline of the GFR by years [33-35]. Microscopically, the pathology in renal
injury in obesity reveals focal and segmental glomerulosclerosis (FSGS) and
glomerulomegaly referred to as “obesity-related glomerulopathy.” In obese individuals with
normal renal function, renal biopsy features such as increased mesangial matrix, podocyte
hypertrophy, mesangial cell proliferation, and glomerulomegaly occur more often than in
their nonobese counterparts [36]. Even for a nephron with normal capacity, obesity induces
adaptations that are typical of the reduced nephron number accompanying CKD from other
causes and resulting eventually in renal failure [32].

Activation of the RAAS and the sympathetic nervous system—as well as physical
compression of the kidneys by visceral adiposity—impairs normal pressure natriuresis,
increases renal tubular sodium reabsorption, and causes volume expansion and hypertension
[29]. Another important mechanism involved in CKD due to obesity is lipotoxicity owing to
increased free fatty acid (FFA) levels leading to intracellular shunting of excess FFAs. With
heavy protein-uria, the excess albumin-bound FFAs result in lipotoxicity in proximal renal
tubular cells, coupled with tubulointerstitial inflammation [37]. Increased release of FFAs
from abdominal adipocytes is a characteristic feature of central obesity, contributing to
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hepatic and peripheral insulin resistance, endothelial dysfunction, and possible blood
pressure elevation in persons with abdominal obesity [38, 39].

Insulin Resistance and Salt Sensitivity
In some individuals, increased salt intake leads to a substantial rise in blood pressure that is
consistent with enhanced blood-pressure sensitivity to salt. This phenomenon, known as salt
sensitivity, has been an area of extensive recent research. Subjects who exhibit salt
sensitivity respond with substantial lowering of the blood pressure when dietary sodium is
reduced [40•]. Salt sensitivity is multifactorial, involving aspects such as ethnicity, sex
steroids, dietary patterns, and adiposity [41]. Salt sensitivity has been associated with
hypertension, the metabolic syndrome, type 2 DM, obesity [42], and CKD [43]. In a study of
adolescents [42], those who were obese had a significantly greater reduction in mean blood
pressure than the nonobese (obese, −12±1 mmHg; nonobese, + 1±2 mmHg). This reduction
in blood pressure was seen after the adolescents switched to a low-salt diet (<30 mmol per
day) after being on a high-salt diet (>250 mmol per day) for 2 weeks. Weight loss was
associated with a reduced rise in blood pressure in response to increased salt intake. Plasma
aldosterone and norepinephrine levels were closely related to the responsiveness of blood
pressure to salt intake, suggesting an interaction between insulin sensitivity, the RAAS, and
the sympathetic nervous system and their influence on the mechanism by which salt affects
blood pressure. Both obesity and the metabolic syndrome are associated with insulin
resistance. Earlier studies investigating the relationship between insulin resistance and salt
sensitivity reported significantly higher levels of plasma insulin concentrations after an oral
glucose challenge following a high-salt diet in normotensive and hypertensive individuals
who exhibited salt sensitivity, compared with those who were salt resistant [44, 45].
However, not all studies have shown a positive correlation between insulin resistance and
salt sensitivity [46]. An acute infusion of angiotensin II (Ang II) has been reported to
improve insulin sensitivity in both rats and humans [47-49], whereas chronic infusion of
Ang II leads to insulin resistance mediated via oxidative stress [50, 51]. Obesity with
excessive production of angiotensinogen (AGT) in adipose tissue probably includes such a
pathophysiological state, as mice overexpressing adipose AGT have exhibited reduced
insulin sensitivity, as estimated by the homeostasis model assessment index [52•].

Obesity and the Renin-Angiotensin-Aldosterone System
The RAAS is known for its role in regulating blood pressure and fluid and electrolyte
homeostasis [53]. The role of the local RAAS in specific tissues has been a focus of research
[54]. Evidence suggests the importance of tissue RAAS in the brain, heart, adrenal glands,
and vasculature, as well as in the kidney. There is substantial evidence that most Ang II
present in renal tissues is delivered to the kidney from the circulation, but it is also generated
locally from intrarenal AGT, which is produced locally by the proximal tubule cells. Renin
secreted by the juxtaglomerular apparatus cells into the renal interstitium and vascular
compartment also provides a pathway for the local generation of angiotensin I. Angiotensin-
converting enzyme (ACE) is abundant in the kidney and is present in proximal tubules,
distal tubules, and the collecting ducts. Angiotensin I delivered to the kidney thus can also
be converted to Ang II, so all the components necessary to generate intrarenal Ang II are
present along the nephrons. Ang II acts on the type 1 Ang II receptors (AT1 receptors) in the
vasculature, leading to vasoconstriction, and on the zona glomerulosa, where it stimulates
the secretion of aldosterone. An increase in adrenocorticotropic hormone (ACTH) and
extracellular potassium ion concentrations also stimulate aldosterone secretion by the
adrenal glands.
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Clinical and experimental studies in patients with primary aldosteronism indicate that excess
aldosterone is relatedto greater cardiac mass, fibrosis, and cardiovascular tissue remodeling
than seen in individuals with essential hypertension affected by the same degree of blood
pressure elevation [55]. Aldosterone excess results in increased oxidative stress in
cardiovascular tissue [56], and this aldosterone excess is associated with impaired insulin
metabolic signaling [57]. Increased aldosterone levels are also seen in individuals with
obesity and correlate with high blood pressure, high waist circumference, and low HDL
cholesterol levels [58]. Adipose tissue results in increased secretion of several cytokines that
induce insulin resistance, such as tumor necrosis factor (TNF)-α and interleukin 6 (IL-6)
[59]. Some of these cytokines are thought to stimulate aldosterone secretion [60]. Therefore,
in obesity, aldosterone production seems to be increased systemically by dietary salt intake
and locally in adipose tissue by increased expression of cytokines.

