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Abstract Alzheimer’s disease (AD) is an age-related
progressive neurodegenerative disease commonly
found among elderly. In addition to cognitive and
behavioral deficits, vision abnormalities are prevalent
in AD patients. Recent studies investigating retinal
changes in AD double-transgenic mice have shown
altered processing of amyloid precursor protein and
accumulation of β-amyloid peptides in neurons of
retinal ganglion cell layer (RGCL) and inner nuclear
layer (INL). Apoptotic cells were also detected in the
RGCL. Thus, the pathophysiological changes of
retinas in AD patients are possibly resembled by AD
transgenic models. The retina is a simple model of the

brain in the sense that some pathological changes and
therapeutic strategies from the retina may be observed
or applicable to the brain. Furthermore, it is also
possible to advance our understanding of pathological
mechanisms in other retinal degenerative diseases.
Therefore, studying AD-related retinal degeneration is
a promising way for the investigation on (1) AD
pathologies and therapies that would eventually
benefit the brain and (2) cellular mechanisms in other
retinal degenerations such as glaucoma and age-
related macular degeneration. This review will high-
light the efforts on retinal degenerative research using
AD transgenic mouse models.
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Introduction

Increasing incidences of poor vision and ocular
diseases have been described in Alzheimer’s disease
(AD) patients (Bayer et al. 2002). AD-related visual
dysfunction can be attributed to any defects occurring
in the visual pathway, including damage in visual
cortical areas and degeneration of pre-cortical areas
(Guo et al. 2010). Glaucoma and age-related macular
degeneration (AMD) are the frequently occurring
ocular diseases associated with AD (Blanks et al.
1996). Recently, many laboratories have taken efforts
to investigate the link of retinal degeneration and AD.
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Retinal abnormalities such as extensive loss of retinal
ganglion cell (RGC) (Mendez et al. 1990; Blanks et
al. 1996), reduced thickness of retinal nerve fiber
layer (NFL) (Hedges et al. 1996), and reduced retinal
blood flow (Guo et al. 2010) are observed in AD
patients.

Owing to the limitations on the investigations of AD
in human postmortem studies, transgenic AD mouse
models have been used to mimic the human pathological
environment. AD mice are engineered to express human
mutant genes found in early-onset AD patients. The
majority (30–40%) of familial Alzheimer’s disease
(FAD) is resulting from autosomal dominant inheritance
with mutated genes encoding presenilin 1 (PS1) on the
long arm of chromosome 14, presenilin 2 (PS2) on
chromosome 1, and amyloid precursor protein (APP) on
chromosome 21 (Price et al. 1998b). Several lines of
transgenic mice bearing the abovementioned gene
mutations were shown to exhibit some neuropathological
features of human AD (Eriksen and Janus 2007). Many
researchers have been taking these transgenic mice
as experimental models to study AD-related retinal
degeneration.

This review focuses on the current knowledge
obtained from AD transgenic mouse models. First, it
begins with their genetic backgrounds. Then, it
summarizes AD-related pathologies in their brains.
Finally, the review goes through the retinal changes in
these mice. It is our attempt to stimulate researches in
AD-related retinal degeneration, which will have a
significant impact in pathologies and therapeutics in
both AD and retinal degeneration such as glaucoma
and AMD.

Transgenic mouse models

To study the AD pathogenesis in the brain, AD
transgenic mice have been widely investigated. Differ-
ent types of transgenic mice may be complementary to
the disadvantages of each other as experimental models
of AD. For example, transgenic mice expressing mutant
genes encoding APP and PS1 can be used to evaluate
the process of amyloidogenesis at the pre-dementia
phase of AD as the accumulation of Aβ deposits or even
plaques in the brain tissues and the retinas are observed
in these transgenic lines (Zahs and Ashe 2010). The
pathology of another lesion, tau, can be elucidated by
studying tau mutant mice in which hyperphosphory-

lated tau and NFT are expressed (Frank et al. 2008).
Taking these research reports together, it is possible to
use different types of transgenic mouse models, which
would compensate the shortcomings of each other, to
study AD in a multifactorial way.

Among various models, our review focuses on
mutated APP mouse models, mutated APP/PS1
mouse models, mutated tau mouse models, and triple
transgenic mouse (3xTg) model (listed in Table 1).
The expression of AD mutations is based on three
criteria: the host strains, the choice of promoter, and
the extent of gene expression.

APP mutant-related transgenic mice

APPV717I transgenic mice, also named as “London”
mutation, were the first FAD mutant mice dated back
to 1993 (Price et al. 1998b). The mutant APP gene
expressed under Thy-1 promoter harbors the substitu-
tion of Val residue at position 717 near the γ-secretase
cleavage site (Price et al. 1998b). Cells with APP
mutations of Val717 were accompanied by a higher
secretion of Aβ42 compared to cells with wild-type
APP (Price and Sisodia 1998; Pezzini et al. 2009).

