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Summary
We consider penalized linear regression, especially for “large p, small n” problems, for which the
relationships among predictors are described a priori by a network. A class of motivating
examples includes modeling a phenotype through gene expression profiles while accounting for
coordinated functioning of genes in the form of biological pathways or networks. To incorporate
the prior knowledge of the similar effect sizes of neighboring predictors in a network, we propose
a grouped penalty based on the Lγ-norm that smoothes the regression coefficients of the predictors
over the network. The main feature of the proposed method is its ability to automatically realize
grouped variable selection and exploit grouping effects. We also discuss effects of the choices of
the γ and some weights inside the Lγ-norm. Simulation studies demonstrate the superior finite
sample performance of the proposed method as compared to Lasso, elastic net and a recently
proposed network-based method. The new method performs best in variable selection across all
simulation set-ups considered. For illustration, the method is applied to a microarray dataset to
predict survival times for some glioblastoma patients using a gene expression dataset and a gene
network compiled from some KEGG pathways.
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1. Introduction
Consider linear regression, especially for “large p, small n” problems, as arising in genomic
and proteomic studies. In our motivating example, we wish to use gene expression profiles
to predict survival times for glioblastoma patients after surgery, where p ≈ 1500 genes are
available as predictors with only n < 100 samples For this type of problems it is well known
that some regularization on parameters is necessary. In addition to predictive performance, it
is also biologically important to select genes relevant to the outcome. Hence, both variable
selection and parameter estimation are targeted. Many penalized methods have emerged,
mostly within the last few years, such as Lasso (Tibshirani 1996), SCAD (Fan and Li 2001),
elastic net (Zou and Hastie 2005) and LARS (Efron et al 2005). Although these methods
have proven useful in various applications, they may not be efficient due to their generic
nature in failing to account for specific relationships among the genes (or more generally,
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predictors). In particular, as pointed out by Li and Li (2008), the above generic methods
(and other commonly used variable selection methods) treat all the genes equally a priori,
thus ignoring individual features of the genes. It is known that the genes do not work in
isolation or independently with each other; they function coordinately in pathways or
networks. A large body of biological knowledge on gene functions and pathways is
available through the Gene Ontology (GO) (Ashburner et al 2000) and KEGG (Kanehisa
and Goto 2000) databases. In our example we will utilize a gene network compiled from the
KEGG.

With gene expression data, after standardizing the expression levels of each gene to have
mean zero and variance one across samples, due to co-expressions of neighboring or
interacting genes in a network, one may assume a priori that the magnitudes of the effects of
the neighboring genes are similar, though their directions may differ. Of course this
assumption may or may not hold in practice, but under this assumption, Li and Li (2008)
proposed a new penalty that utilizes the structure of a given gene network. There are two
potential drawbacks with Li and Li’s method. First, it is computationally more challenging
due to the two tuning parameters in their penalty function, and that a straightforward fitting
procedure as suggested therein involves (n + p) observations for p variables, leading to high
or even infeasible computational demand for large p. Second, their penalty function
encourages the smoothness of (weighted) coefficients βi’s rather than of (weighted) |βi|’s as
intended. The above two points motivate our proposed penalty, which is related to grouped
penalties (Yuan and Lin 2007; Zhao et al 2006), but differs from the existing ones in its
specific reference to a network. The main advantages of our method include a simpler
computational task with only one tuning parameter, e.g., in developing fast algorithms for
solution paths, and its ability of automatically realizing grouped variable selection and
exploiting grouping effects. Li and Li’s method is not capable of grouped variable selection
which partially explains why our method outperforms theirs (and Lasso and elastic net) in
variable selection when grouping is reasonable. In addition, we discuss the choice of the
group penalty and its associated weights.

The remainder of this paper is organized as follows. In Section 2 we first review several
commonly used penalized regression approaches, including Lasso, elastic net and the
method of Li and Li (2008). We then propose our new method and study its theoretical
properties. Section 3 reports on simulation studies comparing the finite-sample performance
of our new method with its competitors. Section 4 analyzes the motivating example. Section
5 discusses some possible modifications and extensions, followed by a short discussion in
Section 6.

2. Methods
2.1 Penalized Regression

Consider a linear regression model:  with E(εk) = 0. We assume
throughout that training data (yk, xk1, …, xkp) for k = 1, …, n, have been standardized such
that the sample means of y and of each xi are 0 and the sample variance of each xi is 1. One
often estimates β = (β1, …, βp)′ by minimizing the squared error loss
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leading to the ordinary least square estimator (OLSE) β̃ = arg minβ L(β). However, in some
situations, e.g., if p ≈ n or p > n, or for the purpose of variable selection, it may be desirable
to regularize β through a penalized least square estimator (PLSE):

where pλ(β) is a penalty function. Two popular choices are the ridge penalty (Hoerl and

Kennard 1970): , and the L1 or Lasso (Tibshirani 1996) penalty:

. Compared to the ridge, a nice feature of the Lasso penalty is its capability
in variable selection: with a λ large enough, some β̂i will be exactly 0, effectively excluding
the corresponding predictor xi from a model. A downside of the Lasso is that it can have no
more than n non-zero β̂i’s, which limitis its application with p ≫ n as for typical microarray
data. To overcome the problem, Zou and Hastie (2005) proposed the elastic net (Enet) that
combines the ridge and Lasso penalties:

where the first term is used for variable selection, while the second is to exploit grouping
effects (see section 2.5 for more details).

