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Renal failure, a major complication associated with
multiple myeloma, is usually related to deposition of
monoclonal immunoglobulin free light chains (FLCs)
and directly contributes to morbidity and mortality in
this disease. The present study focused on the cyto-
toxic effects of monoclonal FLCs. Human proximal
tubular epithelial cells (HK-2) were examined after
incubation with two human monoclonal FLCs
(termed �2 and �3). Incubation of HK-2 cells for 24
and 48 hours with either FLCs at 1 mg/mL promoted
activation of caspase-9 and caspase-3 and increased
the rate of apoptosis. Because prior studies demon-
strated that FLCs generated intracellular oxidative
stress, our studies focused on the redox-sensitive mi-
togen-activated protein kinase kinase kinase known
as apoptosis signal-regulating kinase 1 (ASK1). A time-
dependent increase in phosphorylation of ASK1 at
T845, indicating activation of this enzyme, was ob-
served. Small interfering RNA designed to reduce
ASK1 expression in HK-2 cells successfully decreased
ASK1, which was confirmed by Western blot analysis.
Incubation of ASK1-depleted HK-2 cells with the two
FLCs prevented the increase in apoptosis while pre-
treating HK-2 cell with nontargeting small interfering
RNA did not prevent FLCs-mediated apoptosis. The
combined data demonstrate that monoclonal FLCs ac-
tivated the intrinsic apoptotic pathway in renal epi-
thelial cells by activation of ASK1. (Am J Pathol 2012,

180:41–47; DOI: 10.1016/j.ajpath.2011.09.017)

A major function of proximal tubular epithelium is reab-
sorption of proteins that are present in glomerular ultra-

filtrate. This process integrally involves the heteromeric
receptor composed of megalin and cubilin.1–4 As low-
molecular-weight proteins, immunoglobulin free light
chains (FLCs) are filtered relatively freely and are pre-
sented to the proximal tubule. Unlike other low-molecular-
weight proteins, however, monoclonal FLCs have high
nephrotoxic potential.5–8 Batuman’s laboratory in partic-
ular has demonstrated that monoclonal FLCs are directly
cytotoxic, promoting apoptosis of proximal tubular cells.
Apoptosis required endocytosis of the FLCs and subse-
quent activation of mitogen-activated protein (MAP) ki-
nase pathways.9–12

A novel human protein kinase, apoptosis signal-regu-
lating kinase 1 (ASK1, alias MAP3K5, MEKK5, and MAP-
KKK5) was cloned in 1996 and was found to function as
a MAP kinase kinase kinase (MAP3K).13 This ubiquitously
expressed MAP3K functions as an upstream activator of
the c-Jun N-terminal kinase and p38 MAP kinase path-
ways.14,15 Overexpression of ASK1 promotes apoptosis
specifically by inducing Bax translocation and cyto-
chrome c release from mitochondria and activation of
caspase-9 and caspase-3.16 ASK1 is inhibited by asso-
ciation with reduced cytoplasmic thioredoxin-1 and mito-
chondrial thioredoxin-2.17,18 Reactive oxygen species,
particularly hydrogen peroxide, oxidize thioredoxin, re-
leasing ASK1 and permitting phosphorylation at T845
and activation of this kinase, which results in apopto-
sis.19–22 ASK1 is also involved in promoting release of
inflammatory molecules in ischemic events that include
acute kidney injury.23,24 Intriguingly, protein kinase B
(Akt) phosphorylates ASK1 at S83, which mitigates
ASK1-mediated apoptosis.25 Thus, ASK1 is a highly
regulated key element in stress-induced apoptosis.

The redox state of the cell modulates signal transduc-
tion activity and is a critical determinant of cell survival.26

Recently, endocytosis of monoclonal FLCs has been
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shown to generate intracellular oxidative stress sufficient
to activate c-Src, the 60-kDa product of c-src, also known
as pp60c-src, and the NF-�B pathway.27–29 We tested the
hypothesis that monoclonal FLCs promotes apoptosis of
renal epithelial cells through activation of ASK1.

