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Abstract

Image-based mechanical modeling of the complex micro-structure of human bone has shown promise as a non-invasive
method for characterizing bone strength and fracture risk in vivo. In particular, elastic moduli obtained from image-derived
micro-finite element (mFE) simulations have been shown to correlate well with results obtained by mechanical testing of
cadaveric bone. However, most existing large-scale finite-element simulation programs require significant computing
resources, which hamper their use in common laboratory and clinical environments. In this work, we theoretically derive
and computationally evaluate the resources needed to perform such simulations (in terms of computer memory and
computation time), which are dependent on the number of finite elements in the image-derived bone model. A detailed
description of our approach is provided, which is specifically optimized for mFE modeling of the complex three-dimensional
architecture of trabecular bone. Our implementation includes domain decomposition for parallel computing, a novel
stopping criterion, and a system for speeding up convergence by pre-iterating on coarser grids. The performance of the
system is demonstrated on a dual quad-core Xeon 3.16 GHz CPUs equipped with 40 GB of RAM. Models of distal tibia
derived from 3D in-vivo MR images in a patient comprising 200,000 elements required less than 30 seconds to converge
(and 40 MB RAM). To illustrate the system’s potential for large-scale mFE simulations, axial stiffness was estimated from high-
resolution micro-CT images of a voxel array of 90 million elements comprising the human proximal femur in seven hours
CPU time. In conclusion, the system described should enable image-based finite-element bone simulations in practical
computation times on high-end desktop computers with applications to laboratory studies and clinical imaging.
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Introduction

Large-scale finite-element simulations of complex physical

systems (e.g. involving 10 million or more finite elements) are

being used increasingly in many areas of science, engineering,

biomedical and clinical research and industry [1,2,3,4]. However,

most existing large-scale finite-element simulation programs

require significant computing resources, which may hamper their

use in common laboratory and clinical environments. The

development of computationally efficient finite-element solvers

for targeted applications is therefore of great interest.

Image-based micro-finite-element (mFE) modeling on the basis

of high-resolution medical images has shown promise as a

technique for mechanical characterization of the complex micro-

structure of bone. Both magnetic resonance (MR) and peripheral

high-resolution computed tomography (HR-pQCT) have already

demonstrated the ability to monitor alterations in bone mechanical

properties resulting from disease progression or drug intervention

[5,6] or for assessment of fracture risk [7,8]. FE analyses at

multiple scales from macro- to micro-structure have also been

proposed as possible means to provide insight into failure

mechanisms [9].

Bone is classified into two structural types: cortical and

trabecular. Both types of bone remodel throughout human life,

with old bone being resorbed and new bone being deposited.

Remodeling controls the reshaping or replacement of bone during

growth and following injury, and generally occurs in response to

changes in functional demands of mechanical loading [10].

Perturbation in bone mineral homeostasis, e.g. due to hormone

loss following menopause [11,12] or extended exposure to

microgravity [13] causes a remodeling imbalance with greater

rate of resorption than new bone formation, resulting in structural

and mechanical impairment of the skeleton due to architectural

deterioration along with net loss of trabecular and cortical bone

[14,15,16]. The above scenario is characteristic of the etiology of

osteoporosis, a condition that leads to increased risk of fracture.

High-resolution image-based mFE analysis is able to simulate

the effects of mechanical loading of bone, thus providing insight

into the relationship between bone microarchitecture and bone

strength. Excellent agreement has been noted between biome-

chanical compression tests and mFE-derived elastic moduli based

on images acquired at high spatial resolution [17,18,19]. Unlike

direct mechanical testing, the gold standard for determining bone

mechanical competence, image-based mFE modeling is nonde-

structive and is hence feasible in vivo [6,20].

Human trabecular bone is a complex network of inter-

connected plates and struts on the order of 100–150 mm thickness

[15] whereas the macroscopic scale of bone is on the order of

centimeters or even tens of centimeters. The computational

demands (in terms of RAM and CPU) can therefore be enormous
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for accurate high-resolution simulation of even a portion of the

bone (such as the vertebrae, distal radius or proximal femur–

locations of high fracture incidence). For example, FE simulation

of a single human vertebral body would require around 185

million elements at an element size (and thus image voxel size) of

30 mm. While such resolution is far beyond any in-vivo imaging

modality’s capability, the potential to predict bone mechanical

properties on the basis of lower-resolution in vivo images, is of

significant clinical interest [6,20]. Under the best of circumstances

in vivo MRI and CT currently yield an effective resolution on the

order of 100–200 mm at selected skeletal locations [20,21,22] in

practical scan times (MRI) and acceptable radiation dose (CT),

which typically reduces data size to 10 million elements or less.

