
Copyedited by: TRJ MANUSCRIPT CATEGORY: ORIGINAL PAPER

[12:45 9/4/2012 Bioinformatics-bts130.tex] Page: 1230 1230–1238

BIOINFORMATICS ORIGINAL PAPER Vol. 28 no. 9 2012, pages 1230–1238
doi:10.1093/bioinformatics/bts130

Genetics and population analysis Advance Access publication March 21, 2012

Fast stochastic algorithm for simulating evolutionary population
dynamics
William H. Mather1,2,3, Jeff Hasty1,2,3,4 and Lev S. Tsimring2,3,∗
1Department of Bioengineering, University of California, San Diego, 92093-0412, 2BioCircuits Institute, University of
California, San Diego, 92093-0328, 3San Diego Center for Systems Biology, University of California, San Diego,
92093-0328 and 4Molecular Biology Section, Division of Biological Sciences, University of California, San Diego, CA,
USA, 92093-0368
Associate Editor: Jeffrey Barrett

ABSTRACT

Motivation: Many important aspects of evolutionary dynamics
can only be addressed through simulations. However, accurate
simulations of realistically large populations over long periods of
time needed for evolution to proceed are computationally expensive.
Mutants can be present in very small numbers and yet (if they are
more fit than others) be the key part of the evolutionary process.
This leads to significant stochasticity that needs to be accounted
for. Different evolutionary events occur at very different time scales:
mutations are typically much rarer than reproduction and deaths.
Results: We introduce a new exact algorithm for fast fully stochastic
simulations of evolutionary dynamics that include birth, death and
mutation events. It produces a significant speedup compared to
direct stochastic simulations in a typical case when the population
size is large and the mutation rates are much smaller than birth
and death rates. The algorithm performance is illustrated by several
examples that include evolution on a smooth and rugged fitness
landscape. We also show how this algorithm can be adapted for
approximate simulations of more complex evolutionary problems and
illustrate it by simulations of a stochastic competitive growth model.
Contact: ltsimring@ucsd.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.

Received on February 2, 2012; revised on March 8, 2012; accepted
on March 11, 2012

1 INTRODUCTION
Natural evolution is an inherently stochastic process of population
dynamics driven by mutations and selection, and the details of
such evolutionary dynamics are increasingly becoming accessible
via experimental investigation (Barrick et al., 2009; Chou et al.,
2011; Finkel and Kolter, 1999; Pena et al., 2010; Ruiz-Jarabo
et al., 2003). The importance of stochasticity comes from the fact
that populations are always finite, mutations are random and rare,
and at least initially, new mutants are present in small numbers.
This realization prompted intensive studies of stochastic effects in
evolutionary dynamics (Baake and Gabriel, 2000; Brunet et al.,
2008; Desai et al., 2007; Gillespie, 1984; Hallatschek, 2011; Jain
and Krug, 2007). Most of the models in these studies consider
a reproducing population of individuals which are endowed with

∗To whom correspondence should be addressed.

genomes that can mutate and thus affect either reproduction or death
rate, as with the classical Wright–Fisher (Fisher, 1930; Wright, 1931)
and Moran models (Moran, 1958) which describe a fixed population
of replicating individuals. Specific models vary in the details of
fitness calculation and mutation rules, but recent theoretical studies
of even relatively simple models lead to non-trivial predictions
on the rate of evolution as a function of the population size and
the details of the fitness landscape (Brunet et al., 2008; Desai
et al., 2007; Hallatschek, 2011; Kessler et al., 1997; Rouzine
et al., 2003; Tsimring et al., 1996). However, the complexity
of more realistic evolutionary models makes them analytically
intractable and requires researchers to resort to direct numerical
simulations in order to gain quantitative understanding of underlying
dynamics.

On the most basic level, an evolutionary process is a Markov
chain of discrete reactions of birth, deaths and mutations within
a population of individuals. A direct and exact way of computing
individual evolutionary ‘trajectories’ is to use the stochastic
simulation algorithm (SSA; Gillespie, 1977) or its variants (Gibson
and Bruck, 2000; Gillespie, 1976; Lu et al., 2004), in which birth,
death and mutation events are treated as Markovian ‘reactions’.
Unfortunately, for realistically large population sizes, direct
stochastic simulation of even simple models becomes prohibitively
expensive. Hence, there is an acute need for developing accelerated
methods of stochastic simulations of evolutionary processes. Such
methods usually involve approximations to the exact stochastic
process based on certain small or large parameters that characterize
the problem (for example, population size or mutation rates).
Several approximate methods have been developed in recent years
in the context of stochastic biochemical kinetics (Cao et al.,
2005; Gillespie, 2001; Jahnke and Altintan, 2010; Rathinam and
El Samad, 2007; Rathinam et al., 2003). Recently, Zhu et al. (2011)
proposed an approximate hybrid algorithm suitable for simulation
of evolutionary dynamics by combining the τ-leap algorithm
(Gillespie, 2001) appropriate for abundant sub-populations that do
not change their sizes much between individual events, and the direct
SSA algorithm for small sub-populations. This method allows one to
use large time steps during which multiple birth and death reactions
may have occurred. However, it slows down dramatically after a
new mutant has been produced, since the algorithm resorts to the
direct SSA for all events in which the new mutants are involved
until the population of the new mutant class reaches a pre-defined
threshold.

1230 © The Author 2012. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

ltsimring@ucsd.edu


Copyedited by: TRJ MANUSCRIPT CATEGORY: ORIGINAL PAPER

[12:45 9/4/2012 Bioinformatics-bts130.tex] Page: 1231 1230–1238

BNB algorithm for evolutionary dynamics

Here, we develop a novel exact algorithm for simulation of
evolutionary dynamics of a multi-species population undergoing
asexual reproduction, death and mutation. Unlike the direct SSA,
it only samples the evolutionary process at the times of mutations.
Stochastic contributions from mutation, birth and death are included
exactly, which is especially important for new species that initially
contain a population size of one. We call this algorithm BNB
(binomial-negative binomial), since as the name indicates, a
population update requires sampling binomial and negative binomial
pseudorandom variables with specific weights. This can be done
efficiently using techniques similar to those used in the next reaction
method (Gibson and Bruck, 2000).