Materials and Methods

Cells and Reagents

Human Immunoglobulin Monoclonal FLCs

Two unique monoclonal FLCs, one � and the other �,
labeled �2 and �3, respectively, were purified using stan-
dard methods from the urine of patients who had multiple
myeloma and light chain proteinuria.7 These patients had
clinical evidence of renal damage, although renal biopsy
was not performed. The FLCs were endotoxin-free (Lim-
ulus Amebocyte Lysate, QCL-1000; Lonza, Walkersville,
MD) and observed to generate H2O2 and promote intra-
cellular oxidative stress in human proximal tubular epi-
thelial cells (HK-2) cells in culture.27

HK-2 Cells

HK-2 cells, which have previously been character-
ized,30 were obtained from the American Type Culture
Collection (Manassas, VA). Monolayers of HK-2 cells
were grown on six-well plates (Corning-Costar; Corning
Incorporated Life Sciences, Lowell, MA) that were pre-
coated with 5 �g/cm2 type 1 collagen (rat tail collagen
type 1; Invitrogen Corporation, Carlsbad, CA), and incu-
bated at 37°C with 5% CO2/95% air in keratinocyte se-
rum-free medium (Gibco, Invitrogen Corporation, Carls-
bad, CA) supplemented with recombinant human
epidermal growth factor (5 ng/mL) and bovine pituitary
extract (50 �g/mL). Medium was exchanged at 48-hour
intervals, and cells were not used beyond 25 to 30 pas-
sages. In the present experiments, confluent cell mono-
layers were incubated at 37°C in medium containing a
unique FLCs, 1 mg/mL, for 24 and 48 hours before study.
This FLCs concentration was within the expected con-
centration range to which proximal tubular cells are ex-
posed in patients with multiple myeloma.31

To suppress c-Src activity in HK-2 cells in some
experiments, simultaneously with the addition of the
FLCs, 4-amino-5-(4-chlorophenyl)�7-(tert-butyl)pyrazolo
[3,4-d] pyramidine (PP2; EMD Biosciences, Gibbstown,
NJ) was added to the medium in a final concentration
of 10 �mol/L.32

Western Blot Analyses

After incubation, cells were lysed in radioimmunoprecipi-
tation assay buffer containing a protease inhibitor cock-
tail (Complete; Roche, Indianapolis, IN) and clarified by
centrifugation; lysates were then stored at �70°C until
they were assayed. Total soluble proteins in lysates were
determined with the BCA Protein Assay Kit (Pierce Bio-
technology, Rockford, IL). Protein extracts (20 to 60 �g)

were boiled for 3 minutes in Laemmli buffer and sepa-
rated by 7% to 12% SDS-PAGE (BioRad Laboratories,
Hercules, CA) before transfer onto polyvinylidene diflou-
ride membranes. The membranes were blocked in 5%
skim milk and incubated at 4°C overnight with one of the
following primary antibodies: rabbit–anti-human poly-
clonal antibody to ASK1, phospho-ASK1 (T845), and
phospho-ASK1 (S83); all were obtained from Cell Signal-
ing Technology (Danvers, MA). Glyceraldehyde 3-phos-
phate dehydrogenase, determined using mouse anti-
human glyceraldehyde 3-phosphate dehydrogenase
(Abcam Inc., Cambridge, MA), served as a loading nor-
malization control. Gels were developed in standard
fashion using enhanced chemiluminescence (SuperSig-
nal West Dura Chemiluminescent Substrate; Pierce Bio-
technology), and densitometry was performed by Quan-
tity One software (BioRad Laboratories).

Determination of Cytoplasmic Caspase-9
Activity and Concentration

Cytoplasmic caspase-9 activity was quantified with a
fluorometric assay (Caspase-9 Activity Assay Kit; Calbi-
ochem EMD Chemicals Inc., Darmstadt, Germany), fol-
lowing the protocol provided by the manufacturer. Briefly,
caspase-9 activity was detected in cell lysates by using
LEHD peptide substrate labeled with a fluorophore,
7-amino-4-trifluoromethyl coumarin. Cytoplasm was col-
lected from pelleted cells using kit lysis buffer supple-
mented with protease inhibitors (Complete Protease In-
hibitor tablets; Roche Diagnostics GmbH, Mannheim,
Germany) and dithiothreitol (Sigma-Aldrich, St. Louis,
MO). Lysates were added with substrate into a 96-well
plate. The kit provided both a positive control, which
consisted of frozen HL-60 cells previously cultured and
treated by the vendor with 0.5 �g/mL actinomycin D for
19 hours to induce apoptosis, and a negative control that
used the same cells also treated with a specific
caspase-9 inhibitor. After incubation, caspase-9 activity
was quantified with a fluorescent plate reader (Spectra-
max M2e Microplate Reader; Molecular Devices, Sunny-
vale, CA) with an excitation of 400 nm and emission at
505 nm.

