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ABSTRACT Maximum likelihood methods for the estimation of linkage disequilibrium between biallelic DNA-markers in half-sib
families (half-sib method) are developed for single and multifamily situations. Monte Carlo computer simulations were carried out for
a variety of scenarios regarding sire genotypes, linkage disequilibrium, recombination fraction, family size, and number of families. A
double heterozygote sire was simulated with recombination fraction of 0.00, linkage disequilibrium among dams of d= 0.10, and
alleles at both markers segregating at intermediate frequencies for a family size of 500. The average estimates of d were 0.17, 0.25,
and 0.10 for Excoffier and Slatkin (1995), maternal informative haplotypes, and the half-sib method, respectively. A multifamily EM
algorithm was tested at intermediate frequencies by computer simulation. The range of the absolute difference between estimated
and simulated d was between 0.000 and 0.008. A cattle half-sib family was genotyped with the Illumina 50K BeadChip. There were
314,730 SNP pairs for which the sire was a homo-heterozygote with average estimates of r2 of 0.115, 0.067, and 0.111 for half-sib,
Excoffier and Slatkin (1995), and maternal informative haplotypes methods, respectively. There were 208,872 SNP pairs for which the
sire was double heterozygote with average estimates of r2 across the genome of 0.100, 0.267, and 0.925 for half-sib, Excoffier and
Slatkin (1995), and maternal informative haplotypes methods, respectively. Genome analyses for all possible sire genotypes with
829,042 tests showed that ignoring half-sib family structure leads to upward biased estimates of linkage disequilibrium. Published
inferences on population structure and evolution of cattle should be revisited after accommodating existing half-sib family structure in
the estimation of linkage disequilibrium.

TRADITIONAL methods for gene mapping are based on
linkage, which requires a family structure because loci

are mapped by tracing inheritance of marker alleles in prog-
eny from at least one ancestor. The DNA markers of choice
were microsatellites because they were abundant and very
informative. Linkage maps of microsatellites were developed
for farm animal species with a half-sib structure such as
cattle (Da and Lewin, 1995; Ma et al. 1996; Kappes et al.
1997; Barendse et al. 1997; Våge et al. 2000). In recent
years, a revolution has been initiated in human genetics
with the large-scale DNA sequencing of the HAP MAP pro-
ject (2007), which allowed the discovery of vast amounts of
single nucleotide polymorphism (SNP). SNP sequences were

used in arrays allowing interrogation of the human genome
from thousands to over a million SNPs. The biggest interest
in humans is the application of this technology for identifi-
cation of variants that are associated with genetic diseases in
the so-called case-control studies.

The development of SNP arrays in human genetics was
followed by animal geneticists. There are commercially
available arrays for over 50 or 60 thousands SNPs for the
cow, sheep, and swine. The statistical treatment of SNP
arrays in animal populations is carried out without consid-
eration for the breeding structure currently present in farm
animals but lacking in experiments for case-control studies
in human populations. Contrary to human populations, an-
imals at the farm are highly related because of the use of
artificial insemination (AI) and intensive breeding. For
example, dairy bulls with high estimated breeding values
might have over a million daughters (http://www.crv4all.
com/eng/halloffame/Sunny_Boy_HOFame.pdf). Analysis of
linkage disequilibrium (LD) between pairs of SNPs in cattle
populations has been carried out either using the expecta-
tion maximization (EM) algorithm for unrelated individuals
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(e.g., Sargolzaei et al. 2008) or using the most likely of
phased haplotypes (e.g., McKay et al. 2007; Qanbari et al.
2010). The first method ignores that the contribution of
haplotypes from sires to progeny exceeds its true counts in
the population because each offspring receives one haplo-
type from their sire. The second method ignores that marker
informativity might cause a systematic increase or decrease
of informative sire haplotype counts (and consequently in-
formative haplotype counts from dams) depending on the
genetic distance between markers. Consequently, bias in the
estimation of LD using half-sib data might occur.

The objective of this article is to develop maximum
likelihood methods for the estimation of linkage disequilib-
rium between codominant DNA markers in half-sib families.
It is shown that severe biased estimation may occur after ig-
noring half-sib relationships. The methods are tested via Monte
Carlo computer simulation. Comparison of alternative methods
of estimation of linkage disequilibrium is carried out after gen-
otyping a half-sib family with 36 calves with the Illumina 50K
BeadChip.

Theory and Methods

AI is in widespread use in cattle with the most common
situation being a sire having a single progeny from a number
of dams. Three situations are possible when estimating
second-order linkage disequilibrium (disequilibrium consid-
ering two loci) between two DNA markers: (a) the sire is
a homozygote at the two loci, (b) the sire is a homozygote at
one locus and a heterozygote at the other, and (c) the sire is
a heterozygote at the two loci. For the following derivations,
assumptions are: (1) recombination fraction is known with-
out error, and (2) the linkage phase (combination of alleles at
two loci on the two homologous chromosomes in diploid in-
dividuals) in the sire is known. The impact of departures from
these assumptions is addressed in the Discussion.

Double homozygote sire

Let the sire have genotype TTMM at two SNPs, T/t, andM/m.
Offspring might have genotypes TTMM, TTMm, TtMM,
TtMm indicating that haplotypes TM, Tm, tM, and tm were
inherited from dams, respectively. Therefore, the haplotypes
in half-sibs are fully informative and linkage disequilibrium
can be estimated directly from haplotype counts. Thus, for
alleles T and M at two loci, the disequilibrium can be esti-
mated by substituting haplotype and allelic frequencies into
DTM ¼ fTM2fTfM; DTm ¼ fTm2fTfm; DtM ¼ ftM2ftfM; and
Dtm ¼ ftm2ftfm, where fk is the frequency of the kth allele,
Dkt and fkt are the linkage disequilibrium and haplotype
frequencies between the kth and tth alleles at the two loci,
respectively. In addition to allele frequencies, only one pa-
rameter for the linkage disequilibrium, d, needs to be esti-
mated since DTM ¼ d; DTm ¼ 2d; DtM ¼ 2d; and Dtm ¼ d.
Estimating disequilibrium by direct counts of haplotype
and allele frequencies is also the maximum likelihood esti-
mate of linkage disequilibrium. The sampling variance of the

estimates of the disequilibrium parameter for the ith family
is derived in Appendix A,

Varðd̂Þ � 1�
2
�
@2   ln LiðdjnGÞ=@d2

��
d¼d̂

;

where Li(d|nG) is the maximum likelihood function of the
disequilibrium parameter, d, conditional to the haplotype
counts, nG.

The value of the second derivative with respect to the
disequilibrium parameter is

@2ln Liðd̂jnGÞ
@d2

¼2
nTM;i

ðdþ fT fMÞ2 2
nTm;i

ð2dþ fT fmÞ2
2

ntM;i

ð2dþ ft fMÞ2 2
ntm;i

ðdþ ft fmÞ2
:

Sire is homozygote at one locus and heterozygote
at the other

A full and a reduced model are developed in this section. A
full model estimates all unknowns (linkage disequilibrium,
and allele frequencies for the marker for which the sire is
heterozygote) simultaneously. The reduced model estimate
only linkage disequilibrium assuming that allele frequencies
are known without error (or estimated in a previous step).

Full model for estimating LD in a homo-heterozygote sire:
Let the sire have genotype TTMm at two SNPs, T/t, and
M/m. The likelihood equation for the ith family is

Liðd̂; f̂ M jnGÞ ¼ KðfTTMMÞnTTMM;iðfTTMmÞnTTMm;iðfTTmmÞnTTmm;i

· ðfTtMMÞnTtMM;iðfTtMmÞnTtMm;iðfTtmmÞnTtmm;i ;

(1)

where nj,i are the genotype counts (nG) from offspring from
the ith sire family ( j = TTMM, TTMm, TTmm, TtMM, TtMm,
and Ttmm), and fj is the probability of the jth genotype
among progeny. These probabilities can be obtained after
adding the corresponding frequencies for all possible
matings (Table 1): fTTMM ¼ 1

2 fTM; fTTMm ¼ 1
2 fTm þ 1

2 fTM;
fTTmm ¼ 1

2 fTm; fTtMM ¼ 1
2 ftM; fTtMm ¼ 1

2 ftM þ 1
2 ftm; fTtmm ¼

1
2 ftm. Equation 1 can be solved by the EM algorithm after
making haplotype frequencies equal to their expected
values,

f iTM ¼ 1
Ni

 
nTTMM;i þ f̂

i
TM

f̂ T
nTTMm;i

!

f̂
i
Tm ¼ 1

Ni

  
12

f̂
i
TM

f̂ T

!
nTTMm;i þ nTTmm;i

!

f̂
i
tM ¼ 1

Ni

 
nTtMM;i þ

 
f̂
i
tM

12 f̂ T

!
  nTtMm;i

!
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f̂
i
tm ¼ 1

Ni

  
12

f̂
i
tM

12 f̂ T

!
nTtMm;i þ nTtmm;i

!
; (2)

where Ni is the size of the ith half-sib family. Equations 2 can
be solved iteratively after giving a starting value to the hap-
lotype frequencies and by estimating in each iteration
f̂ T ¼ f̂

i
Tm þ f̂

i
TM . The starting values used in this study were

the product of allele frequencies, so disequilibrium was null
(d = 0).

