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Abstract
Theories of rational choice often make the structural consistency assumption that every decision
maker’s binary strict preference among choice alternatives forms a strict weak order. Likewise, the
very concept of a utility function over lotteries in normative, prescriptive, and descriptive theory is
mathematically equivalent to strict weak order preferences over those lotteries, while intransitive
heuristic models violate such weak orders. Using new quantitative interdisciplinary methodologies
we dissociate variability of choices from structural inconsistency of preferences. We show that
laboratory choice behavior among stimuli of a classical “intransitivity” paradigm is, in fact,
consistent with variable strict weak order preferences. We find that decision makers act in
accordance with a restrictive mathematical model that, for the behavioral sciences, is
extraordinarily parsimonious. Our findings suggest that the best place to invest future behavioral
decision research is not in the development of new intransitive decision models, but rather in the
specification of parsimonious models consistent with strict weak order(s), as well as heuristics and
other process models that explain why preferences appear to be weakly ordered.
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Bob and Joe meet for three meals. Restaurants A, B, C are compatible with Joe’s diet. On
Monday, C is closed, and Bob prefers A over B. On Tuesday, A is closed, and Bob would
rather eat at B than C. On Friday, Bob is indifferent between A and C, but he asks not to go
to B. Joe expected Bob to like A the best and C the least. Is Bob inconsistent?

On Monday, Bob craves a sandwich, where A outshines B. On Tuesday, he wants a soup,
with B an easy choice. On Friday, Bob craves a salad, which B does not offer, while A and
C have salad bars. Even though Bob first chooses A over B, then B over C, then is
indifferent between A and C and prefers both to B, this cannot be interpreted to mean that
Bob makes incoherent decisions. Rather, Bob compares the restaurants by quality of his
desired entree, and the resulting rankings (with possible ties) of the restaurants vary as he
seeks out different entrees. We need to dissociate behavioral variability from structural
inconsistency.

The literature on individual decision making is internally conflicted over whether or not
preferences can be modeled with unidimensional numerical utility representations and, in
particular, whether or not variable choice behavior can be reconciled with transitive

Please send correspondence to: Michel Regenwetter, Quantitative Psychology, Department of Psychology, University of Illinois at
Urbana-Champaign. 603, East Daniel Street, Champaign, IL 61820. regenwet@illinois.edu.

NIH Public Access
Author Manuscript
Psychol Rev. Author manuscript; available in PMC 2013 April 01.

Published in final edited form as:
Psychol Rev. 2012 April ; 119(2): 408–416. doi:10.1037/a0027372.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



preferences. Even a leading thinker in the field, Amos Tversky, was the author of both the
most influential intransitivity study (Tversky, 1969) and, later, of the most influential
(transitive) numerical representation, (cumulative) prospect theory (Kahneman and Tversky,
1979; Tversky and Kahneman, 1992). Regenwetter, Dana and Davis-Stober (2011)
questioned the literature on intransitivity of preferences and reported that the variable binary
choice data they considered were generally consistent with variable (transitive) linear order
preferences. In this paper, we develop a much more direct, general, and yet also powerful,
test of unidimensional utility representations and associated (transitive) “weak order”
preferences. Even though our experimental stimuli have a historical track record of allegedly
revealing inconsistent preferences, our findings support the highly restrictive class of
numerical utility theories.

Consider the two data sets at the top of Figure 1. These show the number of times, out of 45
repetitions, that decision makers chose a ‘row’ gamble over a ‘column’ gamble. For
instance, Participant # 9 (Gamble Set III of our experiment) chose gamble a over gamble b
on 28 trials, chose b over a on 8 trials, and expressed indifference among a and b on 9 trials.
The primary goal of this paper is to disentangle such variable overt choices from
inconsistent latent preferences. We show that a restrictive quantitative model of variable, but
structurally consistent, decision making explains a large set of empirical data. According to
this model, individual preferences form strict weak orders, i.e., asymmetric and negatively
transitive binary relations, as defined in Formulae (2) and (3) below. We consider the class
of all possible decision theories that share the structural property that decision makers,
knowingly or unknowingly, rank order choice options, allowing the possibility that they are
indifferent between some options. Should this structural property be violated over those
lotteries, then all theories of (unidimensional) utility would be violated, including expected
utility theory and its many offspring, such as (cumulative) prospect theory. Should
preferences be strict weak orders, however, then an even larger class of binary relations
would be rejected, including all theories with intransitive preferences, such as intransitive
heuristics and regret theory (Loomes and Sugden, 1982). Our approach is unique in that we
found a way to test the pivotal concept of weak order preferences directly, hence to test the
very notion of a utility function directly without limiting ourselves to particular functional
forms (e.g., “expected utility” with “power” utility for money) or even to cash stimuli.
Returning to Figure 1, we later show that Participant # 9 (Set III) is not just approximately,
but perfectly consistent with variable weak order preferences, whereas Participant # 22 (Set
II), whose data look superficially similar, in fact, violates the model. Throughout the paper,
we use the term “preference” to refer to a hypothetical construct that might not be directly
observable, and “choice” to refer to the observed behavior of participants when asked to
select an option.