Another widely used APP mutant model known as
“Swedish mutation” was subsequently developed by
Karen Hsiao Ashe in 1996 (Hsiao et al. 1996). It is
based on the finding that the human APP695 double
mutation form (Lys670→Asn and Met671→Leu)
with the Kunitz-like proteinase inhibitor domain was
absent in the early-onset AD Swedish family
(Dutescu et al. 2009). The construct is inserted into
a hamster prion protein (PrP) cosmid vector with the
PrP open reading frame replaced by variant APP. The
mice carrying the gene above are named as Tg
(HuAPP695.K670N-M671L) 2576 (Hsiao et al.
1996). The onset of AD is varied among studies in
Tg2576 mice, ranging from the earliest at 3 months of
age to the latest at 15 months of age (Hsiao et al.
1996; King et al. 1999; Morgan et al. 2000;
Kawarabayashi et al. 2001). Despite the varying onset
of AD, APPswe mice are often associated with age-
dependent oligomeric Aβ accumulation (Duyckaerts
et al. 2008).

APPswe/APPV717I co-expressed transgenic mice are
also made available to recapitulate the neuropatho-
logical alteration occurring in AD (Le Cudennec et al.
2008). These two lines of transgenic mice, driven by
the Thy-1 promoter, show deposition of Aβ or even
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plaques and hyperphosphorylated tau, depending on
the extent of transgene expression (Price et al. 1998a).

PS mutant-related transgenic mice

Mutation of APP accounts for the minority cases of
early-onset FAD; the majority pedigrees of AD come
from the mutation of PS1 or PS2 (Spires and Hyman
2005). To date, a number of mutant PS variants were
developed such as ΔE9, M146L, A246E, L286V,
L392V, and H163R from PS1 mutation and N141I
from PS2 mutation (Price and Sisodia 1998). There-
fore, mutation of PS1 or PS2 alone is not sufficient to
mimic the pathologies of FAD. Although Aβ42 was
over-produced in these single mutant mice (Duyckaerts
et al. 2008), the hallmark lesions of AD including
either Aβ plaques or neurofibrillary tangles (NFT)
were not observed in brain tissues (Price and Sisodia
1998; Spires and Hyman 2005; Duyckaerts et al.
2008).

APP/PS1 double-transgenic mice

Crossing APP mutant genes with PS1 mutant genes
seems to be a reasonable alternative way to elicit
amyloid pathology. Increasing opportunities of amyloi-
dogenesis from APP can accelerate the pathogenesis of
AD (Spires and Hyman 2005). Indeed various trans-
genic mice expressing different kinds of mutated PS1
and mutated APP genes were generated in which
different levels of Aβ expressions were observed.

One example of double-transgenic mice (2xTg) is
APPswe/PS1ΔE9, which carries both APP Swedish
mutation and human PS1 gene with an in-frame
deletion of exon 9 (Price and Sisodia 1998; Price et
al. 1998a). The exon 9 deletion in PS1 could elevate the
secretion levels of Aβ peptides; large and homoge-
neous senile plaques accumulated in the human brain
(Duyckaerts et al. 2008). This type of mice generated
Aβ plaques at the early age of 4–5 months of age
(Duyckaerts et al. 2008).

Another 2xTg mouse model, APPSL/PS1M146L,
carries both Swedish and London mutation (K670N/
M1671L and V717I) in human APP 751 gene
together with a human mutant gene PS1M146L (Casas
et al. 2004; Bayer and Wirths 2008). Aβ plaques
appear at 3 months of age and the intracellular
accumulation of Aβ occurred as early as 2 months
(Bayer and Wirths 2008).

The APP single Tg mice or APP/PS1 2xTg mouse
models have replicated the amyloidogenic events in
AD. This makes them valuable in the study of
amyloid pathologies in the brain. For example, APP
V717I transgenic mouse model has been used to
study early behavioral and cognitive deficits accom-
panied by over-expression of APP (Moechars et al.
1999). Tg2576 mouse line has been implicated in the
investigation of accelerate amyloidogenesis such as
phosphorylated elf-2α (O’Connor et al. 2008). The
downstream pathological events of Aβ deposits such
as inflammation have been studied by using APPSL/
PS1M146L mutant mice as an experimental model
(Jimenez et al. 2008). All of these transgenic models
have been employed for investigating enzymatic
activities of the amyloidogenic pathway, the better
understanding of which is conducive to the develop-
ment of drugs such as β-secretase (BACE1) inhibitors
that could attenuate amyloidogenesis (Gau et al. 2002;
Malamas et al. 2010). Amyloid pathology can
therefore be studied in great detail with AD amyloi-
dogenic mice.