Cytoplasmic caspase-9 concentration was determined
with an enzyme-linked immunosorbent assay (ELISA)
(Human Caspase-9 ELISA; BioVendor Research and Di-
agnostic Products, Candler, NC), following the protocol
provided by the manufacturer. Briefly, collected cells
were pelleted and the pellets were resuspended in kit
lysis buffer at a concentration of 5 � 106 cells/mL. The
lysates were added to an antibody-coated 96-well plate
and then incubated with the detection antibody at room
temperature for 2 hours. Anti-rabbit horseradish peroxi-
dase antibody was then added to all wells, followed by
3,3=,5,5=-tetramethylbenzidine substrate solution.
Caspase-9 levels were quantified with a colorimetric
plate reader (Molecular Devices Spectramax M2e reader)

at 450 nm.



FLCs Promote Apoptosis Through ASK1 43
AJP January 2012, Vol. 180, No. 1
Human Active Caspase-3 Assay

Active caspase-3 was quantified by a sandwich ELISA
[Human Caspase-3 (Active) ELISA kit; Invitrogen Corpo-
ration], following the protocol provided by the manufac-
turer. The capture antibody bound human caspase-3 and
the specific active caspase-3 antibody served as the
detection antibody. After addition of horseradish peroxi-
dase–labeled anti-rabbit IgG and TMB substrate, active
caspase-3 concentrations were quantified with a plate
reader (SpectraMax M2e Microplate Reader, Molecular
Devices) at 450 nm.

Silencing Apoptosis Signal-Regulation Kinase 1
(ASK1) Expression

RNA interference was accomplished by using small in-
terfering RNA (siRNA) that targeted human ASK1, as
reported by other investigators.33 RNA duplexes consist-
ing of human ASK1 (MAP3K5)-specific sense and anti-
sense RNA oligomers (NM-005923) were synthesized
commercially; nontargeting siRNA #1 (D-001810) served
as a control (all purchased from Dharmacon RNA Tech-
nologies, Lafayette, CO). HK-2 cells at 70% confluence
were transfected using siRNA transfection reagent (Dhar-
maFECT1; Dharmacon RNA Technologies) containing
varying amounts (0 to 100 nmol/L) of siRNA. Preliminary
experiments that used siTOX transfection control (Dhar-
macon RNA Technologies) determined the optimum ex-
posure conditions that maximized transfection efficiency
and minimized toxicity. ASK1 siRNA (50 nmol/L) was
complexed with 2 �L of DharmaFECT1 in 200 �L total
volume and then added to complete medium in a final
volume of 1 mL for each well in a 12-well plate. After
incubation in the transfection solution for 12 hours, the
medium was replaced and incubation continued up to 48
hours. The cells were then incubated in medium contain-
ing 1 mg/mL of the FLCs (�2 and �3), for an additional 24
and 48 hours before study.

Figure 1. Monoclonal FLCs (�2 and �3) activated ASK1 in proximal tubular e
PP2, a selective and potent inhibitor of Src kinases.32 The second and third
top and middle rows of Western blot tests demonstrated phospho-ASK1 (T
protein. Both FLCs, 1 mg/mL, increased phospho-ASK1 (T845) in a time-depe

25
event, also increased. Although PP2 had no effect on phosphorylation at T845, p
experiment was performed in duplicate with similar results.
Flow Cytometry