In spite of the success of the above methods, they are generic, possibly failing to take full
advantage of prior knowledge of existing structures among predictors. For example, for
microarray data as considered here, it is known that the genes work coordinately as dictated
by a gene network. To incorporate biological knowledge of gene networks, Li and Li (2008)
proposed a new penalty that is similar to Enet but also uses the normalized Laplacian matrix
M of a network. Specifically, given a network that describes relationships among the
predictors, denote di as the degree of predictor (or exchangeably, node) i in the network; that
is di is the number of direct neighbors of node i in the network. Li and Li’s network-based
penalty is

where i ~ j means that nodes i and j are direct neighbors in the network; alternatively, if the
combinatorial Laplacian matrix Mu is used, the second term of pλ(β) becomes λ2Σi~j(βi −
βj)2, which has a Bayesian interpretation in that the prior distribution of β follows a
Gaussian conditional autoregressive model (Gelfand and Vounatsou 2003) with its
neighboring structure induced by the network. Smoothing (weighted) βi’s over the network
is motivated by the prior assumption that the (weighted) effects of the neighboring genes are
similar; a possible justification for the use of di in pλ is to acknowledge the biological
importance of “hub” genes with large di. Although some smoothness over a network is
expected, depending on the specific type of the network and application, the exact
relationships or the effects of di may still be debatable. Similar to Enet, the first term is used
for variable selection while the second smoothes the parameters over the network. Two
possible limitations with Li and Li’s penalty are: first, determining two tuning parameters
(λ1, λ2) is computationally more intensive than choosing just one, and the presence of two
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tuning parameters poses a challenge in developing efficient algorithms, such as in

identifying solution paths; second, because the second term enforces prior 

(or βi ≈ βj), it may fail even if  (or |βi| = |βj|) but with opposite signs; the
latter case is biologically reasonable, such as when one of two neighboring genes is up-
regulated while the other is down-regulated in expression.

2.2 New Method
Here we propose a novel penalty, which is a sum of grouped penalties, each in the form of
the Lγ-norm of the two coefficients for a pair of neighboring nodes in a given network. This
penalty also allows the user to choose a weight for each node, which is to be shown under
special cases to realize different types of shrinkages, enforcing various prior relationships
among βi’s. For each node i with degree di, define wi = g(di, γ) as its weight, possibly

depending on di and γ; for example, we will consider three specific choices: i)  ,

ii) wi = di, and iii) , which lead to three different types of smoothing on the parameters
as shown in Corollary 2. Our proposed penalty is

(1)

where γ′ satisfies 1/γ′ + 1/γ = 1 with γ > 1. Each term p(βi, βj) is essentially a weighted
Lγ-norm of vector (βi, βj)′, and hence pλ(β; λ, w) is convex in β. Note that the constant
21/γ′ can be dropped, but its presence reduces 21/γ′p(βi, βj) to the L1-norm of (βi, βj)′ if |βi|
= |βj|.

Some main motivations for pλ are the following. First, each term of pλ is a (weighted)
grouped penalty, encouraging both βi and βj to be equal to zero simultaneously (Yuan and
Lin 2006; Zhao et al 2006), which is in agreement with our assumption that two neighboring
genes in a network should be more likely to (or not to) participate in the same biological
process simultaneously; its theory is provided in Theorem 1 below. Second, the weight wi, is

adopted to encourage , or |βi| ≈ |βj| for two neighboring genes i ~ j,
similar to (but different from) that targeted by Li and Li (2008); this is supported by
Corollary 2 below for some special cases, though a general theory still lacks. In addition, if
γ = 1, pλ reduces to the L1-penalty in the Lasso. Third, a larger γ is chosen to more strongly

smooth , |βi| or |βi|/di over the network; a special case is that, with wi = di, as γ →

∞, , which most strongly encourages |βi| = |βj| (Zhao et al
2006).

2.3 Shrinkage Effects
In general, there is no closed form for our proposed PLSE, as for most other PLSEs. Below
we first characterize a relationship between any PLSE β̂ and OLSE β̃ in some special but yet
illustrative situations.