1. Motivation and Background
Why is the concept of rank ordering choice alternatives such a central and pivotal construct
in psychological and economic theories of decision making?

Many laboratory and real life decisions share a common structure: They typically involve
various outcomes that are contingent upon uncertain states of the world. Decision making is
often complicated by intricate trade-offs among different attributes, outcomes, and
uncertainty or risk. Psychological experiments in the laboratory often use cash lotteries as
choice alternatives. In addition to such cash lotteries, we offered our participants noncash
options similar to the following prospects A and C.
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A major class of decision theories hypothesizes a numerical value U(i) associated with each
prospect i. These numerical theories state that a decision maker prefers prospect i to prospect
j if s/he values i more highly than j, that is, if U(i) > U(j). Writing ≻ to denote strict pairwise
preference, such theories predict, for example,

(1)

There is a substantial literature in the decision sciences, primarily for monetary gambles,
that discusses the functional form of the numerical function U(·). Famous examples of such
theories are expected utility theory (Savage, 1954; von Neumann and Morgenstern, 1947) or
(cumulative) prospect theory (Kahneman and Tversky, 1979; Tversky and Kahneman,
1992). All of these theories share one, very restrictive, property: They model decision
behavior through the hypothetical numerical construct of a utility value associated with each
uncertain prospect. These theories assume that decision makers act in accordance with (1).
Even though the utilities in (1) are numerical, the prospects themselves need not be. For
example, Prospects A and C are nonmonetary and, in our experiment, their probabilities are
displayed geometrically using pie charts depicting wheels of chance. Any theory, in which
pairwise preferences are derived from hypothetical numerical values, as illustrated in
Formula (1), implies that binary preferences ≻ form “strict weak orders.” It has been shown
that, likewise, strict weak order preferences can always be represented numerically, whether
the decision makers mentally compute numerical utilities or not (see, e.g. Roberts, 1979).

This answers our question: All theories that rely on the hypothetical construct of a utility
function as in (1) imply that preference is a strict weak order, and all theories that model
preference using a strict weak order can be recast mathematically as (1) via a function U(·).

Hence, by considering the class of ‘all’ theories in which preferences form strict weak orders
we study the pivotal property that distinguishes between preferences which are structurally
consistent with utility functions from those that are inconsistent with utility. To study the
structural property of strict weak orders we must disentangle varying choice (as in Figure 1)
from structurally inconsistent preference. We start by considering basic concepts.

We are interested in the structural constraint that binary strict preference must form a strict
weak order. This means that 1) strict preference ≻ is an asymmetric binary relation: if a
person strictly prefers i to j then s/he does not strictly prefer j to i:

(2)

2) strict preference ≻ is negatively transitive: if a person does not strictly prefer i to j, and
does not strictly prefer j to k, then s/he does not strictly prefer i to k:

(3)

As a consequence of these two axioms, strict weak orders also satisfy transitivity:1 if a
participant strictly prefers i to j, and strictly prefers j to k, then s/he strictly prefers i to k:
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(4)

Transitivity is often viewed as a rationality axiom. It is satisfied by the vast majority of
normative, prescriptive, and descriptive theories of decision making in the literature.

Asymmetry strikes us as a property that we may safely assume to hold inherently for strict
preference. Hence, we do not test it empirically. We consider stimulus sets of five choice

alternatives in our experiment. For five alternatives, there are  different possible
asymmetric binary relations. Of these, only 541, that is fewer than one percent, are strict
weak orders (Fiorini, 2001). Hence, fewer than 1% of all conceivable strict preference
relations on five choice options can be represented with a numerical function U(·). The
remaining 99% feature violations of negative transitivity and/or violations of transitivity.