Tau mutant-related transgenic mice

Extant amyloidogenic ADmodels do not express the full
spectrum of neuropathology in AD but elicit only
plaques without NFT (Oddo et al. 2003). To supplement
that, tau mutant mice have been used to study AD,
frontotemporal lobe dementia, or other tauopathies. Tau
mutation occurs on chromosome 17 (Frank et al. 2008).
Tau mutant mice can express hyperphosphorylated tau
and even NFT in the brain (Price et al. 1998a). One
type of tau-mutated gene expresses Leu instead of Pro
at the position of 301 (P301L) in both the shortest
(driven by mouse prion promoter, JNPL3 line) and
longest (driven by mouse Thy-1 promoter) four-repeat
tau isoforms, producing NFT in brain tissues and spinal
cord (Spires and Hyman 2005; Eriksen and Janus
2007). This mouse line has been studied to find out the
correlation between frontotemporal lobe dementia and
tauopathy as well as the mediation of cognitive
impairment associated with axonopathy (Terwel et al.
2005; Frank et al. 2008). Another type of tau mutant
(P301S) involves the substitution of Ser instead of Pro
on exon 10 of chromosome 17 driven by Thy-1.2
promoter (Frank et al. 2008). Hyperphosphorylated tau
was also detected extensively in the brain and spinal
cord (Allen et al. 2002).
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APPswe/PS1 M146V/TauP301L triple transgenic mice
(3xTg)

The transgenic mice harbor mutation of human
APPswe, PS1M146V, and TauP301L. Tg2576 mice with
the use of Swedish double mutation of human
APP695 and four-repeat tau (4R0N) without amino
terminal inserts are inserted into exon 3 with the drive
of Thy-1.2 expression cassette cDNA. These con-
structs are then co-microinjected into mutant homo-
zygous PS1M146V knock-in mice (Oddo et al. 2003).
The manipulation of co-integration of APP and tau
transgene at the same site with the PS1M146V knock-in
can establish a stable source of 3xTg mice. In
addition, Thy1.2 expression cassette is used to ensure
transgenes to express predominantly in the CNS
(Caroni 1997). This type of transgenic mice is
regarded as a good model recapitulating AD pathology.
The onset of AD pathology occurs at 3 months of age
(Spires and Hyman 2005). Impairment of long-term
potentiation was observed. Plaques and tangles were
progressively developed in an age- and region-
dependent manner. The pathological changes also
support the amyloid cascade hypothesis in which
amyloid pathology precedes tauopathy shown in an
anti-Aβ antibody immunization test (Oddo et al.
2003). In addition, studies found that Aβ, especially
the intracellular Aβ42, was in correlation with intra-
cellular NFT in the AD brain via tau hyperphosphor-
ylation pathways (Grundke-Iqbal et al. 1989; Hardy
and Selkoe 2002).

Retinal degeneration in AD transgenic models

Reports of visual deficits in AD patients dated back to
20 years ago. Behavioral studies on AD transgenic
mice showed that the mice suffered from visual
dysfunction (Arendash et al. 2004). Emerging evi-
dence has been attempting to reinforce the potential
link between retinal degeneration and AD (Dutescu et
al. 2009). Hypothetically, the over-expression of APP,
the production of soluble Aβ, and Aβ deposition will
lead to the formation of amyloid plaques which can
induce cell death via the apoptotic pathway (Wostyn
et al. 2008). Furthermore, Aβ plays a role in inducing
the hyperphosphorylation of tau, which in turn
induces changes of the integrity of retinal cells and
their synapses in the INL (Muyllaert et al. 2008). It

has been reported that the over-expression of APP,
Aβ and/or tau deposition, neuronal cell loss, retinal
glial cell changes, and vascular changes occur in the
retina of AD transgenic mice. The retinal histopathol-
ogy changes in the AD transgenic mouse models are
summarized in Table 2 and demonstrated in a
schematic diagram in Fig. 1.

Over-expression of APP in the retina

Compared to the wild-type mice, a significant
increase in the immunoreactivity of APP in the
cytoplasm of the cells was detected in RGCL and
INL of various transgenic mice (APP transgenic
mouse (Tg 2576), APPswe/PS1M146L and APPswe/
PS1ΔE9 double-transgenic mouse) (Ning et al. 2008;
Dutescu et al. 2009; Liu et al. 2009; Perez et al.
2009). This over-expression of APP was age depen-
dent as shown in APPswe/PS1M146L transgenic mice.
At 27 months old, a strong immunoreactivity of APP
was detected not only in the different layers of retina
such as, NFL, RGCL, IPL, INL, OPL, OS, and RPE
but also in the retinal vasculature (Ning et al. 2008).

Deposition of Aβ in the retina and retinal vasculature

The deposition of Aß, derived from abnormal
processing of APP, was found in the retinas of AD
transgenic mice. In Tg2576 mice, Aβ was found to
deposit from RGCL to INL or even at the outer
nuclear layer (ONL) (Dutescu et al. 2009; Liu et al.
2009). In APPswe/PS1ΔE9 transgenic mice, Aβ depos-
its usually accumulate in NFL, RGCL, and INL (Ning
et al. 2008; Dutescu et al. 2009). Aβ plaques were
found in plexiform layers; the size and the number of
plaques significantly increased with age (Perez et al.
2009).

Robust Aβ signal was detected around micro-
vessels in RGCL of Tg2576 mice (Dutescu et al.
2009; Liu et al. 2009). Both the retinal and choroidal
vascular Aβ deposits were reported in old-aged
APPswe/PS1M146L transgenic mice and middle-aged
APPswe/PS1ΔE9 (Ning et al. 2008).