Lemma 1—For the model E(Y) = Xβ, if pλ(β) is differentiable at β̂, we have
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(2)

Below we consider a simple case with only two predictors, which are linked in a two-node
network. We assume that the variables have been normalized such that Σkyk = 0, Σkxki = 0

and . Without loss of generality, we assume w1 = w2 = 1, ρ = corr(x1, x2) =
Σkxk1xk2, and β̂1β̂2 ≠ 0. From Lemma 1, it is easy to derive our proposed PLSEs as

(3)

with λ′ = λ21/γ′. If |β̂1| ≠ |β̂2|, the shrinkage effects on the two parameters are unbalanced.
For example, if |β̂1| > |β̂2|, β̂1 is scaled by a factor smaller than that for β̂2, and at the same
time β̂1 is shifted by a factor smaller than that for β̂2. This unbalanced shrinkage is more
severe for a larger γ: as γ → ∞, |β̂1|γ − 1/(|β̂1|γ + |β̂2|γ)1/γ′ → 1 while |β̂2|γ − 1/(|β̂1|γ + |
β̂2|γ)1/γ′ → 0; hence, the scaling factor for the smaller β̂2 tends to 1 while that for β̂1 is
always less than 1. In the case with ρ = 0 if |β̂1| > |β̂2|,

demonstrating an extreme case of unbalanced shrinkage; the above can be also directly
derived from (2). In addition, if sign(β̂1) ≠ sign (β̂2) and ρ ≠ 0, there is a double shrinkage or
penalization in that an PLSE is both shifted and scaled towards 0. For example, suppose that
β̃1 > 0 and β̂1 > 0 while |β̃2 < 0 and β̂2 < 0. Then the second term in the numerator of each β̂j
has an opposite sign to that of β̃j; that is, in addition to be scaled by a factor less than 1, each
β̃j is shifted towards 0. On the other hand, if sign(β̂1) = sign (β̂2), the shrinkage effect by
scaling is compensated by that of being shifted away from 0, because the second term in the
numerator of each β̂j has the same sign as that of β̃j.

The double shrinkage is not unique to our proposed PLSE; in fact, the Enet estimate is also
doubly shrunken:

(4)

Note that, even if ρ = 0, β̂j,E is still doubly penalized, whereas the double penalization on the
network-based β̂j vanishes. Similarly, we conjecture that the Li and Li’s estimator is also
doubly penalized. In contrast, the Lasso estimator is only shifted towards 0, at least for the
case of two predictors.

Zou and Hastie (2005) used a scaling factor 1 + λ2, corresponding to the scaling factor in (4)
with ρ = 0, to alleviate the bias effect of double penalization for Enet; the same strategy was
adopted by Li and Li (2008) for their estimator. It is not clear how to correct for our
proposed estimator, partly because the scaling factor depends on the estimate itself in a
complicating way, though we study a simple proposal in Section 5.
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2.4 Grouped Variable Selection
To establish statistical properties of grouped variable selection for our proposed method, we
first derive a result for a general design matrix X, then illustrate the effect through an
orthonormal X. To simplify notations, denote by V(i,j) (or V−(i,j)) the vector containing (or
excluding the ith and jth components of vector V; M(i,j;k,l) (or M(i,j;−k,−l)) the submatrix of
M with the ith and jth rows and including (or excluding) columns k and l; similarly, we can
define other forms of submatrices and vectors. The proof of the following theorem is given
in Web Appendix A.

Theorem 1—For any edge i ~ j, a sufficient condition for β̂i = β̂j = 0 is

(5)

and a necessary condition is

(6)

It is most illustrative to consider a simple situation with X′X = I.

Corollary 1—Assume that X′X = I. For any edge i ~ j, a sufficient condition for β̂i = β̂j = 0
is

(7)

and a necessary condition is

(8)

Corollary 1 clearly demonstrates the effect of grouped variable selection: if the (weighted)
average of the OLSEs β̃i and β̃j, in terms of their weighted Lγ′-norm, is small enough, as
compared to the tuning parameter λ, then PLSEs β̂i and β̂j are forced to be exactly 0
simultaneously. This is in contrast to other non-grouped penalties. For example, in the
orthonormal case, the Lasso estimate β̂i,L = sign(β̃i) (|β̃i| − λ)+; it is obvious that the two
Lasso estimates are shrunken or thresholded individually: even if the (weighted) average of
their OLSEs is small enough, it is possible that only one of the two PLSEs is exactly 0.

Corollary 1 also sheds light on the effect of the choice of γ in the Lγ-norm. For example, (7)

becomes i) max(|β̃i|, |β̃j|) ≤ λ if γ → 1; ii)  if γ = 2; iii) |β̃i|8/7 + |β̃j|8/7 ≤ 2λ8/7 if
γ = 8; iv) |β̃i| + |β̃j| ≤ 2λ if γ → ∞. As shown in Fig 1, (7) is easier to be satisfied (i.e.
covering a larger area) for a larger γ, leading to stronger grouped variable selection, more
likely to result in β̂i = β̂j = 0, if the same λ is used.

2.5 Grouping Effects
We demonstrate the grouping effects of our proposed penalty: under some conditions, for
two neighboring nodes, their non-zero regression coefficient estimates are shrunken to be
closer to each other as the tuning parameter or their correlation increases. Web Appendix B
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shows some complicated shrinkage effects in a network, from which we have the below
result for a simple case as used in the later simulation and in Li and Li (2008).