It is already clear, even from a purely algebraic point of view, that strict weak orders form
quite a restrictive class of preference relations. We will later see, once we move to our
probabilistic specification of strict weak orders, that our quantitative model is characterized
by more than 75, 000 nonredundant simultaneous mathematical constraints on choice
probabilities. Our model also allows us to separate the wheat from the chaff by
distinguishing variability in observable choices from inconsistency of underlying
preferences.

2. The Mixture Model of Strict Weak Order Preferences
We propose a strict weak order model for ternary paired comparisons. A key distinguishing
feature of our empirical paradigm is that decision makers compare pairs of objects (e.g.,
gambles) and either choose one of the objects as their “preferred” option, or they indicate
that they are indifferent among the offered pair of objects. Each decision maker repeats each
such ternary paired comparison multiple times over the course of an experiment. All
repetitions are carefully separated by decoys in order to avoid memory effects and to reduce
statistical interdependencies among repeated observations for each binary choice. For five
choice alternatives, this paradigm generates 20 degrees of freedom in the data: each pair i, j
∈ yields some number of i choices, some number of j choices, and some number of
“indifference” statements, hence yielding two degrees of freedom for each of the 10 gamble
pairs. In comparison, a two-alternative forced choice paradigm for the same stimuli only has
10 degrees of freedom in the data because it does not permit “indifference” responses, hence
each of the 10 gamble pairs only has one degree of freedom associated with it. In other
words, even though we only marginally increase the amount of information required from
the respondent on each trial (Miller, 1956), we double the degrees of freedom and thereby
dramatically increase the total amount of information extracted from the respondent over the
entire experiment as we combine multiple stimuli.2

We are interested in the structural property of strict weak order preference. We also need to
separate variable overt choice behavior from structurally inconsistent latent preferences. We
achieve these goals by evaluating the goodness-of-fit of a probabilistic model. According to
our model, whenever facing a pair of choice alternatives, a decision maker evaluates these
choice alternatives in a fashion that induces a strict weak order on the set of choice
alternatives. Over repeated ternary paired comparisons, the decision maker may fluctuate in
the strict weak order that s/he uses in the various decisions. This is either because s/he varies

1Note, however, that the converse does not hold. For example, for five choice alternatives, there are 541 strict weak orders (Fiorini,
2001), whereas there are 154,303 different transitive relations (Pfeiffer, 2004).
2Similar ideas have been used in signal detection theory with multiple response categories (Macmillan and Creelman, 2005).
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in his/her preferences over time, or because s/he experiences uncertainty about his/her own
preference, and, when asked to decide, ends up fluctuating in those forced choices. We
introduce a probability space where every sample point must be a strict weak order. We
deliberately avoid peripheral mathematical assumptions, because all we do is take the
concept of weak order preferences and place it into a probability space that has no additional
structure except for requiring every sample point to be a strict weak order.

Equivalently, we are interested in the structural property of preferences that are consistent
with numerical utilities. In the face of variable choice behavior, we need to distinguish
whether variable choices are consistent with variable numerical utilities or not. According to
our model, when considering a pair of choice alternatives, a decision maker chooses in
accordance with a numerical function U(·) as specified in Formula (1). Over repeated ternary
paired comparisons, the value of U(c) of a choice option c may vary. Accordingly, we
replace the function U(·) by a family of random variables, (Uc)c∈ , whose joint distribution
is not restricted in any way. We allow decision makers to waver in the numerical utility
values they associate with the choice options. Again, we deliberately avoid peripheral
mathematical assumptions, because all we do is take the concept of a numerical function
U(·) and turn the numerical value U(c) of each prospect c into a random variable that has no
additional constraints, because we allow the random variables to have any distribution
whatsoever.