Deposition of hyperphosphorylated tau in the retina

Hyperphosphorylated tau was detected and found to
be associated with Aβ depositions in various retinal
layers including RGCL, IPL, INL, OPL, and ONL in

AGE (2012) 34:633–649 637
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Tg2576 mice (Liu et al. 2009). In homozygous P301S
transgenic mice, hyperphosphorylated tau deposited in
the NFL and aggregated into filamentous inclusions in
RGCs starting from 2 months old (Gasparini et al.
2009). The hyperphosphorylated tau and tau inclusions
were found in cultured retinal explants from transgenic
mice at the age of 5 months (Gasparini et al. 2009).

Loss of retinal neurons in AD transgenic mice

Neuronal cell loss was reported in multiple AD
transgenic lines. Apoptotic cells as shown by TUNEL
staining were detected in RGCL of APPswe/PS1M146L

and APPswe/PS1ΔE9 transgenic mice (Ning et al. 2008).
A significant reduction in the retinal thickness mea-
sured from the RGCL to ONL was detected in Tg2576
mice compared with non-transgenic control (Liu et al.
2009). This indicates that there was a loss of either the
photoreceptor cells at the ONL (rod and cone cells) or
neuronal cells at the inner retinal layers (RGC,
horizontal cells, bipolar cells, or amacrine cells).

Glial reaction in AD retina

Glial reactions in the retina were detected in different
kinds of AD transgenic mice at various ages. In

APPswe/PS1M146L transgenic mice, microglia was
increased in an age-dependent manner, which was in
parallel with Aß deposits and TUNEL-positive RGC in
the GCL. The average percentage of cells in the GCL
surrounded by microglial cells increased significantly
from 10% in 7.8-month-old to 50% in 27-month-old
APPswe/PS1M146L transgenic mice (Ning et al. 2008).
In Tg2576 transgenic mice, a significant infiltration of
microglial cells in the inner retina was detected as early
as 4 months of age (Liu et al. 2009). Qualitative
evaluation revealed greater microglia immunoreactivity
in the 12- to 19-month-old APPswe/PS1ΔE9 transgenic
mice when compared to age-matched non-transgenic
control (Perez et al. 2009). Increased microglia reaction
demonstrated by an increase of GFAP immunoreactivity
was also reported in the Tg2576 transgenic mice (Liu et
al. 2009).

The retina as a window of the brain

Anatomy of the retina

Being a part of the central nervous system (CNS), the
retina contains a high density of neuronal cells with a
laminar structure outside the brain. There are six

Fig. 1 Diagram demonstrating APP expression, Aβ deposits in
retinal layers of various kinds of AD transgenic mice. The
background is a resin cross-section demonstrating a layered
structure of retina. Filled color shapes are positioned quantita-
tively based on the expression levels of deposits. Unfilled color

shapes show the presence of specific deposits only but not in
quantitative manner. NFL nerve fiber layer, GCL ganglion cell
layer, IPL inner plexiform layer, INL inner nuclear layer, OPL
outer plexiform layer, ONL outer nuclear layer, OS outer
segment, RPE retinal pigment epithelium
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major types of neuronal cells distributed throughout the
retina. Rods and cones are photoreceptors cells restricted
to the outer segment of the retina. Horizontal cells,
bipolar cells, and amacrine cells are located at the INL.
The latter cell type may appear at the RGCL where
RGCs are accumulated. During the visual process, light
is detected by photoreceptor cells. The signals will then
be relayed by the cells in the INL to RGCs. The nerve
fibers of RGCs converge into the optic nerve fibers
where signals are further transmitted to the visual cortex
for visual processing. RGCs hold the responsibility of
conducting the signal to the brain. The vulnerability of
RGCs to stress factors such as inflammatory factors,
high intracellular calcium ions, glutamate, or free
radicals, or high intraocular pressures may lead to
irreversible blindness.

Importance of studying the retina in AD

As human life span is extended into old age, the
prevalence of AD often increases along with the aging
process. It is estimated that over 100 million people
will suffer from AD by 2050 (Ron et al. 2007). Visual
impairment is associated with the prevalence of AD
(Rizzo et al. 2000; Berisha et al. 2007; Valenti 2010).
For example, in a glaucoma study, the percentage of
AD patients having glaucoma is 2.5 times higher
when compared to that of normal patients (Tamura et
al. 2006). A rapidly increasing list of AD cases
emphasizes an urgent need for a fair and promising
research into the prevention of AD as well as the
associated retinal diseases.