Corollary 2—Consider a subnetwork containing a transcription factor (TF, say gene 0)
connected to each of its target genes i = 1, …, K; there is no connection between any two
target genes and between this subnetwork and any other parts of the network. We further
assume that the K target genes have the same β̂1 = … = β̂K, and that pλ(β) is differentiate at
β̂0 and β̂1 with β̂0β̂1 > 0.

1. If , then

(9)

2. if wi = di, then

(10)

3. if  , then

(11)

where  is the sample correlation between gene 1 and the TF, and ||Y||2 is
the L2 norm of the vector of response values.

From the foregoing corollary, the grouping effect is evident for γ > 1 as  , |β̂1 −
β̂0|, or |β̂1 − β̂0/d0| is upper-bounded by a number that decreases as either γ or ρ1,0 increases.
Note that d1 = 1. Although Corollary 2 is obtained under a simplified (but still meaningful)
scenario, it is more general than Theorem 1 of Li and Li (2008); more importantly, it clearly
suggests the necessity of choosing appropriate weights wi’s: different choices of weights
realize different types of shrinkage on and smoothness among coefficients βi’s. The choice
of weights for a penalty with a parameter appearing multiple times is important yet barely
studied, as acknowledged but not elaborated by Zhao et al (2006). In addition, the corollary

also suggests that a larger γ leads to a stronger grouping effect: , |β̂1 − β̂0|or |β̂1
− β̂0/d0| is forced to decrease more as γ increases. It is easy to see that, for instance, if

, as γ → ∞, the left hand side of (9) tends to 1, while 1/γ′ decreases and tends

to 1; because the right hand side tends to 0 as λ → ∞, we must have  (or one of
them is 0) for a λ large enough, which is the maximum grouping effect of using the L∞-
norm (Zhao et al 2006; Bondell and Reich 2008).
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2.6 Computation
We propose using a slightly modified generalized Boosted Lasso (GBL) algorithm of Zhao
and Yu (2004) for implementation, which works like the stagewise regression (Efron et al
2004), involving only a coordinate-wise search and repeated calculations of the objective
function; see Web Appendix C for details. The GBL algorithm yields an approximate
solution path β̂(λ), a set of PLSEs β̂ at a finite number of tuning parameter values λ = λ(0) ≥
λ(1) ≥ … ≥ λ(r) ≥ 0. In particular β̂(λ) = β̂(λ(0)) ≈ 0 for any λ ≥ λ(0), and β̂(λ) = β̂(λ(r)) for
any λ ≤ λ(r). For other λ(k) ≥ λ ≥ λ(k+1), we can linearly interpolate β̂(λ) between β̂(λ(k))
and β̂(λ(k+1)).

Although cross-validation and other model selection methods might be used, in this article
we simply use an independent tuning dataset to calculate the prediction mean squared error
(PMSE) for the response at each λ(k) for k = 0, …, r; if λ(k0) minimizes the PMSEs, then we
choose β̂(λ(k0)) as the final parameter estimates, which in turn determines a subset of
selected predictors (with non-zero estimates). Note that, rather than using λ, we can also
parametrize the tuning parameter by fraction s = s(λ) = pλ{β̂(λ)}/pλ{β̂(λ(r))}, where β̂(λ(r))
is a minimally penalized estimate if λ(r) > 0; otherwise β̂(λ(r)) = β̂(0) is an OLSE (which
may not be unique). In this way, the tuning parameter 0 ≤ s ≤ 1 facilitates comparison of
various methods with different penalty functions.

3. Simulations
3.1 Simulation Set-ups

Our simulation set-ups closely followed that of Li and Li (2008): simulated data were

generated from a linear model with iid noises ; each network
consisted of nTF subnetworks, each with a TF and its 10 regulatory target genes. For each
set-up, we considered two cases: one with nTF = 3 TFs and the other with nTF= 10 TFs,
corresponding to a “small p, small n” situation with p = 33 < n and a “large p, small n” with
p = 110 > n respectively. For each case with nTF = 3 TFs, two subnetworks were informative
(p1 = 22) with non-zero βi’s while the other one with βi = 0 (p0 = 11); for nTF = 10, four
subnetworks were informative (p1 = 44) while the other six were not (p0 = 66).

Each predictor was marginally distributed as N(0,1), and to mimic a regulatory relationship,
the predictor of each target gene and the TF had a bivariate normal distribution with
correlation ρ = 0.7; conditional on the TF, the target genes were independent. In set-up 1, we

considered the case with the correct prior assumption:  if i ~ j. Specifically,
i) for p = 33, we had

and for p = 110, we had

The remaining set-ups perturbed the condition on the equality of the weighted coefficients
for two neighboring genes. Set-up 2 was the same as set-up 1 except that the signs βi’s of the
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first three target genes in each subnetwork were flipped to their opposites; for example, for

the first subnetwork, the first three target genes’ βi’s were changed from  to .
Set-up 3 was the same as set-up 1 except that in the second (for p = 33), or in the second and
fourth (for p = 110) subnetworks, the  in the target genes’ coefficients was replaced by
10. Set-up 4 was the same as set-up 3 except that the signs of the coefficients of the first
three target genes in each informative subnetwork were flipped, as in set-up 2. Set-up 5 was
similar to Set-up 1 except that five out of 10 targets of each informative TF had βi = 0,
hence the prior belief of co-appearance of a TF and its targets was not correct.