At first blush, our weak order model appears extremely flexible: For five choice options, it
permits 541 different preference states, i.e., it has 540 free parameters. Its formulation in
terms of arbitrary random variables, (Uc)c∈ , has no limit on free parameters, since we
explicitly forego constraints on the joint distribution. The empirical data only have 20
degrees of freedom. Do we engage in over-fitting? Appearances are misleading. First, we
have already seen that strict weak orders are rather restrictive compared to asymmetric
relations. Even more important is the statistical perspective. Using Monte Carlo methods, we
have computed the approximate relative volume of the parameter space within the outcome
space (both are of the same dimension). It turns out that the model is, in fact, highly
restrictive: For five choice alternatives, the permissible ternary paired comparison
probabilities of the strict weak order model occupy only a two-thousandth of the empirical
outcome space. It is crucial to distinguish statistical identifiability from statistical testability.
While the 540 free parameters are not uniquely identifiable when there are only 20 degrees
of freedom in the data, the model is testable because it makes extraordinarily restrictive
predictions. The strict weak order model, stated formally in Equation 5, can test the
structural property of strict weak order preferences in the presence of variable choice
behavior.

Denote by  the collection of all strict weak orders on a given finite set of choice

alternatives. A collection  is called a system of ternary paired comparison
probabilities, if ∀i, j ∈  with i ≠ j, we have 0 ≤ Pij ≤ 1 and Pij + Pji ≤ 1. This system
satisfies the strict weak order model if there exists a probability distribution on 

that assigns probability P≻ to any strict weak order ≻, such that ∀i, j ∈  i ≠ j,
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(5)

In words: The probability that the respondent chooses i, when offered i versus j in a ternary
paired comparison trial, is the (marginal) total probability of all those strict weak orders ≻ in
which i is strictly preferred to j.

In the terminology of Loomes and Sugden (1995), Equation 5 is a random preference model
whose core theory is the strict weak order. It can be rewritten as a “distribution-free random
utility model” where each sample point is a strict weak order (Heyer and Niederée, 1992;
Regenwetter, 1996; Regenwetter and Marley, 2001; Niederée and Heyer, 1997).

A system of ternary paired comparison probabilities satisfies a distribution-free random
utility model if there exists a probability measure P and there exist real-valued jointly
distributed random variables (Uc)c∈  such that ∀i, j ∈  i ≠ j,

(6)

In words: The probability that the respondent chooses i, when offered i versus j in a ternary
paired comparison trial, is the (marginal) total probability that the random utility of i
exceeds the random utility of j.3

To see of how all of these ideas come together and how the model generates predicted
ternary paired comparison data, consider Figure 1. The box entitled “Random Utility” shows
the values of five hypothetical utility functions as well as the probability of each function.
For example, the utility function in the first row has probability 0.15 and assigns utilities
100, 50, … 0 to a, b, … e. Each utility function induces a strict weak ordering of the
alternatives. For example, the first two functions induce the weak order a ≻ b ≻ c ≻ d ≻ e,
hence that strict weak order has probability 0.15 + 0.25 = 0.40. Let i ~ j denote that both i ⊁
j and, j ⊁ i. To illustrate the mixture model in (5) consider the weak orders in which a ≻ b,
namely a ≻ b ≻ c ≻ d ≻ e and a ≻ d ≻ c ≻ b ≻ e, whose probabilities sum to 0.5, hence the
entry Pab = 0.5 in the bottom left matrix. Notice that Pab + Pba = 0.5 + 0.3 = 0.8 ≠ 1 because
the weak order a ~ b ≻ c ≻ d ≻ e has positive probability 0.2.

To illustrate the random utility model in (6) notice that Pab is also given by summing the
probabilities 0.15 + 0.25 + 0.1 of the utility functions with U(a) > U(b). We can now
establish that the models in (5) and (6) are mathematically equivalent, and hence we can
later focus on the formulation in (5). The following theorem (proven in the Online