Reduced model for estimating LD in a homo-heterozygote
sire family: In a reduced model, allele frequencies are not es-
timated simultaneously with haplotype frequencies but are as-
sumed to be known. The estimate of linkage disequilibrium is

d̂ ¼ f̂
i
TM 2 f̂ T f̂M ;

where f̂ T ¼ ð1=NiÞðnTTMM;i þ nTTMm;i þ nTTmm;iÞ,

f̂ M ¼ nTTMM;i þ nTtMM;i

nTTMM;i þ nTtMM;i þ nTTmm;i þ nTtmm;i
and

f̂
i
TM ¼ f̂ T nTTMM;i

Ni f̂ T 2 nTTMm;i
:

The derivation is given in Appendix B.
The disequilibrium estimated in the reduced model gives

slightly different estimates than the disequilibrium esti-
mated using a full model but has the advantage of faster
computation when a large number of SNPs are tested. The
approximated sampling variance of the estimates of the
disequilibrium parameter for the ith family is

Varðd̂Þ � 1�
2
�
@2ln LiðdjnGÞ=dd2

��
d¼d̂

;

where

@2ln Liðd̂jnGÞ
@d2

¼ 2
nTTMM;i

ðdþ f̂ T f̂MÞ2
2

nTTmm;i

ð2dþ f̂ T f̂mÞ2
2

nTtMM;i

ð2dþ f̂ t f̂MÞ2
2

nTtmm;i

ðdþ f̂ t f̂mÞ2

as derived in Appendix A.

Sire is heterozygote at two SNPs

Equations for a full and a reduced model follow. A full model
estimates allele and haplotype frequencies simultaneously
whereas a reduced model works first estimating allele
frequencies and then haplotype frequencies. The full model
has better statistical properties but the reduced model has
faster computation and, therefore, is practical for large-scale
testing of disequilibria among SNPs.

Full model for estimating LD in a double-heterozygote sire
family: Let the sire have genotype TtMm at two SNPs, T/t,
and M/m and linkage phase (TM/tm). As before, nj,i are the
genotype counts from offspring from the ith sire family (j ¼
TTMM, TTMm, TTmm, TtMM, TtMm, Ttmm, ttMM, ttMm,
and ttmm). The recombination fraction is c, which is as-
sumed to be known without error. The likelihood equation
for data of the ith half-sib family is

Liðd; fT ; fM jnGÞ ¼ KðfTTMMÞnTTMM;iðfTTMmÞnTTMm;iðfTTmmÞnTTmm;i

3 ðfTtMMÞnTtMM;iðfTtMmÞnTtMm;iðfTtmmÞnTtmm;i

3 ðfttMMÞnttMM;iðfttMmÞnttMm;iðfttmmÞnttmm;i ;

(3)

where the probabilities of offspring genotypes among half-
sib offspring are obtained from Table 2: fTTMM ¼ 1

2 ð12cÞfTM;
fTTMm ¼ 1

2 ð12cÞfTm þ 1
2 c fTM; fTTmm ¼ 1

2 c fTm; fTtMM ¼
1
2 ð12cÞftM þ 1

2 c fTM; fTtMm ¼ 1
2 ð12cÞðftm þ fTMÞ þ 1

2 c ðftMþ
fTmÞ; fTtmm ¼ 1

2 ð12cÞfTm þ 1
2 c ftm; fttMM ¼ 1

2 c ftM; fttMm ¼
1
2 ð12cÞftM þ 1

2 c ftm; and fttmm ¼ 1
2 ð12cÞftm.

Likelihood Equation 3 can be solved by applying the EM
algorithm,

f̂ iTM ¼ 1
Ni

 
nTTMM;i þ

cf̂
i
TMnTTMm;i

cf̂
i
TM þ ð12 cÞf̂ iTm

þ cf̂
i
TMnTtMM;i

cf̂
i
TM þ ð12 cÞf̂ itM

þ ð12 cÞf̂ iTMnTtMm;i�
c
�
f̂
i
TM þ f̂

i
tM

�
þ ð12 cÞ

�
f̂
i
TM þ f̂

i
tm

�	
!

f̂
i
Tm ¼ 1

Ni

 
nTTmm;i þ

ð12 cÞf̂ iTmnTTMm;i

cf̂
i
TM þ ð12 cÞf̂ iTm

þ ð12 cÞf̂ iTmnTtmm;i

cf̂
i
tm þ ð12 cÞf̂ iTm

þ cf̂
i
TmnTtMm;i�

c
�
f̂
i
Tm þ f̂

i
tM

�
þ ð12 cÞ

�
f̂
i
TM þ f̂

i
tm

�	
!

Table 1 Genotypes in the half-sib offspring from all possible
gamete combinations produced from a heterozygote sire at one
SNP, M/m, and homozygote at the other SNP, T/t.

Sire(TM/Tm)

Dam TM Tm

G freq 1/2 1/2

TM fTM TTMM TTMm

1
2 fTM

1
2 fTM

Tm fTm TTMm TTmm

1
2 fTm

1
2 fTm

tM ftM TtMM TtMm

1
2 ftM

1
2 ftM

Tm ftm TtMm Ttmm

1
2 ftm

1
2 ftm

G, gametes; freq, frequency.
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f̂
i
tM ¼ 1

Ni

 
nttMM;i þ

ð12 cÞf̂ itMnTtMM;i

cf̂
i
TM þ ð12 cÞf̂ itM

þ ð12 cÞf̂ itMnttMm;i

cf̂
i
tm þ ð12 cÞf̂ itM

þ cf̂
i
tMnTtMm;i�

c
�
f̂
i
Tm þ f̂

i
tM

�
þ ð12 cÞ

�
f̂
i
TM þ cf̂

i
tm

�	
!

f̂
i
tm ¼ 1

Ni

 
nttmm;i þ

cf̂
i
tmnTtmm;i

cf̂
i
tm þ ð12 cÞf̂ iTm

þ cf̂
i
tmnttMm;i

f̂
i
tm þ ð12 cÞf̂ tM

þ ð12 cÞf̂ itmnTtMm;i�
c
�
f̂
i
Tm þ f̂

i
tM

�
þ ð12 cÞ

�
f̂
i
TM þ f̂

i
tm

�	
!
; (4)

where, as before, Ni is the size of the ith half-sib family.
Using initial values of the haplotype frequencies and iterat-
ing over Equation 4 will converge to ML estimates of hap-
lotype frequencies. Linkage disequilibrium is estimated by

d̂ ¼ f̂
i
TMf̂

i
tm2f̂

i
Tmf̂

i
tM .

If the linkage phase of the sire is Tm/tM then the EM
equations are

f̂
i
TM ¼ 1

Ni

 
nTTMM;i þ

ð12 cÞf̂ iTMnTTMm;i

ð12 cÞf̂ iTM þ cf̂
i
Tm

þ ð12 cÞf̂ iTMnTtMM;i

ð12 cÞf̂ iTM þ cf̂
i
tM

þ cf̂
i
TMnTtMm;i�

ð12 cÞ
�
f̂
i

Tm þ f̂
i
tM

�
þ c
�
f̂
i
TM þ f̂

i
tm

�	
!

f̂
i
Tm ¼ 1

Ni

 
nTTmm;i þ

cf̂
i
TmnTTMm;i

ð12 cÞf̂ iTM þ cf̂
i
Tm

þ cf̂
i
TmnTtmm;i

ð12 cÞf̂ itm þ cf̂
i
Tm

þ ð12 cÞf̂ iTmnTtMm;i�
ð12 cÞ

�
f̂
i
Tm þ f̂

i
tM

�
þ c
�
f̂
i
TM þ f̂

i
tm

�	
!

f̂
i
tM ¼ 1

Ni

 
nttMM;i þ

cf̂
i
tMnTtMM;i

ð12 cÞf̂ iTM þ cf̂
i
tM

þ cf̂
i
tMnttMm;i

ð12 cÞf̂ itm þ cf̂
i
tM

þ ð12 cÞf̂ itMnTtMm;i�
ð12 cÞ

�
f̂
i
Tm þ f̂

i
tM

�
þ c
�
f̂
i
TM þ f̂

i
tm

�	
!

f̂
i
tm ¼ 1

Ni

 
nttmm;i þ

ð12 cÞf̂ itmnTtmm;i

ð12 cÞf̂ itm þ cf̂
i
Tm

þ ð12 cÞf̂ itmnttMm;i

ð12 cÞf̂ itm þ cf̂
i
tM

þ cf̂
i
tmnTtMm;i�

ð12 cÞ
�
f̂
i
Tm þ f̂

i
tM

�
þ c
�
f̂
i
TM þ f̂

i
tm

�	
!
:

However, the same results can be obtained by making the
following substitutions in Equation 4: nTTmm;i by nTTMM;i;
nTTMM;i by nTTmm;i; nTtmm;i by nTtMM;i; nTtMM;i by nTtmm;i;
nttmm;i by nttMM;i; and nttMM;i by nttmm;i. Linkage phase can be
estimated simultaneously to recombination fraction (Gomez-
Raya 2001).