To our knowledge, it is still difficult to monitor the
progressive degeneration of the brain with a fast, non-
invasive, and less expensive method. The current
diagnostic tools of the brain have limitations in terms
of specificity of bio-markers and signal resolution
(Klunk et al. 2004; Koronyo-Hamaoui et al. 2011).
Thus, many attempts have been made to investigate
AD with an easier approach by studying the retina.
The laminar nature of retina can simplify the whole
AD pathological investigation. Although there are ten
layers in the retina, the retinal neurons are only
located in three layers. Any abnormalities occurring
in these three layers may have some pathological
indications to the brain. For example, thinning of the
inner retinal layer (from NFL, GCL to INL) indicates
the loss of RGCs, horizontal cells, bipolar cells, or
amacrine cells. A further examination of the specific

neuronal cells in different layers may elucidate the
pathological mechanisms induced by Aß efficiently.
In addition, the retina can serve as an excellent
alternative system for AD research because it can
faithfully reflect the changes in the brain and offers
unique advantages that can simplify the investigation
of AD (Koronyo-Hamaoui et al. 2011). Multiple lines
of AD transgenic mice have elicited AD-like patho-
logical hallmarks in the retina as disease progresses.
Studying retinal degeneration with the use of AD
transgenic mice can be a simple gateway for inves-
tigators to look into the AD pathological changes in
the more complicated brain system. Evaluating the
retina thus opens up a new avenue of AD research
(Fig. 2).

The retina faithfully mirroring pathological events
in the brain

The neuronal cells in the retina belong to the CNS.
When anti-Aβ antibody was injected into a trans-
genic mouse model, Aβ plaques were decreased in
both the retina and the brain (Ding et al. 2008).
Another immunotherapy study demonstrated that
APPswe/PS1ΔE9 transgenic mice immunized with an
altered myelin-derived peptide had a decrease of Aβ
plaques in the retina and the brain to a similar extent
(Koronyo-Hamaoui et al. 2011). Since the anatom-
ical structure of the retina is far much simple than
that of the brain, one can use the retina to investigate
the degenerative processes, signaling mechanisms,
and even neuroprotective agents. For example, the
retina has been used to investigate the neuroprotec-
tive effects of autoimmune responses (Bakalash et al.
2002), which resemble the modulation of autoim-
mune responses to the brain so that beneficial effects
can be observed. We have demonstrated that Stat3
pathway is involved in neurodegeneration after
glaucoma (Ji et al. 2004), which has also been
recently demonstrated to be an important signaling
pathway in AD (Wan et al. 2010). Furthermore,
synthesis of amyloid precursor protein and its
intracellular transport have been investigated in the
retina (Morin et al. 1993; Stamer et al. 2002). The
retina provides a very simple model system for these
authors to advance our understanding of APP
synthesis and transport. All of these studies indicate
that the retina can reliably represent amyloid plaque
pathological events in the brain.
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Simple and non-invasive imaging for the retina
facilitates the monitoring of the progression
of neurodegeneration

Recent advances of imaging technologies for the
retina have given the opportunity for the development
of a more definitive and non-invasive diagnostic tool
for AD pathology (Hintersteiner et al. 2005; Nakada
et al. 2008; Cordeiro et al. 2010). Koronyo-Hamaoui
et al. (2011) identified amyloid plaques in the retinas
from AD patients as well as those suspected as early
stage cases. It was confirmed that the retina can
faithfully reflect AD brain pathology. The transparent
nature of the eyes allows direct tracking and visualiza-
tion of the progressive changes in amyloid pathology
(Cordeiro et al. 2010). The systemic injection of
curcumin into live APP swe/PS1ΔE9 mice allows a
high-resolution and specific non-invasive visualization
of retinal Aβ plaques in situ (Koronyo-Hamaoui et al.
2011). Curcumin is a natural and safe fluorochrome
that binds and labels Aβ plaques (Garcia-Alloza et al.
2007; Yang et al. 2005). In a 6-month randomized,
placebo-controlled, double-blind, pilot clinical trial in
AD patients, there were no significant side effects even
when patients took curcumin at a dose of 4 g/day
(Baum et al. 2008). Future development of high-
resolution optical imaging for early AD diagnosis,
prognosis assessment, and response to therapies can be
achieved non-invasively through direct imaging of the
retina. Progression of therapy is possible to be visualized

qualitatively in the sense that one can monitor the
changes of a particular neuronal cell (Hintersteiner et al.
2005; Nakada et al. 2008). Quantitative examina-
tions of the disease stages have been performed by
assessing the ratio of apoptosis to necrosis using the
fluorescence counts of the respective dyes (Cordeiro
et al. 2010). Even more, a high spatial resolution of
images with a high signal-to-noise ratio ranging
from 3:1 to 10:1 can be achieved with the imaging of
the retina (Hintersteiner et al. 2005; Nakada et al.
2008). The merits of retinal imaging can provide
investigators a solid support for assessing pathological
status as well as developing and refining therapeutic
strategies because the technique is less invasive and not
sophisticated.