3Notice that we do not require noncoincidence, i.e., we do not require P (Ui = Uj) = 0 for (i ≠ j). Random utility models in
econometrics often satisfy noncoincidence because they rely on, say, multivariate normal or extreme value distributions. Such
distributional assumptions are known idealizations that serve the purpose of making modeling and statistical estimation tractable. One
can show that noncoincidence effectively forces “completeness” of binary preferences, because indifference statements have
probability zero, according to noncoincidence, hence incomplete relations ≻ have zero probability in (5). This is precisely the
assumption that we do not want to make when testing weak order preferences and/or testing numerical utility. The most interesting
applications of these models are when P (Ui = Uj) > 0, and thus Pij + Pji < 1.
We also do not assume that the random variables U are mutually independent, as do some Thurstonian models in psychology. Because
we strive to avoid technical convenience assumptions, especially distributional assumptions that would imply noncoincidence or
independence assumptions in (6), our approach differs from standard off-the-shelf measurement models as well as signal-detection
models that relate subjective percepts to an objective ground truth (Macmillan and Creelman, 2005). In our data analysis, we do
require that the data result from an independent and identically distributed (iid) random sample, due to a lack of statistical tools for
non-iid samples at this time. However, the iid sampling assumption neither assumes nor implies independence among the random
variables (Uc)c∈  in the model (6).
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Supplement) follows directly from related prior work (Heyer and Niederée, 1992;
Regenwetter, 1996; Regenwetter and Marley, 2001; Niederée and Heyer, 1997). This
theorem is extremely important: It shows that any algebraic theory that uses a numerical
function U(·), say cumulative prospect theory, can be extended quite naturally into a
probabilistic model that induces a probability distribution over strict weak orders.

Theorem. A system of ternary paired comparison probabilities Pij satisfies the weak order
model in (5) if and only if it satisfies the distribution-free random utility model in (6).

Characterizing models like (5) or (6) is a nontrivial task that has received much attention,
e.g., in mathematics, operations research and mathematical psychology. The most promising
approach tackles the problem by characterizing the weak order model stated in Equation 5
using tools from convex geometry. In that terminology, the collection of all ternary paired
comparison probabilities Pij consistent with the model in (5) forms a geometric object called
a “convex polytope” in a vector space whose coordinates are the probabilities Pij. A convex
polytope is a high-dimensional generalization of (two-dimensional) polygons and of (three-
dimensional) polyhedra.4 We can test the weak order model if we understand its polytope.

A triangular area in two-dimensional space (in a plane) can be described fully by the area
between the three points that form its ‘corners’ (so-called “vertices”) or it can be described
equivalently as the area between its three ‘sides’ (so-called “facets”). This logic extends to
high dimensional spaces: A convex polytope can likewise be described in two equivalent
ways: One can either describe it as the “convex hull of a set of vertices,” or as the solution to
a system of “affine inequalities” (Ziegler, 1995) that define its “facets” (for examples, see
WO1–WO3 below). The model formulation in Equation 5 directly yields the vertex
representation as the convex hull of a collection of vertices: For each strict weak order ≻ in

 create a vertex with the following 0/1-coordinates

(7)

Each vertex of the polytope represents one strict weak order. Intuitively, if a person has
deterministic preferences in the form of one single weak order, then this person’s choice
probabilities are given by the vertex coordinates of that weak order: If the person always
prefers i over j, then, according to the model (5), she chooses i over j with probability 1. If a
person never prefers i to j, then, according to the model (5), she chooses i over j with
probability zero. While each vertex can be thought of as a degenerate distribution that places
all probability mass on a single strict weak order, the entire polytope forms a geometric
representation of all possible probability distributions over strict weak orders. That is
precisely the model stated in Equation 5. The Online Supplement illustrates these geometric
concepts with a simple 2-dimensional example and three illustrative figures.

To test the model, we wish to determine whether a set of data was generated by a vector of
ternary paired comparison probabilities that belongs to the polytope. To achieve this goal, it
is useful to find the alternative representation of the polytope, i.e., to find a system of
inequalities whose solution set is the polytope. We can then test whether the ternary paired
comparison probabilities satisfy or violate those “facet-defining” inequalities (FDIs).

4Triangles, parallelograms, etc. are examples of convex polygons in two-space; cubes, pyramids, etc. are examples of convex
polyhedra in three-space.
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When |  = 3, say, = {a, b, c}, the polytope is known to have 13 vertices, representing the
13 different strict weak orders over three objects. These vertices ‘live’ in a 6-dimensional
vector space spanned by the probabilities each Pab, Pac, Pba, Pbc, Pca, Pcb. The following
three families of inequalities completely characterize the strict weak order polytope when 
= 3:

WO1 states that probabilities cannot be negative. WO2 reflects the empirical paradigm: The
probabilities of choosing either i or j may possibly sum to less than one, because the
decision maker may use the indifference option with positive probability. Constraints WO1
and WO2 automatically hold in a ternary paired comparison paradigm and are thus not
subject to testing, whereas WO3 is testable. Convex geometry allows one to prove that WO1
through WO3 are nonredundant and that they fully characterize the family of all conceivable
ternary paired comparison probabilities for |  = 3 that can be represented using (5). This
means that the constraints WO1 through WO3 form a minimal description, i.e., the shortest
possible list of nonredundant constraints that fully describe the strict weak order model for |