Reduced model for estimating LD in a double-heterozygote
sire: A reduced model can be used after assuming that
allele frequencies at the two DNA markers are known
without error. It makes easier and faster estimation of
linkage disequilibrium and its sampling variance. It can be
solved by making use of the EM algorithm as described in
Equation 4 but using as input parameters estimates of
allele frequencies of M and T (as given by Gomez-Raya
2001):

f̂M ¼



nTTMM;i þ nTtMM;i þ nttMM;i

nTTMM;i þ nTtMM;i þ nttMM;i þ nTTmm;i þ nTtmm;i þ nttmm;i

�

Table 2 Genotypes and their frequencies among half-sib progeny
from a double heterozygote sire

Sire (phase TM/tm)

Dam TM Tm tM tm

G freq 1
2 (1 2 c) 1

2 c
1
2 c

1
2 (1-c)

TM fTM TTMM TTMm TtMM TtMm

1
2 (1 2 c) fTM 1

2 c fTM 1
2 c fTM 1

2 (1 2 c) fTM

Tm fTm TTMm TTmm TtMm Ttmm

1
2 (1 2 c) fTm 1

2 c fTm 1
2 c fTm 1

2 (1 2 c) fTm

tM ftM TtMM TtMm ttMM ttMm

1
2 (1 2 c) ftM 1

2 c ftM 1
2 c ftM 1

2 (1 2 c) ftM

tm ftm TtMm Ttmm ttMm ttmm

1
2 (1 2 c) ftm 1

2 c ftm 1
2 c ftm 1

2 (1 2 c) ftm

Sire (phase Tm/tM)
TM Tm tM tm

G freq 1
2 c

1
2 (1-c) 1

2 (1-c) 1
2 c

TM fTM TTMM TTMm TtMM TtMm

1
2 c fTM 1

2 (1-c)fTM 1
2 (1 2 c)fTM 1

2 c fTM

Tm fTm TTMm TTmm TtMm Ttmm

1
2 fTm

1
2 (1 2 c)fTm 1

2 (1 2 c)fTm 1
2 c fTm

tM ftM TtMM TtMm ttMM ttMm

1
2 c ftM 1

2 (1 2 c)ftM 1
2 (1 2 c)ftM 1

2 c ftM

tm ftm TtMm Ttmm ttMm ttmm

1
2 c ftm 1

2 (1 2 c)ftm 1
2 (1 2 c)ftm 1

2 c ftm

G, gametes; freq, frequency.
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f̂ T ¼



nTTMM;i þ nTTMm;i þ nTTmm;i

nTTMM;i þ nTtMM;i þ nttMM;i þ nTTmm;i þ nTtmm;i þ nttmm;i

�
:

A solution when c = 0 for the reduced model is a positive
root between 0 and 1 of the quadratic: a  ðf̂ iTMÞ2 þ bf̂

i
TM þ z ¼ 0,

where a ¼ 2Ni, b ¼ Nið12f̂ M2f̂ TÞ22nTTMM;i 2nTtMm;i, and
z ¼ 2ð12f̂ M2f̂ TÞnTTMM;i. Derivation of the method and
an explicit solution for fully linked markers is given in
Appendix B.

As shown in Appendix A, the reduced model provides
a simpler approximated sampling variance of the estimates
of the disequilibrium parameter for the ith family by

Varðd̂Þ � 1�
2
�
@2ln LiðdjnGÞ=@d2

��
d¼d̂

@2 ln Li
�
d
��nG�

@d2
¼2

nTTMM;i

½dþ fT fM �2
2

ð122cÞ2nTTMm;i

½ð12cÞð2dþ fT fmÞ þ cðdþ fT fMÞ�2

              2
nTTmm;i

½2dþ fT fm�2
2

ð122cÞ2nTtMM;i

½ð12cÞð2dþ ftfMÞ þ cðdþ fT fMÞ�2

              2
4ð122cÞ2nTtMm;i

½ð12cÞð2dþ fT fM þ ftfmÞ þ cð22dþ fT fm þ ftfMÞ�2

              2
ð122cÞ2nTtmm;i

½ð12cÞð2dþ fT fmÞ þ cðdþ ftfmÞ�2
2

nttMM;i

½2dþ ftfM �2

              2
ð122cÞ2nttMm;i

½ð12cÞð2dþ ftfMÞ þ cðdþ ftfmÞ�2
2

nttmm;i

½ðdþ ftfmÞ�2
:

This equation can be used as an approximation to the full
model with linkage disequilibrium and allele frequencies
estimated from that model.

Estimation of LD Across multiple half-sib families

In most instances, genotype information is available for
multiple half-sib families (e.g., data from a granddaughter
design project). The likelihood equation to estimate LD
across half-sib families is

Lðd; fT ; fM j nGÞ ¼
Ynf
i¼1

Liðd; fT ; fM j nGÞ;

where L(d, fT, fM|nG) is the likelihood for the ith half-sib
family conditional to genotype marker information (nG) and
nf is the number of families. Note that depending on the sire
genotype, allele frequencies for T and M (double homozy-
gote) orM (homo-heterozygote) do not need to be estimated.
The EM algorithm can be applied to multiple families by it-
erating on the four haplotype frequencies:

f̂ TM ¼
Pnf

i¼1

�
Nif̂

i
TM

�
Pnf

i¼1Ni
;

f̂ Tm ¼
Pnf

i¼1

�
Nif̂

i
TM

�
Pnf

i¼1Ni
;

f̂ tM ¼
Pnf

i¼1

�
Nif̂

i
tM

�
Pnf

i¼1Ni
;

f̂ tm ¼
Pnf

i¼1

�
Nif̂

i
tm

�
Pnf

i¼1Ni
; (5)

where equations for haplotype frequencies for each
single family varies depending on the sire genotype. For
example,

f iTM ¼ 1
Ni
ðnTTMM;iÞ;

f iTM ¼ 1
Ni

 
nTTMM;i þ f̂

i
TM

f̂ T
nTTMm;i

!
;

f̂
i
TM ¼ 1

Ni

 
nTTMM;i þ

cf̂
i
TMnTTMm;i

cf̂
i
TM þ ð12 cÞf̂ iTm

þ cf̂
i
TMnTtMM;i

cf̂
i
TM þ ð12 cÞf̂ itM

þ ð12 cÞf̂ iTMnTtMm;ih
c
�
f̂
i
Tm þ f̂

i
tM

�
þ ð12 cÞ

�
f̂
i
TM þ f̂

i
tm

�i
!

are the equations for haplotype TM if the sire is double
homozygote, homo-heterozygote, or double heterozygote,
respectively. The frequencies for the other haplotypes are
as found in Equations 2 and 4 for homo-heterozygote
and double heterozygote sires, respectively. Equation 5 can
be solved iteratively after giving a starting value to the hap-
lotype frequencies and by estimating in each iteration
f̂ T ¼ f̂

i
Tm þ f̂

i
TM and f̂ M ¼ f̂

i
TM þ f̂

i
tM .

The estimation of the sampling variance for linkage dis-
equilibrium in multiple half-sib families can be carried out by:

Varðd̂Þ � 1h
2
�
@2 ln

Qnf
i¼1Liðd; fT ; fM jnGÞ=@d2

�i
d¼d̂

;

where second derivatives of the natural logarithm of likeli-
hood varies depending on sire genotype (double homozygote,
homo-heterozygote, and double heterozygote) as described
in Appendix A.
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Hypothesis testing of LD in multiple half-sib families

Testing if linkage disequilibrium is different from 0 can be
carried out by a likelihood-ratio test. For the ith half-sib
family the likelihood-ratio test is

LRTi ¼ 2 2 ln
Li Nullðd̂ ¼ 0jnGÞ

Liðd ¼ d̂jnGÞ ;

where LiNullðd̂ ¼ 0jnGÞ and Liðd ¼ d̂jnGÞ are the likelihoods
for the ith family under the null hypothesis (d = 0) and
under the alternative hypothesis with d ¼ d̂.

A likelihood-ratio test across families is

LRTjoint ¼ 22
Xnf
i¼1

ln
LiNullðd̂ ¼ 0jnGÞ
Liðd ¼ d̂jnGÞ ;

which is distributed as a x2 with 1 d.f. Here d is estimated
across all families by the EM algorithm (Equation 5).

Bias in estimating LD in half-sibs after ignoring
the family structure

In this section, approximate bias for estimating LD in half-sib
families using the method of Excoffier and Slatkin (1995) for
unrelated individuals and maternal informative haplotypes is
derived algebraically. Only sires that are homo-heterozygotes
and double heterozygotes might produce progeny in which hap-
lotypes cannot be fully inferred from the genotypes.

Sire homo-heterozygote: Method of Excoffier and Slatkin
(1995) for unrelated individuals: Assuming genotype
TTMm in the sire, the expected frequency of haplotype
TM among half-sib progeny can be approximated by

E½̂f TM � �
1
2Ni þ NifTM

2Ni
¼ 1

4
þ 1
2
fTM;

where 1
2Ni comes from the contribution of the TM haplotype

from the sire and Ni fTM from the contributions of the dams.
The total number of haplotypes in the offspring is 2Ni. The
approximated expected frequencies of alleles T and M are
computed following the same rules:

E½̂f T � �
Ni þ NifT

2Ni
¼ 1

2
þ 1
2
fT

E½̂fM � �
1
2Ni þ NifM

2Ni
¼ 1

4
þ 1
2
fM :

The expected estimate of the disequilibrium after using the
method of Excofier and Slatkin (1995) is

E½d̂� � E½D̂TM �
       � E½ f̂ TM�2 E½ f̂ T �E½ f̂ M �

    � 1
2
DTM þ 1

8
þ 1
4
fTfM 2

1
4
fM 2

1
8
fT :

Consequently, the bias after using this method is approx-
imated by

Bias � DTM 2 E½D̂TM�

       ¼ 1
2
DTM 2

1
8
2

1
4
fTfM þ 1

4
fM þ 1

8
fT :

Sire homo-heterozygote: Estimation of LD using informa-
tive maternal haplotypes in half-sib families: Half-sib
progeny from heterozygote sires might not be informative.
For example, haplotype TM inherited from dams will be in-
formative only in progeny with genotypes TTMM.

Therefore, the expected frequency of haplotype TM
among progeny will be estimated by

E½̂f TM� �
1
2 fTM

1
2 ½fTM þ fTm þ ftM þ ftm�

¼ fTM:

The estimation of haplotype frequencies and linkage disequi-
librium is unbiased when the sire is a homo-heterozygote.