The percentage of apoptotic cells in each population of
HK-2 cells was determined by flow cytometry (model BD
LSR II; BD Biosciences, San Jose, CA) and vital staining
with the use of a kit (Mitochondrial Membrane Potential/
Annexin V Apoptosis Kit V35116; Invitrogen Corporation).
The kit contained recombinant annexin V conjugated to
Alexa Fluor 488 and 1H,5H,11H,15H-xantheno[2,3,4-ij:
5,6,7-i‘j’]diquinolizin-18-ium,9-[4(chloromethyl)phenyl]�
2,3,6,7,12,13,16,17-octahydro-,chloride (MitoTracker Red).
At the end of the incubation period, HK-2 cells, approx-
imately 5 � 106 cells/mL, were stained according to
manufacturer’s instructions, by incubation in culture me-
dium that contained 4 �L of 10 �mol/L MitoTracker Red
for 30 minutes at 37°C in a mixture of 5% CO2 and 95%
air. After washing in PBS, the cells were resuspended in
100 �L of annexin binding buffer with 5 �L of Alexa Fluor
488 annexin V. The cells were incubated for 15 minutes at
room temperature in the dark, then diluted and immedi-
ately analyzed by flow cytometry.

Statistical Analysis

Data were expressed as mean � SE. Significant differences
among data sets were determined by analysis of variance
followed by Tukey-Kramer multiple comparisons post hoc test-
ing (InStat; GraphPad, San Diego, CA), where appropriate. A
P value of �0.05 was assigned statistical significance.

Results

Human Monoclonal FLCs-Activated ASK1 in
Renal Epithelial Cells

Incubation of HK-2 cells with �2 and �3 FLCs, 1 mg/mL,
but not vehicle, promoted a time-dependent and sus-
tained increase in phospho-ASK1 (T845) and phospho-
ASK1 (S83), starting within 2 hours of exposure (Figure 1).

cells. The first column shows the effect of vehicle treatment with and without
show the effects of incubation of HK-2 cells with �2 and �3 over time. The

d phospho-ASK1 (S83), respectively, and the bottom represents total ASK1
shion. During incubation with FLCs, phospho-ASK1 (S83), an Akt-dependent
pithelial
columns
845) an
ndent fa
hosphorylation at S83 was inhibited, indicating participation by c-Src. The
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The addition of PP2, a potent Src kinase inhibitor,32 to the
medium did not inhibit phosphorylation at T845 but did
inhibit phosphorylation at S83.

Human Monoclonal FLCs Induce Apoptosis of
Renal Epithelial Cells through Activation of ASK1

Initial experiments focused on reducing ASK1 levels us-
ing siRNA. ASK1 protein expression was prominent in
untreated HK-2 cells (Figures 1 and 2) and was effec-
tively reduced in HK-2 cells transfected with siRNA di-
rected against ASK1; control (nontargeting) siRNA had
no effect on ASK1 (Figure 2). Forty-eight hours after
transfection, the cells were incubated in medium contain-
ing 1 mg/mL of the FLCs (�2 and �3), for an additional 24
hours before study (n � 8 to 10 experiments in each
group). Apoptosis was detected using flow cytometry
using MitoTracker Red and annexin V conjugated to Al-
exa Fluor 488. Incubation of HK-2 cells with �2 and �3
FLCs for 24 hours (Figure 3) and 48 hours (Figure 4)
increased apoptosis rates. The � FLCs produced an av-
erage 2.3-fold increase in apoptosis and the � FLCs
increased apoptosis by 1.9-fold over baseline levels. Al-
though knockdown of ASK1 alone had no effect on base-
line apoptosis rates, HK-2 cells with reduced ASK1 levels
were protected from FLCs-induced apoptosis.

Human Monoclonal FLCs Promote Increased
Active Caspase-9 and Active Caspase-3 in
Renal Epithelial Cells

Cytoplasmic caspase-9 activity of HK-2 cells incubated
with FLCs was quantified with a fluorometric assay. Both
FLCs induced increases in cytoplasmic caspase-9 activity
at 24 hours and 48 hours (n � 6 experiments in each group)

Figure 2. Western blot test showing the effect of siRNA that targeted human
ASK1 and nontargeting siRNA, which served as a control. ASK1 protein was

reduced by addition of siRNA that targeted ASK1 but not in cells exposed to
the control (nontargeting) siRNA.
(Figure 5). In addition, cytoplasmic caspase-9 protein levels
were determined at 24 hours by a sandwich ELISA. Cyto-
plasmic caspase-9 levels increased (P � 0.05) after incu-
bation in medium containing �2 (172.0 � 21.7 ng/mL) and
�3 (238.4 � 30.1 ng/mL), compared to levels after incuba-
tion in medium alone (62.5 � 6.6 ng/mL). Active caspase-3
was quantified by a sandwich ELISA after incubation with
the monoclonal FLCs. Both FLCs increased active
caspase-3 at 24 and 48 hours (Figure 5).