AD-related retinal degeneration advancing
both the retinal degeneration and AD researches

Knowledge being transferable between the brain
and the retina

Increasing lines of evidence highlight the commonal-
ties shared between AD and retinal degeneration. In
particular, Aβ deposits are found in the brain and the
retina. As stated above, neuronal cell loss, inflamma-
tory responses, and other pathological events that
occurred in the retina are similar to those that
occurred in the brain (Guo et al. 2010). However,

Fig. 2 Schematic diagram
suggests the importance of
AD-related retinal degenera-
tive research. The progressive
degeneration of the brainmay
be associated with retinal
diseases such as glaucoma
and AMD. The pathological
and therapeutic knowledge
between the brain and the
retina is transferrable. In
addition, the investigation of
glaucoma and AMD may
be of significant therapeutic
indication to AD brain.
AMD age-related macular
degeneration
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the correlation between Aβ deposits and the retina is
limited to the histopathological level. The pathological
mechanisms have not been investigated in great detail.
Lots of questions are waiting for answers by more
researches to be conducted. What is the correlation
between Aβ depositions and inflammatory responses in
the retina? How do Aβ deposits trigger apoptotic
pathways in RGCs? What are other mechanisms taken
by Aβ and tau to cause retinal degeneration? Although
the relationship for Aβ production and toxicity between
the brain and the retina remains unclear, the pathological
pathways are possibly shared between the two to a
certain extent. For example, mitochondrial dysfunctions
and activation of complement, which will be discussed
below, are pathophysiological changes in both AD and
retinal degeneration (Kong et al. 2009; Valenti 2010).
The similarity between the brain and the retina allows
the exchange of knowledge in terms of pathological
mechanisms and therapeutic intervention.

The discovery of the significant involvement of
double-stranded RNA-dependent protein kinase
(PKR) in the apoptosis of neurons in postmortem
AD brain and in experimental studies is a good
example (Chang et al. 2002a, b; Suen et al. 2003).
Having reported the involvement of PKR in neuronal
apoptosis, it has been further found that PKR also
plays important roles in the neuronal apoptosis of
RGCs in endoplasmic reticulum (ER) stress-induced
retinal neuronal loss (Shimazawa et al. 2007). We
have recently demonstrated that the neuroprotective
agents found from AD research can also be applied to
eye research. Our studies on wolfberry, Lycium
barbarum, an anti-aging herb, can be a good example
of sharing that knowledge obtained from studying the
brain can be applied into the retina (Chan et al. 2007).
In AD, wolfberry can alleviate the degenerative
process by promoting survival signals, suppressing
ER stress, and reducing glutamate excitotoxicity (Yu
et al. 2006; Chan et al. 2007; Yu et al. 2007; Ho et al.
2009; Ho et al. 2010a, 2010b). In glaucoma,
wolfberry shows its beneficial effects on the retina
based on suppressing the neurodestructive factors,
modulating the inflammatory responses (Chiu et al.
2009), and induction of protective chaperone (Chiu et
al. 2010). The neuroprotective effects of wolfberry
shared between AD and glaucoma further strengthen
our hypothesis that knowledge obtained from the
brain and the retina are transferrable.

AD-related retinal degeneration can help
us in understanding retinal degeneration
in other eye diseases

Based on the findings above that Aβ deposits were
observed in the retinal layers of AD transgenic mice,
studying AD-related retinal degeneration in the AD
models may provide some implications on how Aβ
deposits are linked to retinal degeneration. Two
prominent examples of retinal degeneration associated
with AD are glaucoma and AMD (Blanks et al. 1996).
In glaucoma, the presence of Aβ was observed in
RGCs. In AMD, Aβ assemblies were accumulated in
the form of drusen which are entrapped between the
retinal epithelial layer and the Bruch’s membrane
(McKinnon 2003; Anderson et al. 2004). Therefore, it
is reasonable to speculate that the accumulation of Aβ
peptides (but not plaques) may contribute to retinal
degeneration in these diseases.

Aβ-mediated mitochondrial dysfunction
and glaucoma

Glaucoma is characterized by the progressive degenera-
tion of RGCs induced by increased intraocular pressure
(Yin et al. 2008). However, signs of glaucoma are also
elicited even after the reduction of IOP to normal level
(Valenti 2010). This clearly indicates that loss of RGCs
can be neurodegenerative processes and various patho-
logical events synergistically contribute to the patho-
genesis of glaucoma. One of the triggers being proposed
is Aβ-induced glaucoma. Indeed recent reports have
demonstrated a potential link between glaucoma and
AD. Patients who suffer from AD also show changes of
the retina typically found in glaucoma (Guo et al. 2010).
At the molecular level, intracellular accumulation of Aβ
was observed in RGCs. Accumulation of intracellular
Aβ contributes to axonopathy and initiates apoptotic
pathway in the brain (Ohyagi et al. 2005; Suo et al.
2007). The deleterious effects of intracellular Aβ in the
brain may also be applied to the eye because
intracellular Aβ exerts its toxicity to RGCs, reinforcing
the degenerative process of the retina in addition to high
IOP.