Navaneethan et al. [61] conducted a meta-analysis of 13 studies examining the effect of
weight loss on GFR. In smaller, short-duration studies in patients with CKD, non-surgical
weight loss interventions resulted in a decrease in proteinuria and blood pressure. In these
individuals, there was no further decline in GFR during a follow-up of about 7.4 months. In
morbidly obese individuals with glomerular hyperfiltration, surgical interventions
normalized GFR and resulted in decreased blood pressure and microalbuminuria. The
limitations of the study are those of a meta-analysis.

Contributions of the Renin-Angiotensin-Aldosterone System to Obesity
AGT is highly expressed in adipose tissue and is constitutively secreted by mature
adipocytes in animal models and humans [28]. In rodents, adipose tissue contributes as
much as 30% of circulating AGT levels in vivo [62], consistent with the concept that the
adipose tissue is an endocrine organ and adipose AGT has a paracrine role. Adipose AGT
also may have autocrine effects, as the adipose tissue expresses all the components of
RAAS, including renin, ACE, and ACE2. In addition to AT1 and AT2, adipocytes and
preadipocytes express receptors for Ang IVand Ang(1-7) [63], allowing for local production
of Ang II and other angiotensin peptides in the adipose tissue [62, 64]. Increased local
formation of Ang II in adipose tissue was originally seen in rodents with genetic or diet-
induced obesity, as well as in humans [65-67]. Conversely, overexpressing AGT in
transgenic mice lead to the development of obesity [68]. This observation has been a major
contributing factor to the concept that Ang II plays an endocrine role in obesity in vivo.
Yvan-Charvet and colleagues showed that mice lacking AGT or AT2 were protected against
obesity induced by a high-fat diet; the adipose tissue in these mice demonstrated hypotrophy
[69, 70]. Kouyama et al. [71] showed that mice lacking AT1 were also protected from diet-
induced obesity, unveiling a synergistic contribution of AT1 and AT2 in mediating the in
vivo effects of Ang II on adipose tissue development.

Antagonism of the RAAS at various levels also has been suggested to decrease obesity [72,
73]. Mice lacking the Mas receptor exhibit an increase in abdominal fat mass, associated
with higher adipose tissue AGT expression [74]. Studies have demonstrated that fat mass
enlargement is prevented in knockout mice lacking renin or ACE with subsequent Ang II
production [75, 76]. The reduced fat mass in these RAAS knockout mouse model studies
was not shown to be associated with overall food intake. In fact, a higher metabolic rate was
seen in RAAS knockout mouse models [69-71, 74-76]. Findings of reduced fat mass also
have been shown with RAAS blockade [77-79]. In summary, animal studies have
demonstrated that modifying the amount of Ang II, the biologically active component of the
RAAS, directly influences body weight and adiposity [69, 71-79].
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However, data about the role of Ang II in preadipocyte differentiation in vitro is conflicting
[62, 80-82]. Not much is known about the expression and regulation of AT1, AT2, and the
Mas receptor in cultured preadipocytes. AT2 mRNA expression is known to be under the
control of various growth hormones [83, 84], so it is possible that the use of different culture
media may account for the discrepancies between in vitro studies. Yvan-Charvet and
colleagues [85] showed that overexpression of AGT in mice led to a slight decrease in the
number of adipose cells, suggesting an inhibitory effect of Ang II on preadipocyte
differentiation in vivo and pointing to the autocrine role of the RAAS. This effect could be
due to the direct action of Ang II on proliferation and differentiation of adipose tissue
precursors [64, 86] and the consequent imbalance between AT1 and AT2 [82, 85]. Despite
the reduced number of adipose cells, local production of AGT in adipose tissue does
promote enlargement of the fat mass. AGT mRNA abundance in adipose tissue may be 60%
of that in liver [87], contributing to nearly 30% of circulating AGT levels in rodents [68]. In
genetically and diet-induced obesity, adipocytes show increased AGT, an effect that is not
observed in liver [65, 66]. Human studies also demonstrate enhanced AGT mRNA
expression in visceral and subcutaneous adipose tissue of obese subjects [67, 88].