If the mutations are rare compared with other (birth and death)
events, this algorithm offers a significant speed advantage with
respect to the SSA. Indeed, in most organisms, the mutation rate
is much smaller than the birth and death rates, e.g. the probability of
mutation per division for the genome in bacteria is μg ∼10−3 (Drake
et al., 1998). Thus, only a small (compared to the population size)
number of new mutants appear in each generation. Even in viruses
that generally are characterized by a high mutation rate μg ∼1,
most mutations are neutral and thus do not strongly influence the
population dynamics.

In the following, we begin with a general approach to the
stochastic simulation of a system of reactions that are arbitrarily
divided into ‘fast’ and ‘slow’ reactions. We then specialize to the
evolutionary model in which the mutation rate is assumed to be
much smaller than the birth and death rates. We present examples
that illustrate the accuracy and power of the proposed algorithm
for models describing evolution of a population regulated by serial
dilution. Then we discuss a modification of the algorithm that allows
for its use in more complex situations when the exact algorithm is
not applicable. Finally, we illustrate the approximate method by a
simple example of co-evolving species competing for a common
nutrient source.

2 ALGORITHM
The BNB algorithm is a stochastic updating rule for the state of
an evolving set of species, which are defined by their internal state
(‘genotype’) that in turn determines the birth, death and mutation
rates for each species. This algorithm is exact when the birth, death
and mutation rates (not the propensities!) remain constant between
consecutive mutations. A single iteration of the BNB algorithm
updates the state of the system to the time just after the next mutation
has occurred. By applying this updating rule multiple times, the
dynamics of the evolving system can be sampled by ‘jumping’
from one mutation to the next. In case when the rates are changing
slowly between mutations, an approximate variant of the BNB can
be applied (see below).

The core of the BNB algorithm is based on an exact solution
for a stochastic model of dividing, dying and mutating discrete
populations of cells. A single iteration of the BNB algorithm uses
this solution to rapidly perform the following steps: (i) determine
from which species and at what time a new mutant cell is generated;
(ii) update the populations of all species to the time just prior
to this mutation; (iii) generate a new mutant cell that either
establishes a new species in the simulation or is added to a species
already contained in the simulation; and (iv) update the time of the
simulation to the time of this mutation.

This section contains the derivation and the detailed description
of the BNB algorithm.

2.1 Stochastic simulation of a two-scale stochastic
process

We consider the general case of a continuous time and discrete state
stochastic system that is subject to a set of reactions among which
some are ‘fast’ and some are ‘slow’. We designate them as fast and
slow operationally, for a given state of the system (e.g. abundances
of each species) at a given time. Typically, the mean time interval
between two consecutive fast reactions will be much smaller than
the mean time interval between two consecutive slow reactions. Our
goal is to jump directly from one slow reaction event to the next and
exactly sample the state of the system at the time of slow reaction.

Let us lump all slow reactions into one that we call ‘mutation’
and consider the dynamics of the system between two consecutive
mutations. For simplicity, we assume that the propensities for each
possible mutation are proportional to each other for a given system
state, such that we can select the type of mutation independently of
when a mutation occurs. If the probability of mutations were zero,
the probability pi(t) for being at state i at time t satisfies the master
equation that only includes fast reactions

dpi

dt
=

∑
j

Rij pj , with Rii =−
∑
j �=i

Rij and other Rij ≥0 . (1)

Now, suppose that mutations occur with rate μi at state i. We can
introduce the probability Pi(t) that the system is at state i at time
t and a mutation has not yet occurred. It is easy to see that Pi(t)
satisfies the ‘leaky’ master equation

dPi

dt
=

∑
j

Rij Pj −μiPi . (2)

The probability Yi(t) that at least one mutation has occurred while
the system was at state i before time t satisfies the following equation

dYi

dt
=μi Pi . (3)

Note that Yi(t)=0 at initial time t =0. Define the probability
P(t)≡∑

i Pi(t) for no mutation to have occurred by time t and
Y (t)≡∑

i Yi(t) for some mutation to have occurred at least once at
any state by the time t. By construction, Y (t)+P(t)=1, and therefore

dP

dt
= −dY

dt
=−

∑
i

μi Pi . (4)

Thus, P(t) is strictly non-increasing in time, as expected. Knowledge
of P(t) allows us to sample time to the next mutation tm. We also
need to know which state of the system is mutated. It is easy to show
that the probability ρi(t) that the system is at state i at the time of a
mutation is

ρi(tm)= μi Pi(tm)∑
iμi Pi(tm)

. (5)

Thus, assuming we can solve for Pi(t), we can formulate the
following algorithm for updating the stochastic system at mutation
times:

Algorithm 1

(1) Define the initial state of the system i0, i.e. define Pi(0)=δii0

(where δij is the Kronecker symbol).

1231



Copyedited by: TRJ MANUSCRIPT CATEGORY: ORIGINAL PAPER

[12:45 9/4/2012 Bioinformatics-bts130.tex] Page: 1232 1230–1238

W.H.Mather et al.

(2) Solve for Pi(t), which provides functions P(t) and ρi(t)
[Equations (4)–(5)].

(3) Sample the next mutation time according to the cumulative
probability P(t). This can be done via the inversion method,
such that the next time tm =P−1(r), where r is a uniform
random variable between 0 and 1.

(4) Add tm to the current time.

(5) Sample the distribution ρi(tm) to generate the new state im
just before the mutation (slow reaction).

(6) Choose the specific mutation according to their relative
propensities and update the state of the system after the state
update in Step 5.