One of the pathological events in AD brain
involves abnormal mitochondrial activities (Seo et
al. 2010). Mitochondria are dynamic organelles in
which the balance between fission and fusion pro-
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cesses is important for maintaining their healthy
functions (Wang et al. 2009). Impairment of fission
and fusion has been considered to be one of the
pathophysiological indexes in AD (Santos et al.
2010). There are some suggestions that Aβ peptides
will modulate the cytosolic Ca2+ level in mitochondria
that may alter the mitochondrial morphology and
physiology (Hung et al. 2010). For example, elevated
cytosolic Ca2+ level may enhance the fragmentation of
mitochondria and hence lead to the perturbation of
fission and fusion balance which may eventually cause
mitochondrial dysfunction (Saotome et al. 2008).
Dysregulation of Ca2+ homeostasis may also disrupt
the downstream pathways of Ca2+-dependent regula-
tors monitoring mitochondrial dynamics (Liu and
Hajnoczky 2009; Hung et al. 2010). In particular, an
abnormal distribution of mitochondrial fission and
fusion proteins such as OPA1 and Fis1 may occur,
and thus the distribution of mitochondria may be
negatively affected in neurons (Wang et al. 2009).
Consequently, synaptic dysfunction may result due to
the failure of meeting the energy demand in neurons,
particularly in axonal and dendritic tips (Allen et al.
2002; Liu and Hajnoczky 2009; Wang et al. 2009).

The eyes are energy-demanding organs where a lot
of mitochondria accumulate, particularly at the optic
nerve heads, to support the visual function of the eyes
(Carelli et al. 2004). Applying the same pathological
mechanism to the eyes, Aβ present in RGCs may
initiate similar pathways for mitochondrial dysfunc-
tions, eventually leading to retinal degeneration. This
hypothesis may be extended to one of the causes in
Aβ-induced glaucoma. Intriguingly, in a glaucoma-
tous model where cultured RGCs were subjected to
elevated hydrostatic pressure, mitochondrial fission
was found to be enhanced, together with morphological
changes and bioenergetic dysfunction (Ju et al. 2007).
The approach of studying AD-related retinal degenera-
tion is thus valuable for evaluating the pathogenesis of
glaucoma.

Aβ-mediated inflammation and AMD

AMD is characterized by the progressive degenera-
tion of retinal pigment epithelium and photoreceptor
cells (Margrain et al. 2004). Drusen as the hallmark of
AMD has been reported to contain Aβ assemblies
among various amounts of heterogeneous compo-

nents (Luibl et al. 2006). Hypothesis has been made
for the linkage between AMD and AD because the
similarity between two diseases is largely based on
the complement activation induced by Aβ peptides.
However, there is conflicting evidence on Aβ
deposits in these two diseases at the ultrastructural
level (Anderson et al. 2004; Rodrigues 2007).
Inflammatory factors triggered by Aβ assembly
initiates exudative AMD in which vascular endothe-
lial growth factor (VEGF), being one of the main
components of blood vessel growth, may be abnor-
mally secreted (Yoshida et al. 2005). The potential
role of Aβ peptides in modulating angiogenesis may
explain why AMD is related to AD because of the
chronic inflammatory process. However, it should be
noted that the key component of drusen contributing
to AMD remains to be elucidated.

Recently, efforts have been put into the quest on
how Aβ deposits take part in inflammation which is a
key causative link to exudative AMD. The presence
of Aβ aggregates was specific to AMD eyes
(Anderson et al. 2002) and a number of evidence
showed the histopathological correlation between
inflammation and Aβ aggregates. Aβ assemblies,
which were detected in the degenerate RPE cells, may
involve the formation of amyloid vesicle-containing
drusen flanking RPE cells at the sub-RPE space
(Johnson et al. 2002). However, our understanding of
how Aβ assemblies exactly activate complement
cascade is still developing.

A hypothesis that Aβ contributes to inflammatory
events along with the formation of drusen has been
proposed (Anderson et al. 2004). RPE cells are
vulnerable to cell debris and other accumulated
substances such as lipofuscin (Anderson et al. 2004).
The gradual built-up of cell debris may initiate the
formation of drusen which encapsulates proteins,
lipids, as well as inflammatory components (Anderson
et al. 2002). Thus, there is a possibility that the amyloid
vesicles found in drusen may be made up of the
extracellular Aβ deposits derived from the injured RPE
cells. Similar to what can be found in AD where Aβ
aggregates involve the activation of complement, Aβ
deposition in the extracellular RPE matrix was sug-
gested to be a primary activator of complement cascade
in which the components responsible for the alternative
activation pathway of the complement system were
detected in AMD (Johnson et al. 2002; Gold et al.
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2006). Cleavage of C3 component into C3a and C3b
and subsequently cleavage of C5 component to trigger
the formation of membrane attack complex (Anderson
et al. 2002) can be found in both AD and AMD.

Choroidal neovascularization is a pathological
feature of exudative AMD in which VEGF-mediated
angiopathy is a key pathophysiological process (Patel
and Chan 2008). Aβ may be associated with
abnormal VEGF production triggered by impaired
cells and a series of inflammatory events. For
example, Roque and Caldwell (1990) have initially
proposed that VEGF was produced by the impaired
Müller cells, which was later supported by Pierce et
al. (1995). Recently, Yoshida et al. (2005) suggested
that Aβ assembly in drusen enhanced the release of
VEGF and pigment epithelium-derived factor from
RPE cells and promoted angiogenesis. Accumulation
of cell debris in RPE was suggested to be a pro-
inflammatory stimulation activating choroidal den-
dritic cells which subsequently recruit macrophages to
enhance the production of VEGF (Zarbin 2004).
Other reports have proposed that VEGF was up-
regulated by C3a and C5a (Nozaki et al. 2006).
Taking all these findings into consideration, Aβ
peptides can activate the complement system in which
C3a and C5a are potent stimuli of angiogenesis in
AMD. Studying AD-related retinal degeneration is a
valuable tool in evaluating complement activation and
subsequent angiopathy in AMD.