Urinary Angiotensinogen in Renal Injury and Obesity
We have demonstrated that UAGT is increased in hypertensive subjects [89••] and treatment
with RAAS blockers suppresses UAGT [90]. The sandwich enzyme-linkedimmunosorbent
assay (ELISA) [91] for measuring human AGT has been shown to be sensitive and accurate
in measuring human AGT without crossreactivity with major proteins (e.g., human
immunoglobulins, albumin, or transferrin) in proteinuric urine samples. In subjects with
diabetic nephropathy, administration of AT1 receptor blocker (ARB) resulted in greater
reduction in urinary albumin excretion in those with high UAGT levels at baseline [90]. The
intrarenal RAAS is activated in obesity [92, 93]. A recent study done by Yasue et al. [93]
demonstrated that AGT derived from adipose tissue is substantially augmented in obese
subjects. The adipose tissue RAAS has been implicated in the path-ophysiology of obesity
and dysfunction of adipose tissue. The incidence and severity of hypertension [94] and the
progression to ESRD [95] is greater in men than in women. Several investigators [96-98]
have shown that sex steroids can modulate the expression and activity of the different
components of the intrarenal RAAS and other tissues. Thus, a question arises: Are there any
gender differences in the baseline endogenous RAAS?

We performed a study [99••] to investigate the difference between obese subjects and
nonobese controls in UAGT and the gender differences in UAGT within each group. We
selected subjects in a random, stratified manner from an ongoing cross-sectional study of
obesity. The inclusion criteria were a BMI of 30 or higher for the obese group and 27 or less
for the control group, and ages between 18 and 70 years. Exclusion criteria included
pregnancy and diabetes. For the purpose of this substudy, we also excluded subjects with
hypertension and eGFR less than 60 mL/min, because the effects on UAGT levels of
hypertension [89••, 100] and CKD stage [101-103] have already been reported. Subjects
were recruited from outpatient clinics and a community setting. The study protocol was
approved by the Institutional Review Board and all the subjects gave informed consent. The
subjects underwent a history and physical examination and submitted blood and a random
urine sample in a fasting state. Urine was collected and kept in ice until it was aliquotted
into cryo-vials. These samples were snap frozen immediately and stored at −70°C for further
analysis. Group I was nonobese controls, (BMI≤27) and group II was obese subjects
(BMI≥30). Subjects in group I and II did not have DM or hypertension. There were 39
individuals (16 men, 23 women) in group I and 38 (15 men, 23 women) in group II.
Baseline characteristics of the members of the two groups are given in Table 1. Urinary
albumin, AGT, and creatinine were measured as previously described [54, 89••, 100, 101,
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103, 104], and the urinary albumin/creatinine ratio (UALB/UCr) and UAGT/creatinine ratio
(UAGT/UCr) were calculated. Analyses were performed using SAS 9.1 for Windows.
Variable outcomes were log transformed because they were skewed. T-tests were performed
to compare outcomes between the two groups and the two sexes. Because the results of both
the original and log scale were either significant or nonsignificant at the same alpha level,
only the results of the original scales are reported for ease of interpretation. Multiple linear
regression models were fitted to examine variables associated with log-transformed UAGT/
UCr.

There was no significant difference for UAGT/UCr between the nonobese controls and the
obese group in the original-scale UAGT/UCr (6.3+4.3 vs 5.2+3.3 μg/g, P = 0.2). Table 2
shows the characteristics of the obese subjects (group II) for both sexes. In group II, there
was a significant difference between men and women for UAGT/UCr (3.7+ 2.1 vs 6.3+3.6
μg/g, P = 0.01), but there was no significant difference between the sexes in group I for the
UAGT/UCr (men, 5.2+3.0; women, 7.1+4.9 μg/g; P = 0.15). In both groups I and II, there
were no significant differences for UALB/UCr. Using stepwise variable selection, for the
outcome variable log-transformed UAGT/UCr at 0.10 alpha level, female gender (P = 0.04)
was strongly associated with UAGT/UCr. On average, women had higher UAGT/UCr levels
than men (Table 2). Systolic blood pressure also had a positive correlation with UAGT/UCr
(P = 0.04)

Microalbuminuria has been described as the earliest manifestation of renal injury associated
with the metabolic syndrome and diabetic nephropathy, and it is associated with insulin
resistance independent of DM [105]. Our data suggest that obese women, even without DM
and hypertension, have significantly higher UAGT than obese men with the same
characteristics. This is an important finding, as it highlights the existence of UAGT
differences even when the urine microalbumin/creatinine ratio is less than 30 mg/g. The
small sample size is a limitation, which may be responsible for failure of our data to show
any significant difference in UAGT between the healthy and obese groups. Given the
exponential increase in the incidence and prevalence of obesity [23], our findings raise an
important question about the potential therapeutic value of UAGT in the diagnosis and
management of CKD in obesity even before the appearance of DM, hypertension, or both.