 = 3 (Fiorini and Fishburn, 2004). Such constraints are called facet-defining inequalities.
Each of these inequalities defines a facet of the polytope, that is, a face of maximal
dimension.5

Obtaining a minimal description of convex polytopes can be computationally prohibitive.
Our experiment used three stimulus sets of five alternatives each. The minimal description
of the polytope in terms of facet-defining inequalities for the case of interest to us, where |
= 5, was previously unknown. We determined this description using public domain software,
PORTA, the POlyhedron Representation Transformation Algorithm, of T. Christof & A.
Löbel, 1997.6 That strict weak order polytope has 541 vertices in a vector space of

dimension 20. This polytope occupies  of the space of trinomial probabilities. It is
characterized by 75,834 facet-defining inequalities (see Online Supplement).7 The following
is one of these 75,834 constraints. It interrelates all 20 choice probabilities for = {a, b, c, d,
e}.

(8)

How can one test thousands of joint constraints like (8)? First, it is possible that the data fall
inside the tiny polytope, namely if the observed choice proportions themselves satisfy all
75,000+ constraints (see Figure 1). When they do, the observed choice frequencies are
precisely within the range of predicted values and we do not need to compute statistical
goodness-of-fit.8 When the observed choice proportions fall outside the polytope, then,
writing Nij for the observed frequency with which a person chose object i when offered the

5For example, a three-dimensional cube has 8 square-shaped facets and a tetrahedron has four triangular facets. The edges of these
polyhedra are one-dimensional faces, and hence not facets.
6http://www.iwr.uni-heidelberg.de/groups/comopt/software/PORTA/. Translating the vertex representation into a minimal description
took three weeks of continuous computation on a powerful PC.
7In particular, it can be shown that Equation 5 again implies the family of so-called “triangle inequalities,” labeled WO3 above. WO3
has previously surfaced for two-alternative forced choice because it is directly related to transitivity (Block and Marschak, 1960).
Here, WO3 is only one of thousands of testable constraints that characterize the model. Unlike WO1–WO3, these constraints are not
so straightforward to interpret.
8Here, we take a frequentist view. We comment on Bayesian approaches in the Conclusion.
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ternary paired comparison among i and j altogether K many times, and assuming iid
sampling, the likelihood function is given by

It can be shown that the log-likelihood ratio test statistic, G2, need not have an asymptotic
chi-square distribution, because the model in Equation 5 imposes inequality constraints on
the probabilities Pij, Pji. The asymptotic distribution of G2 is a mixture of chi-square
distributions, with the mixture weights depending on the structure of the polytope in the
neighborhood around the maximum likelihood point estimate (Davis-Stober, 2009; Myung
et al., 2005; Silvapulle and Sen, 2005). Depending on the location of the point estimate on
the weak order polytope, we need to employ some of the 75,000+ facet-defining inequalities
to derive a suitable mixture of chi-square distributions. Next, we use Davis-Stober’s (2009)
methods, implemented in a MATLAB© program, to test the model on new data.

3. Experiment and Data Analysis
Our experimental study built on Tversky (1969) and used similar stimuli as Regenwetter et
al. (2011). The main change was that decisions were ternary paired comparisons. We
investigated the behavior of 30 participants and we secured high statistical power by
collecting 45 trials per gamble pair and per respondent. The gambles were organized into
four sets: Gamble Set I, Gamble Set II, Gamble Set III, and Distractors. We provide details
of the experiment, including recruitment, stimuli and our data, in the Online Supplement.

Table 1 provides our results for all 30 participants and the three gamble sets. When the
ternary paired-comparison proportions are in the interior of the weak order polytope, we
indicate this with a checkmark (✓). Data outside the polytope have positive G2 values, with
large p-values indicating statistically nonsignificant violations. Each G2 needs to be
evaluated against a specific “Chi-bar-squared” distribution, thus individual G2 values cannot
be compared across results. Significant violations are marked in boldfaced font.