(7) Return to Step 1 until finished.

Of course, to complete this algorithm, we should be able to
solve for or otherwise compute the dynamics of the probabilities
Pi according to Equation (2). While this may be difficult in general
to do analytically, it may still be much simpler that solving the full
system. In particular, as we discuss in the following section, the
problem can be solved exactly when the fast reactions include only
birth and death whereas the slow reactions include only mutations.

2.2 Generating function solution for a single-species
birth/death/mutation model

There exists a vast literature on the analysis of statistical properties of
the so-called linear birth–death processes. The analytical treatments
usually involve solving the corresponding master equation via the
generating function method (Bartlett, 1955; Cox and Miller, 1965).
Exact solutions have been found for several models including
pure birth–death systems as well as systems with immigration
and emigration (Crawford and Suchard, 2011; Ismail et al., 1988;
Karlin and Mcgregor, 1958; Novozhilov et al., 2006). Here, we
will follow the same general approach, but since we are interested
in the statistics of mutating species, we will add the mutation
‘reaction’ in the model which manifests itself through leakage of
probability. We begin with the case of a single class of species.
The number of individuals n can fluctuate due to statistically
independent birth, death and mutation reactions. Birth has propensity
gn, death has propensity γn and mutation has propensity μn. As
before, we are only interested in the interval of time between two
subsequent mutations, so the resultant state of the mutated individual
is irrelevant. Thus the mutation is simply defined as the creation and
subsequent departure of a single individual from the class.

Define Pn(t) to be the probability that the system is at state n at
time t and that a mutation has not yet occurred. The generating
function G(s,t)=∑∞

n=0Pn(t)esn can be computed for an initial
population n0 at time t =0 by (see Supplementary Material for
details)

G(s,t) = [
(pM (t)−pE (t))es G1(s,t)+pE (t)

]n0 (6)

with

G1(s,t) = 1−pB(t)

1−pB(t)es , (7)

pM (t) ≡ RC(t)+2γS(t)−WS(t)

RC(t)−2gS(t)+WS(t)
, (8)

pE (t) ≡ γ (1−pM (t))

W −γ−gpM (t)
, (9)

pB(t) ≡ gpE (t)

γ
, (10)

R≡
√

(g−γ)2 +(2g+2γ+μ)μ and W =g+γ+μ. Using a uniform
random number r distributed between 0 and 1, the next mutation time
is then

tm = 1

R
ln

[
r1/n0

(
R−W +2g

)−W −R+2γ

r1/n0
(−R−W +2g

)−W +R+2γ

]
(11)

which exists for (
R−W +2γ

R+W −2g

)n0

<r ≤1. (12)

When Equation (12) is not satisfied, this indicates that the population
will go extinct before a mutation occurs if the population is
unperturbed for infinite time.

The time to extinction, tx , can then be sampled by inversion of
the extinct state probability P0(t),

tx =P−1
0 (r)= 1

R
ln

[
W −R−2γr−1/n0

W +R−2γr−1/n0

]
. (13)

2.3 BNB expansion
After computing the time to the next mutation, we need to generate
a sample number of individuals at the time of mutation. The number
of individuals conditional on no mutation at time t is distributed
according to the generating function G(s,t) given by Equation (6).
Here, we show that this seemingly complicated distribution can be
exactly sampled by drawing two random numbers—one binomial,
and one negative binomial. Many popular software packages,
e.g. (Press et al., 2007), contain fast algorithms for generating these
random numbers (note that negative binomials can be generated by
Poisson random variates with a Gamma-distributed parameter).

Equation (6) can be recast via a binomial expansion

G(s,t)=pM (t)n0

n0∑
m=0

n0!
m!(n0 −m)!G1(s,t)mems

·
(

1− pE (t)

pM (t)

)m(
pE (t)

pM (t)

)n0−m
. (14)

Since an integer power of a geometric generating function
corresponds to a negative binomial generating function,
Equation (14) can be interpreted as a generating function of
a process in which the system either has mutated by time t with
probability 1−pM (t)n0 , or if the system has not yet mutated, then
it is in a state ñ whose distribution is a binomial superposition of
n0 negative binomial distributions. While Equation (14) does not
directly provide the probability to be in a particular state at the time
of a mutation, it provides the probability Pn(t) at an arbitrary time
t conditional on no mutation. We can then generate a sample of the

1232



Copyedited by: TRJ MANUSCRIPT CATEGORY: ORIGINAL PAPER

[12:45 9/4/2012 Bioinformatics-bts130.tex] Page: 1233 1230–1238

BNB algorithm for evolutionary dynamics

population ñ conditional on no mutation at time t by the following
procedure.

Algorithm 2

(1) Generate a binomial random number m̃, with success
probability 1−(pE (t)/pM (t)) and n0 terms.

(2) If m̃=0, then the system at time t is in the extinct state ñ=0.

(3) Otherwise, generate the new state variable ñ: ñ= m̃+
ÑB(m̃,pB(t)), where ÑB(m̃,pB(t)) is a negative binomial
number of order m̃ and probability of success pB(t).

We are also interested in the probability ρn(t) for a system to
be in the state n at the mutation time. It is easy to see that
ρn(t)∝μnPn(t)∝nPn(t) [see Equation (5)]. To compute these
probabilities, we introduce the corresponding generating function
Gρ(s,t)=∑∞

n=0 ρn(t)esn. After straightforward algebra, we obtain
from Equation (6)

Gρ(s,t)=
(

(pM (t)−pE (t))es G1(s,t)+pE (t)

pM (t)

)n0−1

· es G1(s,t)2 . (15)

which has the binomial expansion

Gρ(s,t)=
n0−1∑
m=0

n0!
m!(n0 −m)! G1(s,t)m+2

(
1− pE (t)

pM (t)

)m

· e(m+1)s
(

pE (t)

pM (t)

)n0−1−m
. (16)

Equation (16) has the same form as Equation (14), and thus, ρn
can be also sampled. Specifically, the algorithm for computing the
state of the system just before the next mutation (at time tm) for the
single species reads as follows.