Sire double heterozygote: Method of Excoffier and Slatkin
(1995) for unrelated individuals: Assuming linkage phase
TM/tm in the sire, the expected frequency of haplotype TM
among half-sib progeny can be approximated by

E½̂f TM� �
1
2Nið12 cÞ þ NifTM

2Ni
¼ 1

4
ð12 cÞ þ 1

2
fTM;

where 1
2Ni(1 2 c) and Ni fTM are the sire and dams contri-

butions of haplotype TM among the offspring.
Similarly, the expected frequencies of alleles T and M are

approximated by

E½̂f T � �
1
2Ni þ NifT

2Ni
¼ 1

4
þ 1
2
fT

E½̂fM � �
1
2Ni þ NifM

2Ni
¼ 1

4
þ 1
2
fM :

The expected linkage disequilibrium is

E½D̂TM� � E½d̂�
           � E½̂f TM �2E½̂f T �E½̂fM �

           � 1
2
DTM þ 1

4
ð12 cÞ þ 1

4
fTfM 2

1
8



1
2
þ fT þ fM

�
:

Consequently, the bias for using the method of Excoffier and
Slatkin (1995) for unrelated individuals is approximated by

Bias � DTM 2E½D̂TM�

    � 1
2
DTM 2

1
4



12 cþ fTfM

�
þ 1
8



1
2
þ fT þ fM

�
:
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Sire double heterozygote: Estimation of LD using infor-
mative maternal haplotypes in half-sib families: The only
informative haplotypes that can be traced up to their
mothers are from progeny with genotypes TTMM, TTmm,
ttMM, and ttmm. It is because markers are biallelic and only
homozygote progeny can be used to trace inheritance when
the sire is a heterozygote. If allele frequencies in the dam
population are known, then determining the haplotype with
the highest probability is feasible. Nevertheless, for interme-
diate allele frequencies the probability of inheriting either
allele is 0.5. For the calculations below, only informative
progeny is used.

Assuming linkage phase TM/tm, the expected frequency
of informative TM haplotypes among progeny is

E½fTM � �
1
2 ð12 cÞfTM

1
2 ð12 cÞfTM þ 1

2 ðcÞfTm þ 1
2 ðcÞftM þ 1

2 ð12 cÞftm
:

The expected values for the frequencies of alleles T andM are

E½fT � � ð12 cÞfTM þ cfTm
ð12 cÞfTM þ ðcÞfTm þ ðcÞftM þ ð12 cÞftm

E½fM � � ð12 cÞfTM þ cftM
ð12 cÞfTM þ ðcÞfTm þ ðcÞftM þ ð12 cÞftm:

The expected disequilibrium is

E½D̂TM � � ð12 cÞfTM
ð12 cÞfTM þ ðcÞfTm þ ðcÞftM þ ð12 cÞftm

2
½ð12 cÞfTM þ cfTm�½ð12 cÞfTM þ cftM �

½ð12cÞfTM þ ðcÞfTm þ ðcÞftM þ ð12cÞftm�2
:

For unlinked loci, c = 0.5, the above expression reduces to
DTM and the method of informative maternal haplotypes is
unbiased.

For 0, c, 0.5, the bias for using only maternal inherited
haplotypes is approximated by

Bias � DTM 2 E½D̂TM�
 

  � DTM 2

� ð12 cÞfTM
ð12 cÞfTM þ ðcÞfTm þ ðcÞftM þ ð12 cÞftm

þ ½ð12 cÞfTM þ cfTm�½ð12 cÞfTM þ cftM�
½ð12cÞfTM þ ðcÞfTm þ ðcÞftM þ ð12cÞftm�2

#
:

Monte Carlo computer simulation

A Monte Carlo computer simulation was carried out to
validate methods for estimating LD proposed in this article
as well as to compute power. Three scenarios were simulated
corresponding to the three possible situations regarding the
genotype of the sire: double homozygote, homo-heterozygote,
and double heterozygote. In addition, a multifamily situation
was also simulated.

Sire double homozygote: A randomgenerator from the uniform
distribution was used to assign progeny with the haplotypes
TM, Tm, tM, and tm according to their probability (fre-
quency): fTM ¼ dþ fTfM , fTm ¼ 2dþ fTfm, ftM ¼ 2dþ ftfM ,
and ftm ¼ dþ ftfm, where the allele frequencies fM, fm, fT , ft,
and d were input parameters. If the drawing of the uniform
distribution was between 0 and fTM, then the offspring inherited
haplotype TM from his dam. If the drawing of the uniform
distribution was between fTM and fTM+ fTm then the offspring
inherited haplotype Tm from his dams. Assigning offspring to
other haplotypes was done following the same rule.

Sire homo-heterozygote: A random generator from the
uniform distribution was used to assign progeny with the
genotypes TTMM, TTMm, TTmm, TtMM, TtMm, and Ttmm
according to their probability (frequency): fTTMM ¼ 1

2 fTM,
fTTMm ¼ 1

2 fTm þ 1
2 fTM , fTTmm ¼ 1

2 fTm, fTtMM ¼ 1
2 ftM , fTtMm ¼

1
2 ftM þ 1

2 ftm, and fTtmm ¼ 1
2 ftm. If the drawing of the uniform

distribution was between 0 and fTTMM, then the offspring
had genotype TTMM. If the drawing of the uniform distri-
bution was between fTTMM and fTTMM+ fTTMm then the off-
spring genotype was TTMm. Assigning other genotypes to
offspring was done following the same rule.

Sire double heterozygote: A random generator from the
uniform distribution was used to assign progeny with the
genotypes TTMM, TTMm, TTmm, TtMM, TtMm, Ttmm,
ttMM, ttMm, and ttmm according to their probability (fre-
quency): fTTMM ¼ 1

2 ð12cÞfTM , fTTMm ¼ 1
2 ð12cÞfTm þ 1

2 c fTM ,
fTTmm ¼ 1

2 c fTm, fTtMM ¼ 1
2 ð12cÞftM þ 1

2 c fTM , fTtMm ¼
1
2 ð12cÞðftm þ fTMÞ þ 1

2 cð ftM þ fTmÞ, fTtmm ¼ 1
2 ð12cÞfTmþ

1
2 c ftm, fttMM ¼ 1

2 c ftM , fttMm ¼ 1
2 ð12cÞftM þ 1

2 c ftm, and
fttmm ¼ 1

2 ð12cÞftm. If the drawing of the uniform distribution
was between 0 and fTTMM , then the offspring had genotype
TTMM. If the drawing of the uniform distribution was be-
tween fTTMM and fTTMM+fTTMm then the offspring genotype
was TTMm. Assigning other genotypes to offspring was per-
formed following the same rule.

Subroutines in Fortran 90 were written to estimate
linkage disequilibrium with the half-sib methods (HS) de-
scribed in this article as well as the method of Excoffier and
Slatkin (1995) (ES) for unrelated individuals, and by mak-
ing use of maternal informative haplotypes (MIH). Family
sizes of 36 and 500 were used to test the methods in small
and large families. Empirical power was computed by sort-
ing within each simulation set according to the likelihood-
ratio estimate and finding the percentage of replicates that
gave a value higher than the value of the x2 with 1 d.f. at
a significance level of 0.01.

Multifamily estimation of linkage disequilibrium: A
total of six families with sizes 94, 77, 106, 81, 79, and
100 half-sib progeny resembling the sire Norwegian cattle
population were simulated (after pooling selected and
culled bulls in Table 1 of Gomez-Raya et al. 2002). The
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allele frequencies were intermediate, recombination fraction
was 0, 0. 25, or 0.50, and linkage disequilibrium ranged from
0 to 0.25. The sires were simulated as if they were coming
from a population with the same linkage disequilibrium and
allele frequencies as used to generate the half-sib progeny. To
do so, the two haplotypes at each sire were generated follow-
ing the same principles as above with probabilities according
to the simulated frequencies: fTM ¼ dþ fTfM , fTm ¼ 2dþ fTfm,
ftM ¼ 2dþ ftfM , and ftm ¼ dþ ftfm, in which allele frequencies
fM , fm, fT , ft, and d were input parameters. Thus, the sire
could be a double homozygote, homo-heterozygote, or dou-
ble heterozygote after assigning the two haplotypes. The half-
sib progeny was generated as described in the previous sec-
tion. Estimation of linkage disequilibrium was carried out
using the EM algorithm for multiple families. Empirical power
and overall likelihood-ratio test were computed for each sim-
ulation set. Each experiment was replicated 10,000 times. A
Q-Q plot (using proc qqplot of SAS Inst., Cary, NC) was used
to investigate the distribution of LRTjoint under the null hy-
pothesis (simulated d = 0) in the situation for c = 0.

Genome analyses of LD in a beef cattle half-sib family

A half-sib family consisting of 36 calves from commercial beef
cattle at the Gund Ranch in Nevada was used to illustrate and
to compare alternative methods for estimation of linkage
disequilibrium. The first step was to determine paternity of
the calves at the ranch. A set of 25 microsatellites (BMS410,
BMS499, BMS650, BMS1244, BMS1634, TGLA227, BMS601,
BMS1789, BMS2005, ILSTS081, BMS1315, BMS1226,
BMS2573, ILSTS058, TGLA126, CSSM66, SPS115, TGLA53,
BM1824, BM2113, ETH3R, TGLA122, INRA023, ETH225,
ETH10) was used to assign paternity that was carried out
using Cervus software. Total DNA from ear notches of calves
and sires was purified using the manufacturer’s instructions
(Qiagen, CA). The DNAwas diluted with AE buffer to 10 ng/ml
and stored at 24� prior to genotyping. Primers were diluted
to 50 mM and stored at 24�. A primer mix was prepared
containing 2 ml of each 50 mM primer set. Each PCR reaction
contained a total volume of 15 ml consisting of 1.5 ml of each
primer mix, 2 ml water, 4 ml DNA, and 7.5 ml PCR multiplex
mix (Qiagen). Gradients were performed to determine the
optimal temperature for primer annealing. Amplification
was carried out with a TC-512 Thermal Cycler (Techne).
The initial denaturation step was performed at 95� for
15 min, followed by 35 cycles of 30 sec at 94�, 1 min and
30 sec at the optimum annealing temperature, and 1 min at
72� with a final extension of 30 min at 60�. Subsequently,
1 ml of PCR product was added to 199 ml water to make a
1:200 dilution. One microliter of this dilution was added to
10 ml of a formamide solution containing 1 ml formamide
and 5 ml of ladder and denatured for 5 min at 95�. Genotyp-
ing was performed with the Applied Biosystems (ABI) Prism
3730 DNA analyzer.