In Gamble Set I, 22 respondents generated choice proportions that satisfied all 75000+
(nonredundant) inequality constraints that the model in Equation 5 imposes on the choice
probabilities. In other words, 22 of 30 respondents generated a “perfect fit.” Given that the
parameter space of the model occupies only a tiny fraction of the outcome space, this is a
remarkable discovery. One out of 30 participants violated the model at a significance level
of 5%. This is well within Type-I error range. In Gamble Set II, which created more difficult
trade-offs between probability of winning and outcome, 20 of 30 respondents yielded a
perfect fit. This is, again, an extraordinary finding. Among the remaining 10 respondents,
two significantly violated the constraints of the model in Equation 5 at a significance level
of 5%. Again, two significant violations is within a reasonable Type-I error range. For
Gamble Set III, 18 of 30 participants generated choice proportions that satisfied all 75,000+
inequalities. The remaining 12 participants included one significant violation at the 5%
level. This is yet again within Type-I error range.

4. Discussions and Conclusions
A number of descriptive, prescriptive, and normative theories of decision making share the
structural assumption that individual preferences are strict weak orders. These include the
high-profile class of theories of decision making that rely on numerical representations of
preferences, such as (subjective) expected utility and (cumulative) prospect theory, among
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many others. Noncompensatory models, such as lexicographic semiorders (Tversky, 1969)
or the priority heuristic (Brandstätter et al., 2006) violate such structural properties.

To consider the future direction of decision research, we propose to carry out a thorough
“triage” at a general level. If preferences are consistent with strict weak orders, then this has
implications for the type of process models that can work, and it eliminates the large class of
existing or potential theories that violate weak orders, e.g., because they predict intransitive
preferences. On the other hand, if preferences are not consistent with strict weak orders, then
we may have to give up modeling choice through numerical representations. This would
have far-reaching consequences, e.g., in modeling economic behavior.

We believe that much confusion can be eliminated if we find successful means to
distinguish variability of overt choice from structural inconsistency of hypothetical, latent
preference. We have shown how to formulate a probabilistic model of weak order
preference and, equivalently, a probabilistic model of numerical utility. While the basic
concepts underlying these mathematical models, by themselves, are not new, the models
have never been fully characterized nor have they ever been tested empirically in their full
generality using quantitative methods. We leverage new mathematical and statistical results
to offer the first direct, parsimonious and quantitative test of weak order preferences and
numerical utility representations to date.

Our approach is furthermore guided by three key criteria for the rigorous development and
testing of psychological theories (Roberts and Pashler, 2000; Rodgers and Rowe, 2002). 1)
Researchers should understand the full scope of a theory’s predictions and focus on models
that make highly restrictive predictions. 2) Researchers should understand and control or
limit the sampling variability in their data. 3) Researchers should more often ask themselves:
“what would disprove my theory?” (Roberts and Pashler, 2000, p. 366). The a priori
expectation should be that the theory will be rejected, hence a good fit should be a surprise.

1) Scope and Parsimony
The weak order model makes predictions on stimuli like our noncash prospects A and C for
which other theories, such as the priority heuristic and parametric versions of cumulative
prospect theory are mute. We have fully characterized the model for five stimuli. It forms a
convex polytope in a 20 dimensional space, characterized by precisely 75,834 nonredundant

mathematical constraints that define a volume of just  of the space of all possible
ternary paired comparison probabilities. We derive these restrictive predictions using a
minimum of mathematical assumptions, i.e., we expressly avoid common auxiliary
assumptions that are, at best, idealizations of a more complex reality.

2) Data Variability
The choice frequencies differ dramatically between respondents. We did not aggregate
across participants, because such aggregated data need not be representative of even a single
person. Even within person we went beyond the standard approach that often merely
considers modal choices. We provided and tested highly specific quantitative predictions
about the predicted choice proportions for each individual. By analyzing individual
participants separately we controlled for inter-individual differences. By collecting 45
observations per trinomial for each person, we reduced sampling variability substantially,
especially compared to studies with one observation per person per gamble pair.
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3) How Surprising is the Model Fit?
By including stimuli with a historic reputation for allegedly yielding intransitive
preferences, we biased the experimental paradigm against the weak order model. Even
disregarding the nature of the stimuli themselves, for 5 choice alternatives, 99% of

asymmetric binary preference relations violate weak orders and only  of all
conceivable ternary paired comparison probabilities satisfy the polytope. Using simulation
methods, we estimated the average power of our test to be about .96.