There were n = 50, 50 and 200 cases in each training, tuning and test datasets respectively.
The training data were used to fit the model, while the tuning data were used to select the
tuning parameters. For Lasso Enet, Li and Li, a grid search over an equally spaced 100
points (between 0 and 1 as parametrized as fraction s) was used to determine λ or λ1, while
another grid search over an equally spaced 100 points between 0 and 0.05 was used to find
an optimal λ2 for Enet and Li and Li’s method; for our method, we searched over all λi as
returned from GBL. The test data were used to calculate PMSE for the response; we also
calculated the number of zero estimates of the βi for informative and non-informative genes,
denoted as q1 and q0 respectively.

For each set-up, 100 independent datasets were generated, from which the means and
standard deviations (SDs) were calculated for each PMSE, q1 and q0; note that the Monte
Carlo standard error was simply SD/10.

3.2 Simulation Results
For the traditional situation with small p, first, in terms of PMSE, our method with γ = 8
was a consistent winner, closely followed by our method with γ = 2 (Table 1). Li and Li’s
method, Enet and Lasso performed similarly. Second, in terms of variables selection, a
similar conclusion holds: our method performed best, removing a comparable number of
noise variables while keeping most of the informative variables as compared to the other
three methods.

When p was large, in terms of PMSE, there were mixed results in terms of which method
was the winner: for set-ups 1 and 3, in which βi’s in the same subnetwork shared the same
sign, our method, especially with γ = 8, was the clear winner; on the other hand, for set-up
2, our method with γ = 2 performed similarly as the other three methods, whereas in set-up
4, Li and Li’s was the winner, followed by Enet and Lasso. It is noted that our method with
γ = 8, and especially with γ = ∞, might not perform well. This was somewhat surprising,
and could be related to the more severe double penalization and stronger grouped variable
selection with a larger γ as analyzed earlier. This point was confirmed by observing larger
biases of the resulting estimates found in Table 2.

Nevertheless, in term of variable selection, even in the large p case, our method consistently
won. For any of the first four set-ups and with any of the three choices of γ, no matter how
it worked in terms of PMSE, our new method always retained a larger number of
informative variables while removing more or a similar number of noise variables as
compared to the other methods. For set-up 5, although our method tended to delete fewer
variables, it removed a much smaller proportion of informative ones among the deleted
ones. Overall, our method with γ = 2 performed most consistently. Somewhat surprisingly,
in spite of the closeness between the two penalties (see e.g. Fig 1), our method with γ = 8
worked distinguishingly better than that with γ = ∞.
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4. Example
4.1 Data

We applied the methods to a microarray gene expression dataset with glioblastoma patients
(Horvath et al 2006). As a primary malignant brain tumor of adults, glioblastoma is one of
the most lethal with a median survival time from diagnosis only at 15 months in spite of
various treatments. The data consisted of two independent sets drawn from two studies,
called Set 1 and Set 2 respectively; as in Li and Li (2008), we used 50 and 61 samples with
observed survival times from the two sets, and took the log survival time (in years) as the
response. The gene expression profiles were measured on Affymetrix HG-U133A arrays,
and processed by the RMA method (Irizarry et al 2003).

Wei and Li (2007) compiled a network of 1668 genes from 33 KEGG pathways, which was
used here. Using R Bioconductor library hgu133a, we identified a subset of 1523 genes
among the 1668 genes that were present on HG-U133A arrays. In our analyses only these
1523 genes were used. In the resulting network, there were 6865 edges in total; the
distribution of the node degrees ranged from 1 to 81, with the mean at 9 and the three
quartiles at 2, 4 and 11 respectively.

4.2 Analysis
First, as in Li and Li (2008), we used Set 1 to build a model, then evaluated its predictive
performance using Set 2. It turned out that the intercept-only model gave the smallest
PMSE, as supported by Lasso, Enet and our method. We reasoned that perhaps the second
set was somewhat different from the first one, and thus combined the two together before
randomly splitting into training, tuning and test data; again it turned out that the intercept-
only model was the best, as selected by Lasso and our method. As shown in Fig 2, it seems
that the expression profiles were not predictive of survival time for Set 2, while they were
more informative for Set 1. Hence, in the following we only used the data of Set 1.

For the small sample size n = 50, there would be a large variability associated with any
PMSE for any method, suggesting limited utility in comparing PMSEs for various methods.
Therefore, we focused on gene selection. We excluded one outlier with log survival time
less than −3, while all other ones were between −2 and 2. We randomly split the data into
training and tuning parts with n = 30 and 19 respectively.