The Illumina bovine 50K BeadChip was used with bull
302 and his 36 calves to compare methods for estimating LD
in half-sib families. The genotyping was carried out at the

Core Lab of the University of Colorado, Denver. Only SNPs
with a call rate .0.80 in at least 24 calves and MAF of 0.10
or more were used. The data were also filtered for SNPs that
were not consistent for inheritance from sire to progeny. If
a SNP was not consistent for one progeny then the SNP
information was discarded for the entire family. Only pairs
of SNPs within the same chromosome and within a distance
of 50 Mb or less were used for estimating linkage disequi-
librium. For the double heterozygote sire, recombination
fraction and linkage phase was estimated using the methods
proposed by Gomez-Raya (2001). Only SNPs with a recom-
bination fraction of 0.30 or less were used for SNPs in which
the sire was double heterozygote. Estimation of disequilib-
rium was performed using the half-sib method as well as the
method of Excoffier and Slatkin (1995) and by making use
of maternal informative haplotypes. For comparison of al-
ternative estimation methods of linkage disequilibrium the
statistic r2 = d2/{(fT (1 2 fT)fM (1 2 fM)} was used. This
statistic is widely used and ranges from 0 to 1, which facil-
itates comparison among methods. The absolute value of the
difference between estimates of either ES or MIH and esti-
mates HS were also used to evaluate discrepancies between
methods.

Results

Table 3 shows simulation results for estimating linkage dis-
equilibrium in a half-sib family from a homo-heterozygote
sire with 36 or 500 progeny and dam allele frequencies of
0.5 at both SNPs. For these allele frequencies, the maximum
possible linkage disequilibrium, d, is 0.25. The method
proposed in Equation 3 of this article (HS) yields identical
estimates to the true (simulated) values of linkage disequi-
librium with large family size (500). There was very little

Table 3 Average estimates of d in a half-sib family from a
homo-heterozygote sire (family size ¼ 36 or 500) with simulated
fT ¼ 0:5 and fM ¼ 0:5 and varying linkage disequilibrium (d)

Family size:
Simulated d

Estimation method

HS ES MIH

36 500 36 500 E(ES) 36 500

0.000 0.001 0.000 0.000 0.000 0.000 0.001 0.000
0.025 0.025 0.025 0.017 0.018 0.013 0.025 0.025
0.050 0.049 0.050 0.034 0.036 0.025 0.050 0.050
0.075 0.074 0.075 0.049 0.051 0.038 0.074 0.075
0.100 0.098 0.100 0.063 0.064 0.050 0.098 0.100
0.125 0.122 0.125 0.075 0.077 0.063 0.122 0.125
0.150 0.146 0.150 0.087 0.088 0.075 0.146 0.150
0.175 0.170 0.175 0.097 0.098 0.087 0.170 0.175
0.200 0.195 0.200 0.106 0.107 0.100 0.194 0.200
0.225 0.218 0.225 0.115 0.116 0.113 0.218 0.225
0.250 0.243 0.250 0.123 0.125 0.125 0.249 0.250

The number of replicates was 104. HS, Average estimates using the method derived
for half-sibs in this article. ES, Average estimates over replicates of linkage disequi-
librium using the algorithm of Excoffier and Slatkin (1995). E(ES), Predicted LD using
the method of not family structure using the algorithm of Excoffier and Slatkin
(1995). MIH, Method of maternal informative haplotypes.
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bias when the family size is small (36). For the examples in
Table 3, the bias using the HS method is ,3% . On the other
hand, estimates are biased when using the method of Excoffier
and Slatkin (1995), which becomes just half of the true
disequilibrium at d = 0.25. The approximation for predict-
ing the expected value for the estimates of linkage disequi-
librium using the method of Excoffier and Slatkin (1995)
agreed well with the simulation results but tends to under-
estimate it. On the other hand, the use of maternal infor-
mative haplotypes is unbiased, as shown in Table 3 and as
proven in the corresponding section of this article.

Table 4 shows simulation results for estimating linkage
disequilibrium in a half-sib family from a double heterozy-
gote sire for varying recombination fractions and linkage
disequilibrium parameters. The allele frequencies at the
two loci were 0.5. Each simulation set was analyzed with
the EM algorithm developed in this article (HS) as well as
the method of ES and by using MIH from dams. The HS
method is asymptotically unbiased with average estimates
of disequilibria very close to the simulated (true) parameters
for large family sizes (500). For small family sizes (36) the
estimates of linkage disequilibrium are slightly downward
biased. The method of Excoffier and Slatkin (1995) is se-
verely biased upward at low recombination fractions but
becomes biased downward at high recombination fractions.
The use of only maternal informative haplotypes to estimate
disequilibrium is upward biased at low recombination frac-
tions but becomes unbiased when the markers are unlinked.
The approximated expected disequilibrium was very close to
what was observed in the simulation for both the method of
Excoffier and Slatkin (1995) and when using informative
maternal haplotypes from dams. Figures 1 and 2 show

expected bias in estimating disequilibrium in a half-sib fam-
ily from a double heterozygote sire for two scenarios regard-
ing allele frequencies at the DNA markers: fT = 0.5, fM = 0.5
and fT = 0.4, fM = 0.1. For a low recombination fraction,
bias is negative but becomes positive as recombination frac-
tion increases. The effect is more pronounced for loci at
intermediate allele frequencies than for loci with allele fre-
quencies closer to fixation.

In many instances, interest is on the amount of progeny
needed for detecting linkage disequilibrium. Empirical power
for half-sib families in which the sire was a double homo-
zygote, homo-heterozygote, or double heterozygote is shown
in Table 5. The standard deviations among replicates for the
same simulation sets are given in Table 6. The simulation
results are for varying family sizes and true (simulated)
linkage disequilibrium parameters. Disequilibrium (d) of
0.10 was detected with groups of 100 offspring in most
situations. The most powerful situation is when the sire is
a homozygote at two loci and all haplotypes are informative.
Power in a double heterozygote sire family reduces with
genetic distance but it is nearly as powerful as the double
homozygote for fully linked loci. Power in a homo-hetero-
zygote sire family is always lower than power in a double
homozygote sire family. Standard deviation among repli-
cates follows the same trend as power (Table 6). The double
homozygote and the double heterozygote (at c = 0) sire
families had the lowest variation (Table 6). Variation among
replicates increases with increasing recombination fraction
in double heterozygote families. The estimates of disequilib-
rium for homo-heterozygote had more variation than double
homozygote families. There was good agreement between
the observed standard deviation among replicates and the

Table 4 Average estimates of d in a half-sib family from a double heterozygote sire (family size ¼ 36 and 500) with
simulated fT ¼ 0:5 and fM ¼ 0:5 and varying recombination fraction (c) and linkage disequilibrium (d)

Family size

Simulated c

0 0.25 0.50

Simulated d 36 500 36 500 36 500

0.000 HS 20.004 20.000 20.000 0.000 0.000 0.000
ES 0.106 0.108 0.057 0.059 0.000 0.000
E(ES) 0.125 0.063 0.000
MIH 0.220 0.250 0.110 0.125 0.000 0.000
E(MIH) 0.250 0.125 0.000

0.100 HS 0.092 0.099 0.094 0.099 0.094 0.100
ES 0.166 0.169 0.110 0.112 0.047 0.048
E(ES) 0.175 0.113 0.050
MIH 0.229 0.249 0.186 0.187 0.088 0.100
E(MIH) 0.250 0.188 0.100

0.200 HS 0.188 0.199 0.183 0.199 0.194 0.199
ES 0.221 0.224 0.158 0.161 0.088 0.090
E(ES) 0.225 0.163 0.100
MIH 0.234 0.249 0.213 0.231 0.176 0.200
E(MIH) 0.250 0.232 0.200

The number of replicates was 104. HS, Average estimates using the method derived for half-sibs in this article. ES, Average estimates over replicates
of linkage disequilibrium using the algorithm of Excoffier and Slatkin (1995). E(ES), Predicted LD using the method of not family structure using the
algorithm of Excoffier and Slatkin (1995). MIH, Method of Maternal Informative Haplotypes. E(MIH), Predicted LD using the method of Maternal
Informative Haplotypes.
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average of the estimates of sampling standard deviations of
d obtained in each replicate.

The simulation results for estimating LD using multiple
sire families are given in Table 7. There was good agreement
between simulated and estimated linkage disequilibrium
across the range of simulated disequilibrium parameter
and recombination fraction. The range of the absolute dif-
ference between estimated and simulated d was between
0.000 and 0.008. A Q-Q plot of the quantiles of the ob-
served distribution of LRTjoint under the null hypothesis
against quantiles from a g-distribution with shape = 0.5
and scale = 2 is depicted in Figure 3. This gamma distribution
is a x2-distribution with 1 d.f. The cumulative distribution
of LRTjoint showed larger variation than a x2-distribution with
1 d.f.

Linkage disequilibrium was also estimated in a cattle
half-sib family using the Illumina 50K BeadChip. There were
0.00189% inconsistencies between genotypes of sire and
calves. Table 8 shows the overall estimates of r2 using HS,
ES, and MIH for those situations in which the sire was a

homo-heterozygote. There were 314,730 SNP pairs for the
entire autosomal genome with average estimates of r2 of
0.115, 0.067, and 0.111 for HS, ES, and MIH methods.
The ES method is downward biased since estimates by this
method were around half of their value using the half-sib
method. The maternal informative haplotype estimates were
slightly lower than those obtained by the half-sib method,
which might be due to bias because of reduced family size
(noninformative offspring is neglected from these analyses).

Table 9 shows overall estimates of r2 using HS, ES, and
MIH for SNPs for which the sire was a double heterozygote.
There were 208,872 SNP pairs. The results using real data
support earlier findings showing that the methods of Excoffier
and Slatkin (1995) and maternal informative haplotypes
were upward biased. The average estimates of r2 across
the genome were of 0.100, 0.267, and 0.925 for HS, ES,
and MIH methods.