Algorithm 3

(1) Generate a binomial random number m̃, with success
probability 1−(pE (tm)/pM (tm)) and n0 −1 terms.

(2) Generate the updated state ñ at the mutation time:
ñ= m̃+1+ÑB(m̃+2,pB(tm)), where ÑB(m̃,pB(t)) is a
negative binomial number of order m̃ and probability of
success pB(t).

Note that the system will never be in the extinct state, which reflects
that an extinct population cannot mutate.

2.4 Simulating multiple co-evolving species: first
mutation method

In this section, we return to the original problem of an evolving
population of multiple species. We enumerate species by index
i, with ni(t) individuals in each species. We are interested in
sampling the set {ni(tm)} at mutation times tm. We assume that the
system parameters (birth, death and mutation rates) do not change
between mutations unless the algorithm is ended early between two
mutations. At the time of mutation, one individual is created from
mutating class im and, depending on the type of mutation, is either
added to one of the other existing classes (if such a class already
exists) or becomes the founding member of a new class.

The algorithm for generating a sample stochastic evolution
trajectory, which we call First Mutation BNB, is as follows.

Algorithm 4

(1) Initialize the system with N classes of species at time t =0.
Specify populations of all classes ni,i=1,...,N . Each class
has its own set of birth, death and mutation rates gi,γi,μi.

(2) For each class, generate N random numbers ri uniformly
distributed between 0 and 1. For each i=1,...,N , generate
a time ti to the next mutation by Equation (11). When
Equation (12) is not satisfied, set ti =∞.

(3) Find the minimum mutation time tm =min(ti) and the
corresponding class im. Update the time t → t+tm.

(4) Update the population for the mutated class im using
two random numbers (one binomial and another negative
binomial) according to the Algorithm 3.

(5) Update the populations of all other classes according to
Algorithm 2.

(6) Select the specific mutation that occurs. If the mutation
generates a member of a non-existent class, create a new
class N +1 with nN+1 =1 and its own set of parameters
gN+1,γN+1,μN+1. Otherwise, add 1 to the corresponding
existing class.

(7) One or several of the non-mutated classes may have zero
population and are thus extinct. Remove extinct classes from
the list and reduce the number N of classes accordingly.

(8) Return to Step 2 until the algorithm has completed.

To end the algorithm at a specific time rather than at a mutation
event, all populations can be updated according to Algorithm 2 with
the time duration t∗−t, where t is the current time, and t∗ is the
prescribed end time. This update would be done just after Step 2
when t∗ < t+min(ti) first occurs. Ending at a specific time is useful
for a number of purposes, such as if the population is reported or
modified at fixed time intervals, or if rates are adjusted at fixed time
intervals.

The Algorithm 4 is analogous to the first reaction method used for
stochastic simulation of reaction networks (Gillespie, 1976), in that
the simulation of a system with N classes of co-evolving species
generates 3N random numbers in order to step to the next mutation.
This algorithm can thus become inefficient as the number of classes
becomes large. To remedy this shortcoming, an optimized and only
slightly more complex version of this algorithm is presented in the
next section.

2.5 Simulating multiple co-evolving species: next
mutation method

In fact, the number of random variables generated for each mutation
in Algorithm 4 is excessive. Different species evolve independently
between mutations, and even at the mutation time, only two classes
are coupled, due to the mutating population generating and then
contributing a single member to another species class. If this
mutational coupling did not exist, the dynamics of species would

1233



Copyedited by: TRJ MANUSCRIPT CATEGORY: ORIGINAL PAPER

[12:45 9/4/2012 Bioinformatics-bts130.tex] Page: 1234 1230–1238

W.H.Mather et al.

be statistically independent at all times, and we could simulate
all species independently using only three random numbers per
mutation event.

This line of reasoning leads to a similar but optimized
algorithm (see Supplementary Material for the algorithm and further
justification), where the populations and next mutation times of
species are re-sampled only for the two species that are coupled
via a mutation event, whereas population sizes and next mutation
times of all other classes are not re-sampled. Validity of the algorithm
hinges on the statistical independence of species that are uncoupled
by a mutation. The method is analogous to the next reaction
method (Gibson and Bruck, 2000), so we label the algorithm Next
Mutation BNB.

The optimized scheme reduces the typical number of new random
variables required per mutation to only six after the first iteration,
independently of the total number of classes N . Only initialization
and finalization of the algorithm have a computational cost of
order N , so efficiency of the algorithm primarily depends on how
frequently the algorithm is restarted, as is the case whenever the
whole population is sampled for observation.

The Next Mutation BNB algorithm is always as fast or faster than
the First Mutation BNB. We thus use Next Mutation BNB (or just
BNB) exclusively for the simulation examples of this article.

2.6 Approximate simulation method using BNB
One major benefit of the BNB algorithm is that binomials and
negative binomials rapidly generate an update for the evolving
system with linear propensities for birth, death and mutation in
a non-interacting population. While this situation is typically the
case for cells kept in log-phase growth, the cases when species are
interacting or when propensities deviate from a linear law are also of
interest. Because of this, we outline how the BNB algorithm can be
adapted to approximately, but accurately, simulate more complicated
systems.