Discussion

The highly efficient protein reclamation system of the

Figure 3. Representative flow cytometry experiment (top) using cells incu-
bated for 24 hours and then labeled with annexin V conjugated to Alexa
Fluor 488 and MitoTracker Red before study. Apoptosis increased after
exposure of HK-2 cells to the two monoclonal FLCs, but cells pretreated with
siRNA that targeted ASK1 were protected from FLCs-induced apoptosis. The
graph at the bottom represents a compilation of 8 to 10 experiments in each
group. *P � 0.05 compared to siRNA alone and siRNA with �3 and �2.
proximal tubule provides an important mechanism of
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conservation of amino acids and other essential mole-
cules. For example, the daily production of polyclonal
FLCs by the lymphoid system is approximately 500 mg;
these low-molecular-weight proteins are filtered and sub-
sequently endocytosed and catabolized by the proximal
tubule, with less than 10 mg of polyclonal FLCs normally
appearing in the urine.34 In multiple myeloma, circulating
levels of FLCs increase substantially31 and can result in
significant accumulation of these proteins within the prox-
imal tubular epithelium. In this setting, monoclonal FLCs
can injure the proximal tubule epithelium and produce
clinical manifestations of renal failure.6–8,35–38 With the
use of proximal tubular cells in culture, Batuman’s labo-

Figure 4. Representative flow cytometry experiment (top) using cells incu-
bated for 48 hours and then labeled with annexin V conjugated to Alexa
Fluor 488 and MitoTracker Red before study. An increase in apoptosis was
again observed after exposure of HK-2 cells to the two monoclonal FLCs, but
cells pretreated with siRNA that targeted ASK1 were protected from FLCs-

induced apoptosis. Bottom: Compilation of 8 to 10 experiments in each
group. *P � 0.05 compared to siRNA alone and siRNA with �3 and �2.
ratory demonstrated that monoclonal FLCs promote
apoptosis.10,12 The mechanism of induction of apoptosis,
however, has not been clarified. The present series of
experiments demonstrated that human monoclonal FLCs

Figure 5. Cytoplasmic caspase-9 (left) and caspase-3 (right) activities of HK-2
cells incubated with monoclonal FLCs for 24 and 48 hours. Compared to vehicle
treatment alone (black bars), caspase-9 activity, which was quantified with a
fluorometric assay, increased in HK-2 cells exposed to both monoclonal FLCs for
24 and 48 hours (n � 6 experiments in each group). Active caspase-3, which was
quantified by a sandwich ELISA, also increased in HK-2 cells after incubation
with the monoclonal FLCs for 24 and 48 hours (n � 6 experiments in each
group). *P � 0.05 compared to vehicle-treated cells.

Figure 6. Simplified schematic representing the effect of monoclonal FLCs on
function of proximal tubular epithelial cells. Endocytosis of monoclonal FLCs
generated intracellular oxidative stress,28,29 which activated ASK1. ASK1 acti-
vates the intrinsic apoptotic pathway and thereby promoted apoptosis. In addi-
tion, monoclonal FLCs activated c-Src, which promoted a proinflammatory en-
vironment through activation of the canonical and atypical NF-�B pathways, but
also promoted a prosurvival signal through activation of Akt and down-regula-
tion of ASK1 activity through phosphorylation of ASK1 at S83. Thus, activation of
c-Src may serve as a defense against cell death but promotes an inflammatory
response. In addition to the interrelatedness of these pathways depicted in the
schematic, NF-�B generates proinflammatory signals and can also induce addi-
tional antiapoptotic and proapoptotic pathways that affect cell function and

survival. Finally, ASK1 not only activates the intrinsic apoptotic pathway but may
also directly participate in an inflammatory response.
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induced apoptosis by activating the intrinsic apoptotic
pathway through ASK1. This mechanism is unique and
differs from the recently described activation in renal
tubular cells of the intrinsic apoptotic pathway by albumin
through Protein Kinase C-�.39