AD-related retinal degeneration shows a therapeutic
significance of early AD

Early signs of AD symptoms in the brain can hardly
be detected. In the most recent study of the APPswe/
PS1ΔE9 mice, 5 days of systemic administration of
curcumin showed that there was a qualitative age-
dependent correlation between plaque deposition in
the retina and the brain and increased accumulation
over the course of disease progression (Koronyo-
Hamaoui et al. 2011). For the very first time, they
proved that Aβ plaques in the retina precede brain
plaques as early as 2.5 months of age in AD-Tg mice
model. The first detectable Aβ plaques in the brain
were at the age of 5 months which is consistent with
previous studies in this line of AD-Tg mice (Garcia-
Alloza et al. 2006). Therefore, retinal degeneration is
the most important site to study in early AD pathology.
In APPswe/PS1ΔE9 mice, following MOG45D-loaded

dendritic cells immunization, Aβ-plaque burden in the
retinas was reduced as effectively as that in the brain
(Koronyo-Hamaoui et al. 2011). Considering the
potentiation of direct optical imaging of the retina,
especially the Aβ plaques deposition in the retina
labeled by curcumin, retinal degeneration in early AD
is the window of monitoring disease progression as
well as effectiveness of treatment.

In the study where extracellular Aβwas injected into
a glaucomatous model, immunotherapy with a potential
agent such as β-secretase inhibitor, Congo Red, or Aβ
antibody successfully reduced Aβ-induced RGC apo-
ptosis by suppressing further Aβ aggregation and
inhibiting the enzymatic activity of amyloidogenesis
(Guo et al. 2007). The effectiveness of each medication
was also assessed by quantifying RGC apoptosis under
the same dosage of each drug (Guo et al. 2007). This
study is a good example illustrating that the retina can
be a promising platform to investigate the efficacy of
any potential drugs on different neuronal cells. In
addition to traditional delivery system, potential neuro-
protective agents can be applied in the posterior
chamber by intravitreous injection (Chiu et al. 2005;
Chiu et al. 2007). The bioavailability of injected
compound in the vitreous can be extended (Mey and
Thanos 1993). An examination of pharmacokinetic and
pharmacodynamic is much easier than that in the brain.
Changes in a particular layer may imply some effects
of certain therapeutic agents on certain types of
neuronal cells. For example, changes in INL may be
an indication of some abnormalities that occurred in
horizontal cells, amacrine cells, or bipolar cells. Taken
together, the potent translation of treatment responses
from the retina to the brain proves that studying AD-
related retinal degeneration is of great therapeutic value
in the early onset of AD.

Ocular disease models are beneficial
to the investigation of AD pathogenesis

On one hand, studying AD-related retinal degenera-
tion can offer chances to elucidate the pathological
processes induced by Aβ in the retina of glaucoma or
AMD patient. On the other hand, each of the ocular
disease models mimic glaucoma and AMD can help
us to understand the pathogenesis of AD.

In glaucoma, previous studies have shown that
intracellular Aβ is found in the glaucomatous models
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(McKinnon et al. 2002). This may provide an excellent
experimental model because both extra- and intracel-
lular Aβ peptides contribute to the pathogenesis of
AD. The accumulation of intracellular Aβ peptides has
been shown to be neurotoxic in the brain (LaFerla et al.
2007; Li et al. 2007). This indicates that a glaucoma-
tous model can provide hints on the pathological
mechanisms of intracellular Aβ peptides.

In terms of AMD, Aβ assembly in drusen is non-
fibrillar peptides or oligomers instead of fibrillar
plaques observed in AD (Luibl et al. 2006). Recent
studies have demonstrated that Aβ oligomers are
neurotoxic because they disrupt dendritic spines and
depress synaptic signaling which lead to cognitive
deficits (Allen et al. 2002; Walsh et al. 2002a, b;
Wang et al. 2002; Nimmrich et al. 2008). Studying
AMD models can possibly provide suggestions on
how Aβ oligomers lead to AD pathogenesis.

Conclusion

Brain research in AD has been widely conducted,
while the retinal investigation in AD is a new arena to
be explored. The interchangeable knowledge between
the brain and the retina allows the concepts of Aβ
pathology in the AD retina to be borrowed from those
in the AD brain. Research in the retina offers many
advantages over the brain in terms of cost, time, and
analytical methods. Research in the AD retina
resembles the pathological changes in AD brain.
Therefore, studying AD-related retinal degeneration
will be beneficial in assessing AD pathological
changes and developing new AD therapeutic treat-
ments in a simple and effective manner. Complemen-
tarily by AD transgenic models, the investigation of
AD-related retinal degeneration may introduce a new
channel to study AD in a different perspective
(Fig. 2).
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