The basis of the BNB algorithm is the generating function solution
Equation (6), and it is straightforward to show from the short
time form of this generating function that the BNB algorithm
applied for sufficiently short time increments, during which birth,
death and mutation rates are considered constant, can simulate
systems with population-dependent rates. Between BNB updates,
all of these rates can be updated in a state-dependent manner.
This approach is similar to the τ-leap approximation to stochastic
systems, which is often used to accelerate simulations of chemical
reaction networks (Gillespie, 2001). The basis of τ-leap is that the
propensities for reactions can be considered approximately constant
during some time interval, such that the update scheme for τ-leap
assumes each reaction occurs a Poisson-distributed number of times.
Simulation error magnitude in τ-leap is closely associated with how
well propensities are kept constant during a given time interval, and
based on this connection, a few prescriptions for the step size have
been suggested (Cao et al., 2006, 2007; Gillespie and Petzold, 2003).
In contrast, BNB as an approximate updating scheme assumes that
the propensities are approximately linear with respect to population,
i.e. having constant rates. Deviation from the linear law is the
primary factor influencing simulation error in BNB updating.

An important aspect of an approximate BNB updating method
is that large and small species populations are treated uniformly,
such that the same updating scheme applies to both situations with

equal speed and relative accuracy. This may be contrasted to τ-leap
methods, which due to large relative fluctuations of the propensity
for small populations are no longer valid except for very short time
steps. Zhu et al., 2011 introduced a hybrid τ-leap method which
simulates species lower than a given population (the ‘cutoff’) using
direct Gillespie algorithm. The tradeoff for the increased accuracy
is a much-increased workload, since Gillespie algorithm simulates
each reaction event individually. New species, which start as single
cells, or species that naturally exist in low abundances are especially
susceptible to an increase in workload for finite cutoff.

3 RESULTS

3.1 Exact simulations
In this section, we will apply the BNB algorithm to examples
that can be exactly simulated using BNB. These examples deal
with modeling the evolution of heterogenous cell populations in a
hypothetical bioreactor designed to maintain exponentially growing
cultures. We illustrate several phenomena that have been explored
previously in analogous situations, e.g. for populations of fixed
size, though we pursue these phenomena in the regime where
large fluctuations in total population size (10-fold in most of our
simulations) are routine.

The following models assume that cells are kept sufficiently
dilute in culture such that limiting nutrients and other cell–cell
interactions are not a factor. These cells thus grow and divide
freely. The bioreactor prevents cell cultures from growing too dense
by measuring the population size periodically (after every time
duration �t) and diluting the culture by binomial sampling to the
mean population size nmin once the population has exceeded the
population size nmax. In the simulations, we advance time directly
from one mutation to the next or until the system has evolved
longer than the maximal time duration �t, at which point cells
may be diluted if the population has exceeded nmax. It is also
straightforward to simulate a bioreactor that continuously dilutes
cultures to stem population growth, where the rate of media turnover
and, correspondingly, cell ‘death’ is controlled, but we do not
consider such an case here. An analysis in the Supplementary
Material demonstrates that performance of BNB for these situations
can far exceed that for direct Gillespie and τ-leap methods.

Abrupt dilution events can greatly enhance the effect of
stochasticity, since there is a corresponding reduction in genetic
diversity associated with each sub-sampling of the population. The
smaller population after a dilution event will be heavily influenced
by the particular individuals retained, leading to a form of the
founder effect (Templeton, 1980). Even in light of this fact, we show
that many phenomena found for fixed population sizes, e.g. wave
behavior for population fitness, also occur using a dilution protocol
that might occur experimentally.

3.1.1 Linear fitness model Suppose that species are characterized
by a positive integer index m that is a measure of fitness. Birth rate gm
is a linear function of m, gm =1+ε(m−1). Death rate γm is constant
across species. Mutation rate is proportional to growth rate (faster
growing species also mutate faster), μm =ηgm. During a mutation
of species with index m, a new member of species with index m−1
or m+1 is created, as chosen uniformly at random. If a species with

1234



Copyedited by: TRJ MANUSCRIPT CATEGORY: ORIGINAL PAPER

[12:45 9/4/2012 Bioinformatics-bts130.tex] Page: 1235 1230–1238

BNB algorithm for evolutionary dynamics

A B

C D

Fig. 1. Simulations of the linear fitness model with �t =0.1, ε=10−3,
η=10−3 and nmin =nmax/10. The instantaneous distributions of the
populations over the species index normalized by nmax as a function of
time are shown for nmax =104 (A) and nmax =105 (B). Wave-like behavior
is evident in both cases, though the smaller population leads to a noisier
and slower wave. Panels (C) and (D) show the corresponding probabilities
averaged over 800 realizations. The wave velocity, by a least squares linear
fit to the ensemble mean fitness, is 0.93×10−3 and 2.1×10−3 indices per
unit time for (C) and (D), respectively.

A B

Fig. 2. (A) The wave velocity (indices per unit time) of the linear fitness
system has a slow (logarithmic) dependence on the population size set by
nmax, in agreement with theoretical results (Brunet et al., 2008; Desai et al.,
2007; Hallatschek, 2011; Kessler et al., 1997; Rouzine et al., 2003; Tsimring
et al., 1996) (parameters are the same as in Fig. 1). Blue dots represent
individual velocity measurements based on least squares fitting of a line to
the last half of the mean index trajectory. Red line shows the least squares fit
of the velocity as a linear function of lnnmax over the range nmax >104. The
velocities from Figure 1C and D are plotted as green squares and diamonds,
respectively. (B) Same as (A) for ε=10−4 and η=10−2. The weaker fitness
gradient leads to a noisier distribution of velocities. (For a colour version of
this Figure see Supplementary Data online).

index m=1 mutates, a new member of the species with index 2 is
always created.