We ran Lasso, Enet and our proposed method with γ = 2 and . While Li and Li
(2008) were able to analyze the data based on a sophisticated and efficient implementation
of their method, the straightforward implementation with data augmentation suggested
therein failed because it required too large computer memory for a sample size of n + p and
p predictors. With λ2 = 0 selected by the tuning data, Enet gave the same results as Lasso.
Lasso and Enet selected 11 genes: ADCYAP1R1, ARRB1, CACNA1S, CTLA4, FOXO1,
GLG1, IFT57, LAMB1, MPDZ, SDC2, and TBL1X; there was no edge linking any two of
the 11 genes. By comparison, our method selected 17 genes: ADCYAP1, ADCYAP1R1,
ARRB1, CCL4, CCS, CD46, CDK6, FBP1, FBP2, FLNC, FOXO1, GLG1, IFT57
MAP3K12, SSH1, TBL1X, and TUBB2C; there were three edges linking five of the 17
genes: FOXO1 was connected to FBP1 and FBP2, and ADCYAP1 connected to
ADCYAP1R1. A literature search revealed that FOXO1, as a member of forkhead
transcription factors, is linked to glioblastoma (Choe et al 2003; Seoane et al 2004). Another
gene, CDK6, identified by our method, but missed by the Lasso and Enet, was also related
to glioblastoma: it is a well-known oncogene, and in particular, glioblastoma multiforme is
characterized by copy number changes (Ruano et al 2006) and elevated expression (Lam et
al 2000) of CDK6. In addition, according to the Catalogue Of Somatic Mutations In Cancer
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(COSMIC) database (Forbes et al 2006), among the selected genes by the three methods,
IFT57, CDK6 and MAP3K12 have cancer-related mutations, of which, only IFT57 was
detected by Lasso and Enet.

Figure 3 gives the solution pathways for the regression coefficient estimates by the two
methods. Most of the genes had their estimates at or close to 0. FOXO1 had the largest
coefficient estimate at 0.25 by Lasso and at 0.16 by our method. In the fitted model by
Lasso, there was only one other gene, TBL1X (with a coefficient estimate at −0.16), that
retained an estimate larger than 0.05 in absolute value. For our methods, in addition to
FOXO1, other genes with the absolute values of their coefficient estimates larger than 0.05
were ADCYAP1 (at 0.08), CDK6 (−0.06) GLG1 (0.08) and ADCYAP1R1 (0.13). It is also
clear that the regression coefficient estimates from our method tended to be smaller than the
Lasso estimates, in agreement with the earlier observation in the simulation study that our
PLSE seemed to be shrunken more than that of the Lasso. Another explanation is related to
the penalty function used: for example, FOXO1 had 9 direct neighbors, most of which had
zero coefficient estimates; our penalty would smooth that of FOXO1 more towards zero, the
value shared by most of its neighbors; in contrast, the Lasso penalty would not have this
kind of effects because there was no penalty term to link that of FOXO1 to its neighbors’.
Finally, confirmed by the PMSEs estimated from the tuning data (Fig 3), by both Lasso (and
Enet) and our method, parsimonious models with fewer and smaller coefficient estimates
gave smaller PMSEs than the larger (and less penalized) ones; the minimum PMSEs
selected by the Lasso and our method were 0.52 and 0.51 respectively, both obtained at the
tuning parameter value s = 0.3.

As an alternative, we also applied the three methods to the semi-parametric Cox
proportional hazards model (PHM) by approximating a PHM as a linear model. They
yielded results similar to their earlier ones (from the linear model) respectively, though our
method seemed to be more stable in gene selection; see Web Appendix D for details.

5. Extensions
Here we consider a few possible modifications and extensions. First, if there are singletons
that are not connected to any other genes in a network, to facilitate gene selection, we can
add an L1-penalty for the coefficients of the singletons. Note that, partly due to constant
21/γ′ in the network-based penalty, each grouped Lγ-penalty is in the same scale of an L1-
penalty, and hence only a single regularization parameter λ is needed for both types of the
penalties. Second, if we do not have a network structure for a cluster of functionally related
genes, we may treat them as fully connected to each other and apply the same network-
based penalty. Alternatively, we can treat them as a separate group and apply an Lγ-norm of
all the genes in the group with γ > 1 as a penalty; this strategy is effective if we believe a
priori that the genes in the group are likely to be all relevant or irrelevant together. On the
other hand, if we only have vague knowledge on the group, we can simply apply the L1-
norm to the group.