Figure 4 shows average estimates of r2 for the three
methods of estimation across the entire genome when the
distance between the two SNPs is between 10 and 50 Mb.

Figure 1 Bias in the estimation of LD using
the Excoffier and Slatkin (1995) algorithm in
a half-sib family from a double heterozygote
sire. (A) fT ¼ 0:5, fM ¼ 0:5, (B) fT ¼ 0:4,
fM ¼ 0:1
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A total of 829,042 SNPs pairs were tested and the estimates
are a pool of all three possible situations regarding sire geno-
types: double homozygote, homo-heterozygote, and double

heterozygote. This figure shows again that using either ES
or MIH methods give estimates upward biased of linkage
disequilibria.

Figure 2 Bias in the estimation of LD using
maternal haplotypes in a half-sib family
from a double heterozygote sire. (A)
fT ¼ 0:5, fM ¼ 0:5, (B) fT ¼ 0:4, fM ¼ 0:1.

Table 5 Empirical power for estimation of LD in a half-sib families from a double homozygote, homo-heterozygote
and a double heterozygote sire for varying family sizes

Hetero-hetero: Simulated c

Simulated d Size Homo-homo Homo-hetero 0 0.25 0.50

0 100 0.01 0.01 0.01 0.01 0.01
0.025 100 0.06 0.04 0.05 0.03 0.02

200 0.12 0.06 0.11 0.05 0.03
500 0.37 0.16 0.36 0.13 0.07

1000 0.72 0.37 0.71 0.31 0.16
0.050 100 0.29 0.13 0.27 0.11 0.07

200 0.60 0.30 0.59 0.24 0.13
500 0.98 0.73 0.97 0.64 0.38

1000 1.00 0.97 1.00 0.94 0.73
0.100 100 1.00 0.64 0.93 0.51 0.32

200 1.00 0.93 1.00 0.87 0.63
500 1.00 1.00 1.00 1.00 0.97

1000 1.00 1.00 1.00 1.00 1.00

The allele frequencies were fT ¼ 0:5 and fM ¼ 0:5. The significance level was 0.01. The number of replicates was 104.
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Discussion

Early studies estimating linkage disequilibrium in popula-
tions with a half-sib structure were carried out using
microsatellites (Farnir et al. 2000; Odani et al. 2006). These
studies used maternal alleles and estimated the most likely
haplotype inherited in sons from dams. Although the meth-
ods derived in this article are for biallelic loci such as SNPs,
a multiallelic marker can always be reduced to a biallelic
one after pooling alleles into two groups. As shown by
Gomez-Raya (2001) for a double heterozygote sire, the
amount of informative progeny in a half-sib family depends
on the recombination fraction between the two markers.
Thus, the frequency of informative progeny is c([12 ft)(12
fM) + (12 fT)(12 fm)], and (12 c)[(12 ft)(12 fm) + (12 fT)
(12 fM)] for recombinants and nonrecombinants, respec-
tively. Genotypes among offspring that are informative for

tracing inheritance from sires are also informative for trac-
ing alleles inherited from dams (with unknown genotypes).
For example, for allele frequencies fT = fM = 0.1, the fre-
quency of informative recombinant and nonrecombinant
progeny is 0.18c and 0.82(12 c), which means that the
closer the markers are, the lower the proportion of infor-
mative recombinants among progeny. Therefore, bias in
estimating linkage disequilibrium occurs because of the al-
tered proportion of haplotypes that are informative at vary-
ing genetic distances. Nevertheless, Farnir et al. (2000) used
not just the informative haplotypes but the most likely hap-
lotype. Sires carrying alleles at low frequency would allow
identification of haplotypes with a higher probability, which
will reduce the magnitude of the bias as shown in this arti-
cle. In another study, also investigating linkage disequilib-
rium with microsatellites in cattle, Tenesa et al. (2003)
made use of the method of Excoffier and Slatkin (1995) to

Table 6 Standard deviation among replicates in the estimation of LD in half-sib families from double homozygote, homo-heterozygote
and double heterozygote sire for varying family sizes and fT ¼ 0:5 and fM ¼ 0:5

Hetero-hetero: Simulated c

Simulated d Size Homo-homo Homo-hetero 0 0.25 0.50

0 100 0.025 (0.025) 0.035 (0.035) 0.025 (0.025) 0.038 (0.038) 0.052 (0.049)
0.025 100 0.024 (0.025) 0.035 (0.034) 0.025 (0.025) 0.038 (0.038) 0.052 (0.049)

200 0.017 (0.018) 0.025 (0.025) 0.018 (0.017) 0.027 (0.027) 0.035 (0.035)
500 0.011 (0.011) 0.016 (0.016) 0.011 (0.011) 0.017 (0.017) 0.023 (0.022)

1000 0.008 (0.008) 0.011 (0.011) 0.008 (0.008) 0.012 (0.012) 0.016 (0.016)
0.050 100 0.024 (0.025) 0.035 (0.034) 0.024 (0.024) 0.038 (0.037) 0.051 (0.048)

200 0.017 (0.017) 0.025 (0.024) 0.017 (0.017) 0.027 (0.027) 0.035 (0.034)
500 0.011 (0.011) 0.016 (0.016) 0.011 (0.011) 0.017 (0.017) 0.022 (0.022)

1000 0.008 (0.008) 0.011 (0.011) 0.008 (0.008) 0.012 (0.012) 0.015 (0.015)
0.100 100 0.023 (0.021) 0.033 (0.031) 0.023 (0.022) 0.038 (0.037) 0.048 (0.045)

200 0.016 (0.016) 0.023 (0.022) 0.016 (0.016) 0.027 (0.026) 0.033 (0.032)
500 0.010 (0.010) 0.015 (0.014) 0.010 (0.010) 0.017 (0.017) 0.021 (0.020)

1000 0.007 (0.007) 0.010 (0.010) 0.007 (0.007) 0.012 (0.012) 0.015 (0.014)

The number of replicates was 104. Values between brackets are average of the estimates of sampling standard deviations of d obtained in each replicate.

Table 7 Average estimates of linkage disequilibrium (d) using the EM algorithm for multiple half-sib families together
with statistical power at significance level of 0.01

Simulated c

0 0.25 0.50

Simulated d d Power d Power d Power

0.000 0.0000 (0.013) 0.02 20.0001 (0.014) 0.02 20.0001 (0.014) 0.02
0.010 0.0100 (0.013) 0.05 0.0099 (0.014) 0.05 0.0099 (0.014) 0.05
0.020 0.0201 (0.013) 0.20 0.0201 (0.014) 0.17 0.0200 (0.014) 0.16
0.030 0.0301 (0.013) 0.45 0.0301 (0.014) 0.37 0.0301 (0.014) 0.34
0.040 0.0401 (0.013) 0.73 0.0402 (0.014) 0.62 0.0401 (0.014) 0.58
0.050 0.0501 (0.012) 0.91 0.0502 (0.014) 0.83 0.0501 (0.014) 0.79
0.075 0.0751 (0.012) 1.00 0.0751 (0.013) 0.99 0.0752 (0.013) 0.99
0.100 0.1002 (0.013) 1.00 0.1003 (0.013) 1.00 0.1003 (0.013) 1.00
0.125 0.1252 (0.010) 1.00 0.1256 (0.012) 1.00 0.1255 (0.012) 1.00
0.150 0.1502 (0.009) 1.00 0.1506 (0.011) 1.00 0.1506 (0.011) 1.00
0.175 0.1753 (0.008) 1.00 0.1758 (0.010) 1.00 0.1758 (0.010) 1.00
0.200 0.1997 (0.007) 1.00 0.2003 (0.008) 1.00 0.2002 (0.008) 1.00
0.250 0.2457 (0.015) 1.00 0.2443 (0.013) 1.00 0.2453 (0.017) 1.00

The simulated allele frequencies were fT ¼ 0:5 and fM ¼ 0:5. The simulation was carried out for varying recombination fractions (c), linkage
disequilibria (d) and resembling the Norwegian cattle population structure. The number of replicates was 104. The values between brackets are
the average of standard deviations of the estimates of d.
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estimate linkage disequilibrium. As shown in this article,
estimates of LD using that method for unrelated individuals
might lead to severe biased estimation when applied in ani-
mals with a half-sib structure.

Improvement in the sequencing methods in the last years
allowed for the discovery of vast amounts of SNPs in the
human and animal genomes (e.g., International Hap Map
Consortium 2007). A following step has been the construc-
tion of LD maps for the human (Maniatis 2002) and animal
genomes (e.g., Khatkar et al. 2006). LD maps are based on:
(a) estimation of a linkage disequilibrium parameter, r,
which has the same maximum absolute value as the statis-
tics D9 of Lewontin (1964), and (b) use of a model of decay
of disequilibrium leading to equations of Malecot’s model for
isolation by distance (Malecot 1964). Thus, the value of D9
is d/DMax with DMax = min{ fT (12 fM), fM (12 fT)}. Con-
struction of LD maps are carried out estimating r between
adjacent SNPs and by using composite maximum likelihood
for all pairs of adjacent SNPs. Inferences of the decay of
disequilibrium over time are made by r ¼ ð12LÞMe2ed þ L,
where L is a parameter that reflects the residual association
at a long distance (d), M is the association at zero distance,
and e is the exponential decline in LD due to recombination
over generations. In human genetics, estimation of r is per-
formed using unrelated individuals and the Excoffier and
Slatkin (1995) algorithm. The construction of LD maps in
species with a half-sib family structure like cattle would re-
quire methods for the estimation of disequilibrium (d) as

Figure 3 Q-Q plots of likelihood-ratio test using the multi-half EM algo-
rithm on 106 replicates. Quantiles LRT are the quantiles from simulated
data for c = 0 and under the null hypothesis (d = 0).