It has been demonstrated for ε>0 in the case of a constant
total population that evolution on a linear fitness landscape leads
to traveling population waves (Brunet et al., 2008; Desai et al.,
2007; Hallatschek, 2011; Kessler et al., 1997; Rouzine et al., 2003;
Tsimring et al., 1996), such that the mean fitness of the population
linearly grows in time. However, the finite-size stochastic system
can only be treated heuristically (Kessler et al., 1997; Tsimring
et al., 1996), asymptotically (Brunet et al., 2008; Desai et al.,

A B

C D

Fig. 3. Ruggedness of the fitness landscape impacts speed of evolution in a
linear fitness model. Shown are apparent wave velocities (blue dots) derived
by least-square fitting of the mean index 〈m〉 across species as a function
of time. The model with deterministic alternating fitness and nmax =104 (A)
or nmax =105 (B) leads to a smooth decay of wave velocity with respect to
the perturbation amplitude ν. In contrast, a model with quenched disorder
in fitness and nmax =104 (C) or nmax =105 (D) exhibits an abrupt decrease
in wave velocity suggesting a phase transition. In all cases, nmin =nmax/10,
η=10−3, ε=10−2, γm =0.1, and �t =0.02. The red curve indicates trend
lines generated by a Savitzky–Golay filter. (For a colour version of this
Figure see Supplementary Data online).

2007; Rouzine et al., 2003), or under certain specific modeling
assumptions (Hallatschek, 2011). Thus, exact numerical simulations
of large evolving populations in linear fitness landscapes are useful
for testing the existing theories. Simulations indeed produce wave-
like behavior (Fig. 1). The wave velocity scales linearly with the
logarithm of the population size, as predicted (Fig. 2).

We used similar simulations to study the effects of quenched
fitness fluctuations on the propagation of traveling evolution waves.
This problem is qualitatively analogous to the models of transport
in systems with quenched disorder that are known to exhibit phase
transitions (Bouchaud et al., 1990; Monthus and Bouchaud, 1996),
and we expect similar behavior for evolution in a linear model
with quenched disorder in the growth rate law. We assumed that
the fitness as a function of the species index m has a fluctuating
piece in addition to the linear dependence. Specifically, we consider

growth rates that vary as g(q)
m =1+ε(m−1+νR̃m), where ν≥0

provides the scaling of noise, and R̃m ∈[−0.5,0.5] are independent
uniform random numbers. In the case when ν<1, an increase in m
always leads to an increase in growth rate, and wave propagation
should proceed but with moderately reduced velocity. The case
with ν>1 is qualitatively different, since an increase in m need
not imply an increase in fitness. In this regime, it is possible
to form rare but wide barriers due to fluctuations in the fitness,
and these barriers when they exist can trap the system for an
exponentially large time. This case can be contrasted against a

potential with similar but deterministic variation g(a)
m =1+ε(m−

1+ν((m mod 2)−0.5)), which for ν>1 has fitness barriers only a
single species wide. Figure 3 shows that quenched disorder exhibits

1235



Copyedited by: TRJ MANUSCRIPT CATEGORY: ORIGINAL PAPER

[12:45 9/4/2012 Bioinformatics-bts130.tex] Page: 1236 1230–1238

W.H.Mather et al.

A B

Fig. 4. Wave behavior for the evolution in a model with competition,
simulated using BNB as an approximate algorithm with time step τ =1.
(A) A single realization of the species distribution as a function of time for
initial population 100. (B) The mean population distribution for an ensemble
of 800 simulations.

substantially different behavior than the case when fitness contains
regular variation. The system with quenched disorder in particular
exhibits a sharp decrease in wave velocity as disorder is increased
to ν>1, akin to a phase transition.

3.1.2 NK model simulations Due to the general way the BNB
algorithm treats mutations, it can be applied to more complicated
evolutionary models. We used a variant of the NK model (Kauffman
and Levin, 1987) to simulate evolution on fitness landscapes
with various degrees of ruggedness. Despite large fluctuations in
population, we could reproduce classical results for NK models,
including state-dependent wave speed for smooth fitness landscapes,
and punctuated evolution for rugged landscapes. Results and
analysis of this model are found in the Supplementary Material.

3.2 BNB as an approximate algorithm: evolution in
nutrient-limited environments

BNB can also be applied as an approximate algorithm for systems
with state-dependent growth rates. Propensities may deviate from
the linear law assumed in the BNB algorithm, but the BNB algorithm
may still approximate a system with non-constant birth, death and
mutation rates by evolving the system with a BNB step restricted
to a short duration τ. Rates are then updated using the new
populations before integrating the system with another BNB step,
and so on. Validity of this process depends on self-consistency of
the assumptions in the BNB algorithm, especially that propensities
for reactions are independent of other species and proportional to
population (see Supplementary Material for details).

We checked performance of this approximate algorithm for
a system in which several species compete for a common
nutrient that is supplied at a constant rate. Different species
can consume this nutrient with different effectiveness, which
provides selective pressure. Specifically, we suppose a linear fitness

model for species, gm =am
(
1+∑


a
n
/K0
)−1

,γm =0.1,μm =
ηgm,am =1+ε(m−1), with species index m, η=10−3, and a
scaling factor ε=1. In contrast to the other simulations in this text,
birth rates are coupled in such a way that the total population in the
system autonomously relaxes on average to a fixed value n̄≈10K0
without the need of dilution events triggered by the population.
The evolution of the system is linked to the ratio of growth rates
gm1/gm2 =am1/am2, which indicates that species with a higher
index m tend to grow faster than those with lower index. Due to
this effect, the system exhibits wave-like behavior (Fig. 4).

A B

C D

Fig. 5. Simulation accuracy for the model with competition. Using BNB
(red), hybrid τ-leap (dashed blue) or direct SSA (light green), the model (with
K0 =1000 and initial population =100) was simulated over 105 realizations.
As a measure of error, statistics of the population of the first mutant (index=2)
were examined at time t =50. (A) The histogram (bin width=250) of
this population for simulations using step size τ =5. BNB matches direct
simulation closely, while hybrid τ-leap with cutoff 10 suffers from major
inaccuracies. (B) L2 error between the histogram of direct SSA simulation
and that of either BNB or the hybrid τ-leap normalized by the minimal
expected statistical deviation, see Supplementary Material for details. (C)
Same as (B), but as a function of the cutoff value for the hybrid τ-leap
algorithm with τ =5. (D) Mean workload of the hybrid τ-leap and the
approximate BNB algorithms, normalized by the workload for the BNB
algorithm, as a function of the cutoff value. (For a colour version of this
Figure see Supplementary Data online).