Conclusions
Obesity is an independent risk factor for the development and progression of CKD. The
RAAS is activated in obesity. AGT plays a role in the control of hypertension [10].
Although most circulating AGT is produced and secreted by the liver, the kidneys also
produce AGT [106]. Intrarenal AGT mRNA and protein have also been localized on the
proximal tubule cells, indicating that intratubular Ang II could be derived from the AGT that
is locally formed and secreted [107, 108]. Urinary excretion of AGT provides a specific
index of intrarenal RAAS status. It has been shown to be increased in patients with
hypertension [21] and diabetic nephropathy [53, 101, 104], whereas RAAS blockade
decreases UAGT [21, 53, 102]. Results from the Kidney Early Evaluation Program (KEEP)
[109] demonstrate that in patients with early CKD (stages 1 and 2), the odds of hypertension
control (blood pressure<130/80 mmHg) are greater for African American women (OR, 1.47;
95% CI, 1.14-1.88), white men (OR, 1.85; 95% CI, 1.39-2.46), and white women (OR, 1.69;
95% CI, 1.28-2.22) than for African American men. KEEP was a cross-sectional study that
examined 10,827 subjects. It highlights the need to investigate gender and racial differences
in those with very early CKD or risk factors for CKD, before progression to late stages of
CKD occurs. Data suggest gender differences in obesity and CKD. Small weight loss studies
have demonstrated an improvement in CKD or a slowing of its progression.
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The RAAS cascade allows for several therapeutic targets for the management of
hypertension. These include ACE (via ACE inhibitors), angiotensin type 1 receptors (via
ARBs), renin (via direct renin inhibitors), and the aldosterone receptor (via aldosterone
receptor blockers). Although effective, neither ACE inhibitors nor ARBs completely block
the RAAS, and there is resurgence in efforts to antagonize excess aldosterone by using an
aldosterone receptor blocker [98]. Aliskiren, a direct renin inhibitor, has been used to block
renin and therefore the RAAS cascade.

Evidence from animal and human data suggests gender differences in the RAAS. Results
from our study indicate significant gender differences in UAGT levels in the obese group,
with women having significantly higher levels of UAGT than men, though there was no
difference in the UALB/UCr or the eGFR. Given the importance of obesity in the
pathogenesis of hypertension, the study results point to the importance of gender differences
in obese individuals who do not yet have clinical hypertension. With respect to the RAAS,
which plays a critical role in renal injury in obesity, these data also establish some baseline
gender difference in intrarenal RAAS [98]. This finding places an emphasis on evaluating
patients at risk before the clinical diagnosis is overtly present, and for assessing biochemical
markers such as UAGT, which is amenable to therapeutic intervention with RAAS
blockade. A prospective longitudinal study is needed to assess the utility of UAGT in the
paradigm of risk assessment and monitoring of the development and progression of CKD in
obesity.
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Table 1

Baseline characteristics of subjects in study of UAGT in obese individuals

Variable Group I
(n=39)

Group II
(n=38) P value

Age (years) 31.7 ± 10.2 40.0±12.6 <0.01

BMI 23.0±2.8 38.2±5.6 <0.01

UAGT/UCr (μg/g) 6.3±4.3 5.2±3.3 NS

Serum creatinine (mg/dL) 0.8±0.2 0.8±0.2 NS

UALB/UCr (mg/g) 8.5±7.2 11.0±10.7 NS

Glucose (mg/dL) 60.8±19.3 79.7±26.1 <0.01

Systolic BP (mm Hg) 117.6±11.9 127.0±15.7 <0.01

Diastolic BP (mm Hg) 72.3±12.0 79.4± 11.6 0.01

HDL cholesterol (mg/dL) 60.9±13.4 52.0±17.2 0.02

LDL cholesterol (mg/dL) 93.3±28.3 119.1 ±36.4 <0.01

Triglycerides (mg/dL) 70.4±24.2 128.7±5.1 <0.01

Group I = nonobese controls (BMI ≤27); Group II = obese subjects (BMI ≥30). No subjects had diabetes or hypertension

Values are expressed as mean ± standard deviation

UAGT urinary angiotensinogen, BMI body mass index, UCr urinary creatinine, NS not significant, UALB urinary albumin, BP blood pressure,
HDL high-density lipoprotein, LDL low-density lipoprotein
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