Third, as is true in the first four simulation set-ups, if a TF is involved in a biological
process, our penalty encourages simultaneous appearance of the TF and all its targets in a
regression model; in practice, however, it may be that only a subset of the target genes are
involved. To construct a penalty function to allow such a case, we can add an L1-penalty for
the coefficients of the target genes. This is related to, but different from, the hierarchical
penalty as proposed by Zhao et al (2006). Table 3 lists the results for the five simulation set-
ups using the extended methods just described. It is somewhat surprising that the new
penalty in general worked quite well; in particular, as compared with the previous grouped
penalty, the new penalty gave smaller PMSEs, and retained a slightly larger number of
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informative genes while removing almost the same number of noise genes. However, the
above new penalty depended on correctly selecting and thus further penalizing the target
genes (because most of the target genes either were not informative or had much smaller
coefficients than that of the TFs). In general, for any given network, it is unknown which
subset of the genes should be imposed with an additional L1-penalty. When we simply
applied an additional L1-penalty on each gene, the resulting performance was worse than
using the network-based penalty alone: not only the PMSEs were larger, but more
informative genes would be removed (Table 3).

Fourth, we investigated the robustness of the network-based regression with an incorrect

choice of weights. In the simulation set-ups 1–4, the correct weights should be  or

; instead, we used much smaller wi = di for all five set-ups. As shown in Table 3, it is
interesting to note that the proposed method still performed better than or as well as Lasso,
Enet and Li and Li’s method in terms of variable selection, but it often gave much larger
PMSEs, presumably resulting from larger biases of the regression coefficients due to over-
shrinkage (e.g., of β0 of a TF towards β1 of its targets as shown in Corollary 2).

Finally, due to the grouped penalty, our proposed network-based regression performs well in
variable selection, but may suffer from a large bias of PLSE β̂ (see Table 2). To reduce the
possible bias of PLSE, a simple strategy is to choose a larger weight for a hub or more

important gene, for example, , even when the correct  as in simulation set-

ups 1–2. We used  in the simulations with γ = ∞; i.e., p(βi, βj) = max(|βi|/di, |βj|/dj).
By comparing Tables 1 and 3, we can see that, although the method tended to keep slightly
more genes (both informative and non-informative ones), it gave consistently smaller
PMSEs than that from using the other weight in the simulations.

6. Discussion
We have proposed a penalized regression method to incorporate network structures of
predictor variables, motivated by applications arising from analyzing genomic and
proteomic data to account for gene networks. As biological data on gene networks and
pathways have been rapidly accumulating, e.g. fueled by high-throughput DNA-protein and
protein-protein interaction experiments, there is an increasingly rich source of network
information available. On the other hand, there is always the issue of high-noise levels and
small sample sizes associated with most genomic and proteomic studies, prompting the use
of biological knowledge, such as embedded in gene networks, to improve analysis
efficiency. Hence, in spite of its fairly recent developments, we expect to see more uses of
gene networks in other domains, such as classification and clustering. In particular, as
shown in our example for Cox regression, it seems straightforward, at least in principle, to
apply our proposed network-based penalty to generalized linear models (e.g. Zhu and Hastie
2004) and other classification models (Zhu et al 2009), though more work, especially in
developing fast and accurate computational algorithms, is needed.

Our proposed method seemed to work best in terms of variable selection: as compared to its
competitors, it removed more or an equal number of noise variables while retaining more
informative variables across a range of simulation scenarios; this good performance can be
explained by its capability of grouped variable selection. Meanwhile, the message for its
predictive performance is somewhat mixed: sometimes it did not work as well as Li and Li’s
method. As our analysis suggested, it could be due to overly biased parameter estimates,
possibly resulting from double penalization, especially when the L∞-norm was used. This is
one of the weaknesses of the proposed penalty, though we have observed that using larger
weights to reduce bias might be productive. Finally, although the prior assumption on the
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similarity of (weighted regression coefficients is reasonable for some applications, e.g. in
eQTL mapping (Pan 2009), it is in general unclear how the parameters should be smoothed
over a network and any such specific prior assumption needs to be validated by
experimental data. Nevertheless, even if the prior assumption does not hold, by the bias-
variance tradeoff, it may still gain by penalization (or smoothing), and the tuning parameters
will balance the tradeoff; this point was supported by our simulation results. Furthermore,
the introduction of the weights in the penalty offers some flexibility to realize various types
of smoothing and shrinkage over a network. In practice, to deal with the unknown
smoothness structure in a network and to optimize performance, we can adaptively choose
the weights and Lγ-norm by treating them as tuning parameters based on cross-validation or
independent tuning data. Certainly more studies are warranted in these directions.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Constraint regions of (β̃1, β̃2) yielding β̂1 = β̂2 = 0 for various γ and λ = 1. This figure
appears in color in the electronic version of this article.
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Figure 2.
PMSEs (± SE) versus tuning parameter s based on ten-fold CV for Lasso for the two sets of
the glioblastoma data.
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Figure 3.
Solution paths or PMSE versus tuning parameter s based on tuning data for Lasso and our
new method based on a linear model for the first set of the glioblastoma data. This figure
appears in color in the electronic version of this article.
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Table 3

Means (SDs) of prediction mean squared error (PMSE), number of removed informative variables (q1) and
number of removed non-informative variables (q0) with an additional L1 penalty for only target genes (L1-T)
or all the genes (L1-A), or with different weights in network-based regression from 100 simulated datasets.
The minimal mean PMSEs for each set-up are boldfaced.