The recurrent creation and subsequent growth of new species in
the competition model suggests that BNB could maintain better
accuracy than τ-leaping schemes, since BNB faithfully simulates
arbitrarily small populations and also exponential growth. We tested
this for short-time simulations, and we found that in this context that
BNB can provide consistently increased accuracy when compared
to a hybrid τ-leap algorithm (Fig. 5).

4 DISCUSSION
In this article, we have proposed an algorithm, which can be
used to sample exactly co-evolving species that do not interact
between mutations, and faithfully approximate the evolution of
weakly-interacting species. BNB algorithm not only accounts for the
stochastic fluctuations that arise due to the random nature of genetic
mutations, but it also accounts for the small-number fluctuations
due to the growth of new species that are spawned as single cells.
Each iteration of the BNB algorithm generates the time of the next
mutation and the abundances of all species just after the mutation.
This algorithm is exact when the birth, death and mutation rates
do not change between consecutive mutations. Although similar
in spirit to approximate leaping schemes developed for modeling
stiff stochastic chemical kinetics (Cao et al., 2005; Gillespie, 2001;
Jahnke and Altintan, 2010; Rathinam and El Samad, 2007; Rathinam
et al., 2003; Zhu et al., 2011), it differs significantly by providing an

1236



Copyedited by: TRJ MANUSCRIPT CATEGORY: ORIGINAL PAPER

[12:45 9/4/2012 Bioinformatics-bts130.tex] Page: 1237 1230–1238

BNB algorithm for evolutionary dynamics

exact sampling at (irregular) intervals corresponding to mutational
events. The method yields a substantial speed advantage over a
straightforward SSA when the mutations are rare compared with
birth and death events. The method is accessible, since the central
part in implementing BNB is constructing fast methods that generate
binomial and negative binomial pseudorandom numbers, both of
which are available in standard code libraries (Press et al., 2007).
More generally, the BNB algorithm is applicable to the simulations
of systems in which underlying reactions are all first order and
their rates remain unchanged between coarse-grained simulation
steps.

Using the exact BNB algorithm, we simulated several evolution
models for a hypothetical bioreactor that performs abrupt dilutions of
cell culture when the total cell population exceeds a prescribed value.
An analogous experimental bioreactor would periodically reduce
the total number of cells, replenish nutrients and remove wastes
in order to maintain log-phase growth of bacterial populations. In
contrast to the classical theoretical setting, where the total number
of cells is often kept constant, our model bioreactor maintained
periodic 10-fold variations in the total number of cells. Despite
these wild fluctuations in total population size, most phenomena
and population size scaling were preserved. We found the classical
scaling laws of adaptation velocity with the population size, as well
as the evidence of a phase transition in the case of rugged linear
models.

Real cell cultures almost always exhibit some degree of
interaction within and among species, and so we showed how the
BNB algorithm can also be extended to an approximate algorithm
that is competitive with τ-leap and hybrid schemes adapted for
evolutionary dynamics simulations (Zhu et al., 2011). A practical
advantage of the approximate BNB algorithm is its uniformity; a
BNB step is implemented with identical code for all population
sizes. A specific model for species competing for common nutrients
was introduced to test BNB, and BNB was found to readily provide
good accuracy with minimal workload when compared to analogous
τ-leap simulations. We anticipate the advantage of BNB to be
maintained in the case where simulations require accurate and fast
simulation of exponential growth of species that routinely are found
at low population counts, as is the case when new fitter species grow
to overtake the population. It should be noted, however, that even
though the BNB algorithm can be used to simulate rather general
systems, there are systems where BNB performs comparably to or
even worse than τ-leap.

The present work presents the foundation for the BNB
algorithm, but there exist several immediate directions for future
refinement. We anticipate that simple modification of the BNB
algorithm should enhance the accuracy for a wide variety of
models with interacting species, analogously to a proposed
midpoint method for τ-leaping (Anderson et al., 2010). Similarly
straightforward modifications may also lead to a BNB formalism
that approximates time-dependent birth, death and mutation rates,
as needed for externally driven metabolic networks, e.g. the GAL
network (Bennett et al., 2008). A less trivial extension would be
to remove the assumption that birth, death and mutation rates are
constant across species. Experimentally, cells within a common
species exhibit variability in their cellular state (Elowitz et al., 2002),
which could lead to a distribution of growth rates within a single
species. Such a modified BNB could then be useful for answering
questions concerning how species evolution couples to cellular state.

Funding: National Institutes of Health, grants P50GM085764
[W.H.M.]; RO1GM069811 [J.H.]; and R01GM089976 [L.S.T.].

Conflict of Interest: none declared.

REFERENCES
Anderson,D.F. et al. (2010) Error analysis of tau-leap simulation methods.

arXiv:0909.4790v2.
Baake,E. and Gabriel,W. (2000) Biological evolution through mutation, selection, and

drift: an introductory review. Ann. Rev. Comp. Phys., 7, 203–264.
Barrick,J.E. et al. (2009) Genome evolution and adaptation in a long-term experiment

with escherichia coli. Nature, 461, 1243–1247.
Bartlett,M. (1955) An Introduction Stochastic Processes with Special Reference

to Methods and Applications. Cambridge University Press, Cambridge, United
Kingdom.

Bennett,M.R. et al. (2008) Metabolic gene regulation in a dynamically changing
environment. Nature, 454, 1119–1122.

Bouchaud,J.P. et al. (1990) Classical diffusion of a particle in a one-dimensional random
force-field. Ann. Phys., 201, 285–341.

Brunet,E. et al. (2008) The stochastic edge in adaptive evolution. Genetics, 179,
603–620.