Table 8 Overall values for estimates of r2 and abs(r2ES – r
2
HS) and abs(r2MIH – r2HS) for pairs of SNPs for which the sire was

homo-heterozygote using alternative methods of estimation: r2HS (half-sib), r2ES (Excoffier and Slatkin 1995), and r2MIH
(maternal informative haplotypes)

Chromosome No. of pairs r2HS r2ES r2MIH abs (r2ES2 r2HS) abs (r2MIH2 r2HS)

1 23181 0.108 0.061 0.106 0.061 0.015
2 18656 0.108 0.067 0.105 0.062 0.016
3 13730 0.124 0.073 0.120 0.070 0.017
4 16086 0.115 0.068 0.112 0.062 0.014
5 11164 0.132 0.077 0.129 0.075 0.016
6 19674 0.129 0.076 0.126 0.075 0.017
7 11445 0.133 0.076 0.130 0.076 0.016
8 16238 0.111 0.062 0.107 0.061 0.015
9 14253 0.118 0.068 0.114 0.067 0.017

10 14402 0.097 0.057 0.093 0.053 0.012
11 9344 0.132 0.077 0.128 0.076 0.016
12 9914 0.100 0.061 0.096 0.055 0.014
13 11553 0.124 0.069 0.121 0.069 0.014
14 11315 0.121 0.067 0.117 0.069 0.015
15 10410 0.126 0.072 0.122 0.070 0.018
16 7770 0.113 0.067 0.109 0.063 0.014
17 9220 0.101 0.065 0.098 0.056 0.013
18 8359 0.108 0.066 0.104 0.059 0.015
19 9025 0.105 0.065 0.100 0.060 0.015
20 6660 0.109 0.063 0.105 0.059 0.014
21 7337 0.104 0.060 0.099 0.059 0.014
22 6070 0.117 0.068 0.114 0.066 0.015
23 6754 0.106 0.064 0.103 0.061 0.016
24 8585 0.118 0.070 0.113 0.067 0.017
25 7735 0.123 0.071 0.119 0.071 0.016
26 6339 0.115 0.069 0.111 0.064 0.017
27 5468 0.114 0.063 0.110 0.062 0.014
28 7000 0.104 0.065 0.101 0.060 0.013
29 7043 0.101 0.059 0.097 0.057 0.013
Overall 314730 0.115 0.067 0.111 0.065 0.015

abs, the absolute value of the difference.
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proposed in this article. If d is biased then r should also be
biased. If the bias depends upon the distance between the
adjacent SNPs as shown here then inferences on population
structure and the evolution of the cattle population may not
be fully correct. Khatkar et al. (2006) carried out a LD map
of bovine chromosome 6 using bulls from the Australian
Holstein–Friesian. They estimated average coancestry by
0.012 using available pedigree information. Assuming that
pedigrees were complete, coancestry was rather small but
still might lead to bias in the estimation of the disequilibria
currently present in the Australian dairy population.

The square of the correlation of alleles at two loci (r2) has
been widely used in animals with a half-sib structure to
estimate linkage disequilibrium (McKay et al. 2007; de Roos
et al. 2008; Hayes et al. 2008; Prasad et al. 2008; Sargolzaei
et al. 2008; Bovine Hap Map Consortium 2009; Kim and
Kirkpatrick 2009; Qanbari et al. 2010). Most of these studies
identify phased haplotypes using available information from
pedigrees. Haplotypes that could not be phased out were
generally ignored. As shown in this article, the proportion
of haplotypes that are informative might vary with genetic
distance leading to biased estimation of linkage disequilib-
rium, d, which would also lead to biased estimates of r2. The
magnitude of the bias depends on how much information

from pedigrees can be used for phasing haplotypes and on
the distances between the SNPs in the LD analyses. Many of
the above studies made inferences about the population
structure based on r2. However, estimates of r2 might be
biased to a different extent for different cattle breeds having a
different breeding structure (more or fewer half-sibs families

Table 9 Overall values for estimates of r2and abs(r2ES 2r2HS) and abs(r2MIH 2r2HS) for pairs of SNPs for which the sire was
double heterozygote using alternative methods of estimation: r2HS (half-sib), r

2
ES (Excoffier and Slatkin 1995), and r2MIH

(maternal informative haplotypes)

Chromosome No. of pairs r2HS r2ES r2MIH abs(r2ES 2r2HS) abs(r2MIH 2r2HS)

1 19344 0.089 0.266 0.933 0.207 0.850
2 12033 0.092 0.269 0.945 0.207 0.859
3 8415 0.122 0.294 0.962 0.216 0.848
4 10439 0.097 0.273 0.919 0.212 0.828
5 7380 0.115 0.287 0.920 0.217 0.814
6 13930 0.120 0.282 0.928 0.214 0.817
7 8369 0.131 0.281 0.940 0.217 0.821
8 10948 0.096 0.269 0.950 0.210 0.862
9 9631 0.106 0.281 0.929 0.216 0.830

10 7212 0.080 0.258 0.900 0.199 0.824
11 5530 0.115 0.283 0.929 0.221 0.823
12 8049 0.080 0.248 0.916 0.198 0.844
13 7982 0.105 0.271 0.923 0.212 0.829
14 5828 0.111 0.265 0.923 0.207 0.823
15 5789 0.113 0.264 0.911 0.210 0.812
16 5286 0.095 0.255 0.898 0.202 0.813
17 6340 0.091 0.270 0.916 0.209 0.830
18 6798 0.103 0.266 0.909 0.200 0.812
19 5334 0.079 0.242 0.894 0.193 0.823
20 4127 0.088 0.258 0.959 0.204 0.878
21 4107 0.083 0.246 0.898 0.200 0.825
22 4146 0.103 0.269 0.932 0.214 0.838
23 5161 0.094 0.262 0.912 0.204 0.828
24 5244 0.089 0.270 0.934 0.213 0.853
25 4703 0.104 0.245 0.889 0.196 0.798
26 3970 0.098 0.260 0.910 0.203 0.821
27 4651 0.092 0.248 0.933 0.205 0.853
28 4214 0.078 0.252 0.913 0.204 0.841
29 3912 0.082 0.239 0.922 0.191 0.847
Overall 208872 0.100 0.267 0.925 0.208 0.834

abs, the absolute value of the difference.

Figure 4 Average values of estimates r2 across the genome using half-sib
(HS), Excoffier and Slatkin (ES), and maternal informative haplotypes
(MIH) methods for maximum distances between SNPs of 10, 20, 30,
40, and 50 Mb.
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of different sizes). Comparison of r2 estimated without con-
sideration of the breeding structure in different animal pop-
ulations should be taken with caution. On the other hand,
inferences on past population sizes based on Sved’s (1971)
equation E(r2) = (1 + 4Nec)21 (where Ne is the effective
population size) might also be inaccurate if r2 has been
estimated in half-sib families neglecting noninformative
haplotypes.

Assumptions of this study were that linkage phase of the
sire and recombination fractions were known without error.
The linkage phase can be accurately estimated using the
same data if progeny groups are not small (.25) and re-
combination fraction is not too high (,0.30). For other sit-
uations, such as those arising by the use of SNP arrays,
linkage phase in the sire can be inferred for each of two
adjacent SNPs when they are apart at small distances. Re-
construction of haplotypes for all SNPs for each of the two
homologous chromosomes of the sire is then feasible. In the
same way, the assumption of known recombination fraction
will hold for most situations found in practice when SNPs
are adjacent, i.e., c = 0.

The methods developed in this article are for estimation
of linkage disequilibrium present in the dam population and
contributing to the half-sib progeny since sire haplotypes are
ignored in the computations. In most circumstances, this
disequilibrium is the most relevant since sires in dairy and
beef cattle are likely related and the number of sire hap-
lotypes is rather small. Nevertheless, if many sire families are
available, then haplotype frequencies from sires and dams
(estimated among half-sib progeny) can be pooled to obtain
a joint estimate of linkage disequilibrium across sexes.

The results of the simulations showed that the proposed
method for estimating disequilibrium works well for rela-
tively small family sizes and in multifamily situations. The
distribution of likelihood-ratio tests when simulating the
null hypothesis showed that it had more variation than a x2

with 1 d.f. This is because likelihood equations for multiple
sire families make use of a different number of parameters
depending on the sire genotype: double homozygote (d),
homo-heterozygote (d and fT), and double heterozygote
(d, fT, and fM). In practical terms, resampling or simulation
methods may be needed for hypothesis testing. The power
figures for multifamily situations are also affected, being
lower than those reported for this article.

The methods derived in this article were designed for
estimating second-order linkage disequilibrium in half-sib
families. The same methods and principles used in this
article can be applied to the estimation of third- or higher-
order linkage disequilibria. These methods may also be in-
corporated into a more general situation in which pedigrees
are incomplete but much information comes from half-sib
families. Nevertheless, if genotype information is available
only from males (e.g., genotyping information from a grand-
daughter design), then little information may be gained by
incorporating maternal grandsire in the estimation of hap-
lotype frequencies.

The conclusion of this article is that estimation of linkage
disequilibrium in populations with a breeding structure of half-
sib families must incorporate that structure in their estimation
to provide unbiased estimates of the linkage disequilibrium.
Inferences on population structure and evolution of cattle
or sheep should be based on linkage disequilibria after ac-
commodating the existing half-sib family structure in these
populations.
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Appendix A: Sampling Variances of the Estimates of Linkage Disequilibrium

The sampling variance of the estimates of the disequilibrium parameter for the ith family is

Varðd̂Þ � 1�
2
�
@2 ln Liðd j nGÞ=@d2

��
d¼d̂

:

The denominator of this equation is obtained by taking the second derivative respect to d for each likelihood equation, which
depends on the sires’s genotype.