Set-up Methods

p1 = 44, p0 = 66

PMSE q1 q0

1 γ = 2, L1-T 127.2 (23.7) 7.1 (2.8) 56.0 (6.8)

γ = 8, L1-T 122.9 (26.5) 3.2 (2.8) 60.4 (4.7)

γ = ∞, L1-T 128.3 (27.3) 4.7 (2.9) 59.3 (4.6)

γ = 2, L1-A 148.2 (32.5) 7.6 (3.6) 59.2 (5.6)

γ = 8, L1-A 144.8 (36.6) 5.8 (4.2) 59.1 (5.6)

γ = ∞, L1-A 161.8 (48.5) 9.0 (4.8) 57.5 (6.1)

γ = 2, wi = di 190.3 (56.9) 11.6 (5.4) 59.4 (6.4)

γ = 8, wi = di 188.2 (38.6) 13.5 (4.4) 57.8 (6.4)

γ = ∞, 

114.1 (22.5) 0.1 (0.8) 55.3 (10.7)

2 γ = 2, L1-T 136.3 (28.4) 15.7 (4.7) 60.9 (4.3)

γ = 8, L1-T 151.7 (36.4) 16.0 (7.2) 60.9 (5.0)

γ = ∞, L1-T 154.9 (45.4) 16.9 (7.0) 60.5 (5.2)

γ = 2, L1-A 163.2 (47.2) 20.6 (7.0) 60.9 (5.4)

γ = 8, L1-A 176.0 (56.2) 22.0 (8.8) 61.3 (6.0)

γ = ∞, L1-A 186.3 (60.6) 25.1 (8.7) 61.7 (6.3)

γ = 2, wi = di 199.5 (69.5) 27.7 (9.0) 62.4 (5.7)

γ = 8, wi = di 242.1 (96.4) 31.6 (11.4) 61.0 (6.5)

γ = ∞, 

127.2 (24.3) 3.0 (4.9) 56.4 (8.5)

3 γ = 2, L1-T 92.6 (18.1) 10.0 (2.7) 58.7 (5.1)

γ = 8, L1-T 98.2 (25.0) 7.2 (4.8) 61.4 (4.1)

γ = ∞, L1-T 99.7 (23.0) 8.2 (4.2) 60.3 (4.9)

γ = 2, L1-A 113.5 (31.6) 11.9 (4.6) 60.3 (4.9)

γ = 8, L1-A 115.5 (36.5) 11.2 (5.8) 60.9 (5.2)

γ = ∞, L1-A 129.2 (44.3) 14.2 (6.3) 59.9 (6.5)

γ = 2, wi = di 153.5 (43.8) 18.3 (6.5) 61.9 (6.4)

γ = 8, wi = di 137.7 (58.9) 16.9 (5.3) 58.7 (6.3)

γ = ∞, 

86.2 (18.9) 0.7 (2.2) 56.7 (9.3)

4 γ = 2, L1-T 100.0 (20.0) 17.5 (4.8) 61.2 (4.0)

γ = 8, L1-T 115.7 (31.7) 17.7 (8.2) 61.3 (6.1)
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Set-up Methods

p1 = 44, p0 = 66

PMSE q1 q0

γ = ∞, L1-T 116.4 (31.6) 18.7 (7.6) 60.7 (6.3)

γ = 2, L1-A 125.3 (33.4) 22.3 (7.3) 61.7 (5.6)

γ = 8, L1-A 140.8 (45.5) 25.3 (8.8) 62.6 (5.4)

γ = ∞, L1-A 144.3 (45.7) 26.9 (8.3) 62.9 (5.0)

γ = 2, wi = di 163.2 (54.8) 31.4 (8.6) 63.8 (3.5)

γ = 8, wi = di 202.6 (65.7) 36.2 (10.7) 62.4 (6.3)

γ = ∞, 

92.6 (18.5) 4.8 (6.2) 57.9 (7.2)

Set-up Methods

p1 = 24, p0 = 86

PMSE q1 q0

5 γ = 2, L1-T 90.3 (17.4) 3.8 (1.9) 68.9 (4.7)

γ = 8, L1-T 100.6 (22.7) 3.2 (2.7) 66.3 (5.1)

γ = ∞, L1-T 102.1 (27.0) 4.0 (2.7) 65.7 (7.1)

γ = 2, L1-A 114.6 (34.1) 5.8 (3.3) 69.8 (5.6)

γ = 8, L1-A 120.1 (34.8) 6.6 (3.8) 68.7 (7.3)

γ = ∞, L1-A 133.4 (43.8) 8.3 (4.1) 69.7 (8.7)

γ = 2, wi = di 151.8 (50.2) 10.4 (4.1) 72.9 (8.8)

γ = 8, wi = di 173.8 (103.2) 11.9 (6.6) 71.1 (10.8)

γ = ∞, 

83.2 (15.1) 0.3 (1.1) 59.7 (8.1)
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