Cao,Y. et al. (2005) The slow-scale stochastic simulation algorithm. J. Chem. Phys.,
122, 014116.

Cao,Y. et al. (2006) Efficient step size selection for the tau-leaping simulation methods.
J. Chem. Phys., 124, 044109.

Cao,Y. et al. (2007) Adaptive explicit-implicit tau-leaping method with automatic tau
selection. J. Chem. Phys., 126, 224101.

Chou,H.-H. et al. (2011) Diminishing returns epistasis among beneficial mutations
decelerates adaptation. Science, 332, 1190–1192.

Cox,D. and Miller,H. (1965) The Theory of Stochastic Processes. Wiley, New York.
Crawford,F.W. and Suchard,M.A. (2011) Transition probabilities for general birth–

death processes with applications in ecology, genetics, and evolution. J. Math.
Biol., doi: 10.1007/s00285-011-0471-z.

Desai,M. et al. (2007) The speed of evolution and maintenance of variation in asexual
populations. Curr. Biol., 17, 385–394.

Drake,J.W. et al. (1998) Rates of spontaneous mutation. Genetics, 148, 1667–1686.
Elowitz,M.B. et al. (2002) Stochastic gene expression in a single cell. Science, 297,

1183–1186.
Finkel,S.E. and Kolter,R. (1999). Evolution of microbial diversity during prolonged

starvation. Proc. Natl Acad. Sci. USA, 96, 4023–4027.
Fisher,R. (1930) The Genetical Theory of Natural Selection. Clarendon Press.
Gibson,M.A. and Bruck,J. (2000) Efficient exact stochastic simulation of chemical

systems with many species and many channels. J. Phys. Chem. A, 104, 1876–1889.
Gillespie,D.T. (1976) General method for numerically simulating stochastic time

evolution of coupled chemical-reactions. J. Comput. Phys., 22, 403–434.
Gillespie,D.T. (1977) Exact stochastic simulation of coupled chemical-reactions.

J. Phys. Chem., 81, 2340–2361.
Gillespie,D.T. (2001) Approximate accelerated stochastic simulation of chemically

reacting systems. J. Chem. Phys., 115, 1716–1733.
Gillespie,J. (1984) Molecular evolution over the mutational landscape. Evolution, 38,

1116–1129.
Gillespie,D.T. and Petzold,L.R. (2003) Improved leap-size selection for accelerated

stochastic simulation. J. Chem. Phys., 119, 8229–8234.
Hallatschek,O. (2011) The noisy edge of traveling waves. Proc. Natl Acad. Sci., 108,

1783.
Ismail,M.E.H. et al. (1988) Linear birth and death models and associated Laguerre and

Meixner polynomials. J. Approx. Theory, 55, 337–348.
Jahnke,T. and Altintan,D. (2010) Efficient simulation of discrete stochastic reaction

systems with a splitting method. BIT Numer. Math., 50, 797–822.
Jain,K. and Krug,J. (2007) Deterministic and stochastic regimes of asexual evolution

on rugged fitness landscapes. Genetics, 175, 1275–1288.
Karlin,S. and Mcgregor,J. (1958) Linear growth, birth and death processes. J. Math.

Mech., 7, 643–662.
Kauffman,S. and Levin,S. (1987) Towards a general-theory of adaptive walks on rugged

landscapes. J. Theor. Biol., 128, 11–45.
Kessler,D.A. et al. (1997) Evolution on a smooth landscape. J. Stat. Phys., 87, 519–544.
Lu,T. et al. (2004) Cellular growth and division in the Gillespie algorithm. Syst. Biol.,

1, 121–128.

1237



Copyedited by: TRJ MANUSCRIPT CATEGORY: ORIGINAL PAPER

[12:45 9/4/2012 Bioinformatics-bts130.tex] Page: 1238 1230–1238

W.H.Mather et al.

Monthus,C. and Bouchaud,J.P. (1996) Models of traps and glass phenomenology.
J. Phys. A, Math. Gen., 29, 3847–3869.

Moran,P. (1958) Random processes in genetics. Math. Proc. Cambridge Phil. Soc., 54,
60–71.

Novozhilov,A.S. et al. (2006) Biological applications of the theory of birth-and-death
processes. Brief. Bioinform., 7, 70–85.

Pena,M.I. et al. (2010) Evolutionary fates within a microbial population highlight an
essential role for protein folding during natural selection. Mol. Syst. Biol., 6, 387.

Press,W.H. et al. (2007) Numerical Recipes: The Art of Scientific Computing. 3rd edn.
Cambridge University Press, New York.

Rathinam,M. and El Samad,H. (2007) Reversible-equivalent-monomolecular tau: a
leaping method for ‘small number and stif’ stochastic chemical systems. J. Comput.
Phys., 224, 897–923.

Rathinam,M. et al. (2003) Stiffness in stochastic chemically reacting systems: the
implicit tau-leaping method. J. Chem. Phys., 119, 12784–12794.

Rouzine,I.M. et al. (2003) The solitary wave of asexual evolution. Proc. Natl Acad.
Sci. USA, 100, 587–592.

Ruiz-Jarabo,C.M. et al. (2003) Synchronous loss of quasispecies memory in parallel
viral lineages: a deterministic feature of viral quasispecies. J. Mol. Biol., 333,
553–563.

Templeton,A.R. (1980) The theory of speciation via the founder principle. Genetics,
94, 1011–1038.

Tsimring,L.S. et al. (1996) RNA virus evolution via a fitness-space model. Phys. Rev.
Lett., 76, 4440–4443.

Wright,S. (1931) Evolution in Mendelian populations. Genetics, 16, 97.
Zhu,T. et al. (2011) Efficient simulation under a population genetics model of

carcinogenesis. Bioinformatics, 27, 837–843.

1238


	Fast stochastic algorithm for simulating evolutionary population dynamics
	1 Introduction
	2 Algorithm
	3 Results
	4 Discussion