Sire Double Homozygote

The genotype of the sire is TTMM. To obtain an estimate of the sampling variance it is better to use a full-likelihood equation
in which all sources of information are used to estimate d,

LiðdjnGÞ ¼ Kðf iTMÞnTM;iðf iTmÞnTm;iðf itMÞntM;iðf itmÞntm;i ;

where nTM,i, nTm,i, ntM,i, and ntm,i are the number of offspring inheriting haplotypes TM, Tm, tM, and tm and K is a constant.
Taking natural logarithms in the above equation after ignoring the constant, K, gives ln LiðdjnGÞ ¼ nTM;i

ln ðf̂ iTMÞ þ nTm;i ln ðf iTmÞ þ ntM;i ln ðf itMÞ þ ntm;i ln ðf itmÞ: The first two derivatives with respect to d of this equation are

@ ln LiðdjnGÞ
@d

¼ nTM;i

dþ f̂ T f̂M
2

nTm;i

2 dþ f̂ T f̂m
2

ntM;i

2 dþ f̂ t f̂M
þ ntm;i

dþ f̂ t f̂m

@2 ln Liðd
�� nGÞ

@d2
¼ 2

nTM;i

ðdþ f̂ T f̂MÞ2
2

nTm;i

ð2dþ f̂ T f̂mÞ2
2

ntM;i

ð2dþ f̂ t f̂MÞ2
2

ntm;i

ðdþ f̂ t f̂mÞ2
:

Sire Homo-heterozygote

Let the sire have genotype TTMm at two SNPs, T/t, and M/m. The likelihood equation for the ith family is

Liðd j nGÞ ¼ KðfTTMMÞnTTMM;iðfTTMmÞnTTMm;iðfTTmmÞnTTmm;iðfTtMMÞnTtMM;i

· ðfTtMmÞnTtMm;iðfTtmmÞnTtmm;i ;

where fj are the probabilities of the jth genotype as described in the text. Ignoring the constant and taking natural logarithm
of the above expression gives
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ln Liðd
�� nGÞ � nTTMM;i ln ðfTTMMÞ þ nTTMm;i ln ðfTTMmÞ þ nTTmm;i ln ðfTTmmÞ þ nTtMM;i ln ðfTtMMÞ

þ nTtMm;i ln ðfTtMmÞ þ nTtmm;i ln ðfTtmmÞ:

The first two derivatives of the above equation with respect to d are

@ ln Liðd j nGÞ
@d

¼ nTTMM;i

dþ fTfM
2

nTTmm;i

2 dþ fTfm
2

nTtMM;i

2 dþ ftfM
þ nTtmm;i

dþ ftfm

@2 ln Liðd
�� nGÞ

@d2
¼ 2

nTTMM;i

ðdþ f̂ T f̂MÞ2
2

nTTmm;i

ð2dþ f̂ T f̂mÞ2
2

nTtMM;i

ð2dþ f̂ t f̂MÞ2
2

nTtmm;i

ðdþ f̂ t f̂mÞ2
:

Note that counts of heterozygous offspring for the marker M/m are not used and, therefore, do not provide information for
estimating disequilibrium.

Sire Double Heterozygote

Let the sire have genotype TtMm at two SNPs, T/t, and M/m and linkage phase (TM/tm). As before, nj,i are the genotype
counts from offspring from the ith sire family (j = TTMM, TTMm, TTmm, TtMM, TtMm, Ttmm, ttMM, ttMm, and ttmm). The
recombination fraction is c, which is assumed to be known without error. The likelihood equation for data of the ith half-sib
family is

Liðd; fT ; fM j nGÞ ¼ KðfTTMMÞnTTMM;iðfTTMmÞnTTMm;iðfTTmmÞnTTmm;iðfTtMMÞnTtMM;iðfTtMmÞnTtMm;i

· ðfTtmmÞnTtmm;iðfttMMÞnttMM;iðfttMmÞnttMm;iðfttmmÞnttmm;i ;

where fjis the probability of the jth genotype as described in the text. In the reduced model, ignoring the constant and taking
natural logarithm of the above expression gives

ln Liðd
��nGÞ � nTTMM;i ln ðfTTMMÞ þ nTTMm;i ln ðfTTMmÞ þ nTTmm;i ln ðfTTmmÞ þ nTtMM;i ln ðfTtMMÞ

þ nTtMm;i ln ðfTtMmÞ þ nTtmm;i ln ðfTtmmÞ þ nttMM;i ln ðfttMMÞ
þ nttMm;i ln ðfttMmÞ þ nttmm;i ln ðfttmmÞ:

The first two derivatives of the above equation with respect to d are

@ ln LiðdjnGÞ
@d

¼ nTTMM;i

ðdþ fTfMÞ2
ð12 2cÞnTTMm;i

ð12 cÞð2 dþ fTfmÞ þ cðdþ fTfMÞ2
nTTmm;i

2 dþ fTfm

                   2
ð122cÞnTtMM;i

ð12 cÞð2 dþ ftfMÞ þ cðdþ fTfMÞ

þ 2ð12 2cÞnTtMm;i

ð12 cÞð2dþ fTfM þ ftfmÞ þ cð2 2dþ fTfm þ ftfMÞ

2
ð12 2cÞnTtmm;i

ð12 cÞð2 dþ fTfmÞ þ cðdþ ftfmÞ2
nttMM;i

ð2 dþ ftfMÞ

2
ð12 2cÞnttMm;i

ð12 cÞð2 dþ ftfMÞ þ cðdþ ftfmÞ
þ nttmm;i

ðdþ ftfmÞ
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@2lnLiðd
��nGÞ

@d2
¼ 2

nTTMM;i

½dþ fTfM �2
2

ð122cÞ2nTTMm;i

½ð12cÞð2dþ fTfmÞ þ cðdþ fTfMÞ�2
2

nTTmm;i

½2dþ fTfm�2

 2
ð122cÞ2nTtMM;i

½ð12cÞð2dþ ftfMÞ þ cðdþ fTfMÞ�2

2
4ð122cÞ2nTtMm;i

½ð12cÞð2dþ fTfM þ ftfmÞ þ cð22dþ fTfm þ ftfMÞ�2

  2
ð122cÞ2nTtmm;i

½ð12cÞð2dþ fTfmÞ þ cðdþ ftfmÞ�2
2

nttMM;i

½2dþ ftfM �2

2
ð122cÞ2nttMm;i

½ð12cÞð2dþ ftfMÞ þ cðdþ ftfmÞ�2

2
nttmm;i

½ðdþ ftfmÞ�2
:

Appendix B

Reduced Model for Estimating LD in a Homo-heterozygote Sire Family

In a reduced model, allele frequencies are not estimated simultaneously with haplotype frequencies but are assumed to
be known. This likelihood equation assuming known allele frequencies in the dam population is

Liðd̂ j fM ; nGÞ ¼ KðfTTMMÞnTTMM;iðfTTMmÞnTTMm;iðfTTmmÞnTTmm;iðfTtMMÞnTtMM;i

· ðfTtMmÞnTtMm;iðfTtmmÞnTtmm;i :

Allele frequencies can be estimated using the same data following Gomez-Raya (2001) by

f̂ T ¼ 1
Ni

ðnTTMM;i þ nTTMm;i þ nTTmm;iÞ

f̂ M ¼ nTTMM;i þ nTtMM;i

nTTMM;i þ nTtMM;i þ nTTmm;i þ nTtmm;i
:

An explicit solution is obtained for the haplotype frequency of TM after rearranging Equation 2 (text):

f̂ TM ¼ f̂ T nTTMM;i

Nif̂ T 2 nTTMm;i
:

The disequilibrium is estimated after substituting f̂ T , f̂ M , and f̂ TM into by d̂ ¼ f̂ TM2 f̂ T f̂M .

Reduced Model for Estimating LD in a Double Heterozygote Sire

Following Gomez-Raya (2001), allele frequencies of M and T are estimated from the same data by

f̂ M ¼
 

nTTMM;i þ nTtMM;i þ nttMM;i

nTTMM;i þ nTtMM;i þ nttMM;i þ nTTmm;i þ nTtmm;i þ nttmm;i

!

f̂ T ¼
 

nTTMM;i þ nTTMm;i þ nTTmm;i

nTTMM;i þ nTtMM;i þ nttMM;i þ nTTmm;i þ nTtmm;i þ nttmm;i

!
:

The maximum likelihood equation assuming known allele frequencies is
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Liðd̂ j fT ; fM ; nGÞ ¼ KðfTTMMÞnTTMM;iðfTTMmÞnTTMm;iðfTTmmÞnTTmm;iðfTtMMÞnTtMM;i

· ðfTtMmÞnTtMm;iðfTtmmÞnTtmm;iðfttMMÞnttMM;iðfttMmÞnttMm;iðfttmmÞnttmm;i ;

which can be solved by making use of the EM algorithm as described in Equation 4 in the text. For fully linked SNPs (e.g.,
contiguous SNPs in high density arrays) the recombination fraction between the SNPs is 0, and Equation 4 reduces to

f̂
i
TM ¼ 1

Ni

 
nTTMM;i þ

f̂
i
TMnTtMm;i

f̂
i
TM þ f̂ tm

!
:

After substituting f̂ tm by its value f̂ tm ¼ f̂
i
TM2f̂ T f̂M þ f̂ t f̂ m (recall d̂ ¼ f̂

i
TM2f̂ T f̂M) and rearranging the above equation, a

quadratic is obtained,

a


f̂
i
TM

�2
þ bf̂

i
TM þ z ¼ 0;

where a ¼ 2Ni, b ¼ Nið12f̂ M2f̂ TÞ22nTTMM;i2nTtMm;i, and z ¼ 2ð12f̂ M2f̂ TÞnTTMM;i. This is a conventional second-order poly-
nomial with a real solution between 0 and 1. Note that f̂ t f̂ m ¼ 1þ f̂ TM2 f̂ T2 f̂ M so ð12 f̂ M2 f̂ TÞ ¼ 2 f̂ T f̂M þ f̂ t f̂ m.
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