Previous studies showed that some FLCs, including
the two monoclonal proteins used in the present experi-
ments, but not all FLCs, generated reactive oxygen spe-
cies, especially H2O2, in amounts sufficient to activate
c-Src.28,29 In turn, c-Src activated the canonical and
atypical NF-�B pathways, which increased production of
monocyte chemoattractant protein-1 and IL-6.29 Mice
treated with monoclonal FLCs demonstrated enhanced
renal production of monocyte chemoattractant protein-1
and tumor necrosis factor-� before clinical evidence of
renal failure.9,40 Monoclonal FLCs-induced production of
H2O2 was also cytotoxic, and cell injury was prevented
by 1,3-dimethyl-2-thiourea, a cell-permeable scavenger
of reactive oxygen species including H2O2, demonstrat-
ing the important role for oxidative stress in the initiation
of injury.27 These findings, combined with the present
studies, established proximal tubular cell metabolism of
monoclonal FLCs activated a proapoptotic intrinsic (mi-
tochondrial) pathway initiated by ASK1 as well as prosur-
vival, proinflammatory pathways from activation of c-Src
(Figure 6). As a MAP3K, however, ASK1 activation pro-
motes not only apoptosis but also the production of
proinflammatory molecules that include monocyte che-
moattractant protein-124,41 and transforming growth fac-
tor-�.42 In the present studies, phosphorylation of ASK1
at S83, which inhibits the proapoptotic effect of ASK1 and
is an Akt-dependent event,25 was inhibited by PP2, dem-
onstrating that c-Src participated in the activation of Akt,
as it does in other models.43 Thus, activation of c-Src
appears to be a critical factor in promoting cell survival at
the cost of producing a proinflammatory state in the kid-
ney. The overall cellular effects of exposure to monoclo-
nal FLCs include both an increase in apoptosis and in-
creased production of important chemokines and
cytokines that include monocyte chemoattractant pro-
tein-1 and IL-6.

Renal failure is a well-recognized accompaniment of
multiple myeloma. Kyle et al showed that renal dysfunc-
tion, as determined by serum creatinine concentration
�1.3 mg/dL, occurred in nearly half of patients with newly
diagnosed myeloma.44 Between 19% to 22% had serum
creatinine concentrations above 2 mg/dL.44,45 The ma-
jority of patients in this setting have tubulointerstitial renal
disease, and usually monoclonal FLCs deposition is the
culprit.6,7,36,40 The most common pathology is cast ne-
phropathy, or myeloma kidney, although a smaller per-
centage of patients have isolated proximal tubular injury
attributed to the monoclonal FLCs.7,8,35,46 Consistent
with clinical findings, preclinical studies that used mono-
clonal FLCs demonstrated varying propensity for cast
formation and acute tubular injury.6,36,47 In addition,
prominent inflammatory and fibrotic changes in the inter-
stitium are also typical of cast nephropathy. Although
cast formation per se is a critical determinant of clinically
recognized renal failure, the combined findings suggest

a facilitating role for alterations in proximal tubule function
during the renal metabolism of monoclonal FLCs by pro-
moting apoptosis and stimulating the renal production of
chemokines and cytokines. Batuman’s laboratory dem-
onstrated that in vivo administration of human monoclonal
FLCs increased apoptosis of proximal tubular cells in
mice, as detected by a TUNEL-based fluorescence as-
say.40 Clinically, tubulointerstitial fibrosis can occur rap-
idly48; only 8% of patients with severe renal failure (serum
creatinine �4.0 mg/dL) at presentation have reversible
renal failure.45 Present clinical evidence supports rapid
reduction in circulating levels of monoclonal FLCs,49 but
additional therapeutic strategies are needed to slow the
progression to end-stage kidney failure in these patients.
By demonstrating an important role for activation of ASK1
by monoclonal FLCs, the present study provides another
potential target for consideration in the treatment of the
tubulointerstitial renal disease associated with myeloma.
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