Yet, our data analysis revealed a remarkable picture: Over all three experimental conditions
combined, 60 out of 90 data sets generated choice proportions that lie inside of the tiny
space allowed by the model. Hence, two thirds of our data sets yielded a perfect fit. A
perfect fit means that the model generated predictions that are so accurate that, no matter
how small the significance level α, we cannot reject the model. Combining all three
conditions, only 5 out of 90 data sets violated the strict weak order model at a 5%
significance level. This is just about at the usual Type-I error level. We also cross-replicated
the excellent model performance within individuals across three stimulus sets, including
noncash gambles: Of 30 individuals, 13 consistently fit perfectly across all three gamble
sets, and none generated a significant violation for more than a single gamble set.

We plan to complement this work with a Bayesian analysis along the lines sketched by
Myung et al. (2005). By the likelihood principle and thanks to our large sample size, we
expect the Bayesian viewpoint to reinforce our substantive conclusions, unless one employs
prior distributional assumptions that give little weight to the empirical data. Since a
Bayesian approach does not allow for a perfect fit, we predict that our perfect fit results will
translate into very high Bayes’ factors in favor of the weak order model over an
unconstrained model (that permits all ternary choice probabilities).

Variable choice behavior is often cited as a reason to reject structural properties of algebraic
theories, such as, here, weak orders and numerical utility representations. We show that
variability of preference (or uncertainty about preference) can be separated from violations
of structural properties, even without requiring an error theory. In our model, all strict weak
orders are allowable preference states, i.e., we allow for maximal variability in latent
preference and overt choice. But we also require perfect adherence to the structural
properties of strict weak orders in latent preference. Adding a random error component to
the model would relax our constraints by inflating the weak order polytope, and would
automatically further improve the already excellent fit.

Common sense tells us that variability of, say, restaurant choice, should not be mistaken for
incoherence in, say, food preference. Probabilistic models like the weak order model allow
us to tease apart variability of choice from inconsistency of preference. Future work should
replicate our findings in other labs and expand the analysis to other stimulus sets.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Illustration with real and hypothetical ternary paired comparison data. The top gives two real
ternary paired comparison data sets. The model fits one set perfectly and is violated
significantly by the other. We illustrate one facet-defining inequality (FDI) for Participant #
9 (Gamble Set III). The center panel illustrates a hypothetical random utility representation
and the corresponding mixture. The joint distribution of the random utilities is on the left,
the weak order probabilities are on the right. Below are the implied binary choice
probabilities and the corresponding expected frequencies for ternary choice (45 repetitions).
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Table 1

Goodness-of-fit for 30 individual respondents (Id 1–30) and three gamble sets (Set I, Set II, Set III). A
checkmark (✓) indicates a perfect fit, positive G2 values are accompanied with p-values in parentheses.
Significant p-values (< .05), i.e., significant violations of the weak order model, are marked in bold.

Set I Set II Set III

Id G2 (p-val.) G2 (p-val.) G2 (p-val.)

1 ✓ ✓ .23 (.91)

2 ✓ ✓ 2.23 (.55)

3 ✓ 1.11 (.77) 2.82 (.32)

4 ✓ ✓ 10.78 (.01)

5 ✓ .17 (.89) ✓

6 ✓ ✓ ✓

7 ✓ ✓ ✓

8 ✓ ✓ ✓

9 .52 (.82) 5.95 (.18) ✓

10 2.82 (.47) ✓ ✓

11 ✓ ✓ ✓

12 ✓ ✓ ✓

13 ✓ ✓ ✓

14 8.01 (.02) 1.22 (.38) 12.09 (.05)

15 ✓ .80 (.40) .40 (.84)

16 ✓ ✓ ✓

17 ✓ ✓ ✓

18 ✓ ✓ 4.77 (.27)

19 ✓ ✓ ✓

20 ✓ ✓ ✓

21 ✓ ✓ 1.87 (.46)

22 5.01 (.10) 14.90 (< .01) 3.63 (.42)

23 .16 (.95) .04 (.89) .54 (.62)

24 ✓ ✓ ✓

25 ✓ ✓ 6.42 (.08)

26 1.93 (.48) 1.30 (.75) .06 (.92)

27 ✓ ✓ ✓

28 ✓ ✓ ✓

29 6.04 (.26) 14.81 (.01) ✓

30 1.03 (.54) .04 (.88) ✓
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