However, it is conceivable that pre-processing of the images to

higher apparent resolution via interpolation techniques such as

subvoxel processing [23] or zero filling in Fourier space [24] may

significantly enhance accuracy in the prediction of the bone’s

mechanical behavior, but would also significantly increase data

array size. Although not addressed in this paper, simulations in the

nonlinear regime increase computational demands by an order of

magnitude or more, and are thus impractical unless computational

efficiency is substantially augmented.

Here, we investigate the feasibility of large-scale FE simulations

(performed on desktop personal computers) and describe an

optimized FE solver designed for high-resolution image-based

computational bone mechanics of systems with 10–100 million

elements within the constraints of standard workstations in

minutes to hours. These advances are achieved through

algorithmic improvements involving effective memory usage,

accelerated convergence and parallelization. Critical to these

endeavors is a reduction in the number of iterations required

toward convergence of the solution. We show that this goal can be

achieved by starting iteration on coarser grids (i.e. using larger size

thereby reducing the number of elements). Further we describe an

iteration procedure that enables a more effective estimate of the

relative error in total stress, accurately indicating when to halt the

conjugate gradient iterations. Lastly, we show that significant

speed enhancements can be achieved by making efficient usage of

the available processors through parallelization of the computing

tasks. The performance of the FE solver is illustrated with

applications to human specimen micro-CT and in vivo high-

resolution MR images as input into the model to estimate stiffness

and failure load.

Materials and Methods

Definition of the linear system
Image-based estimation of macroscopic mechanical properties

of bone involves (a) defining the image-derived structural bone

model (b) simulating the induced macroscopic strain by applying

appropriate boundary conditions, (c) solving for the resulting

equilibrium displacements throughout the structure, and (d)

computing stiffness from macroscopic stress/strain ratios. In the

linear elastic regime (which we assume throughout), local stress

and strain are linearly related by Hooke’s Law:

s~Ce, ð1Þ

where

s~ sxx syy szz syz szx sxy½ �T

and

e~ exx eyy ezz eyz ezx exy½ �T

are the local stress and strain vectors, respectively, and C~(Cij) is

the 6|6 stiffness matrix for the material. In the case of isotropic

material, the stiffness matrix takes the form

C~
E

(1{n)(1{2n)

1{n n n 0 0 0

n 1{n n 0 0 0

n n 1{n 0 0 0

0 0 0
1{2n

2
0 0

0 0 0 0
1{2n

2
0
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1{2n

2

2
6666666666666664

3
7777777777777775

,

ð2Þ

where E is Young’s modulus and n is Poisson’s ratio. Here, for

trabecular bone, we assume n~0:3, and E~15 GPa:BVF , where

BVF represents the voxel-wise bone- volume fraction (see [25] for

MR or [26] for CT). Even though on a microscopic scale the bone

material modulus is not isotropic [27,28], for most applications the

assumption of voxel-wise isotropy is warranted.

Following [29], we let each 3D image voxel represent a single

hexahedral (brick) element in our finite element model. By

assuming a tri-linear displacement field within each brick element,

the microscopic Hooke’s law defines a linear relationship between

the vertex displacements u!(B)

i,j,k and the induced vertex forces

F
!(B)

i,j,k(i,j,k = 0,1 are the coordinate indices). The superscript ‘‘(B)’’

indicates that this is the force acting on the vertex by a single

element, and is therefore only one component of the total force at

the vertex. The method for determining the precise relationship

between induced vertex forces and displacements for a single

element is described in Appendix S1. This relationship can be

expressed as

F
!(B)

~Ckernel u!(B)
, ð3Þ

where Ckernel is a 24|24 kernel matrix. The total force at a vertex v

in the direction d, denoted by F (v,d), is the sum of all forces at v (in

direction d) induced by the brick elements containing v.

Simulation of applied strain (step (b) above) involves application

of boundary conditions of the form:

u(v,d)~cv,d , ð4Þ

where u(v,d) is the displacement of the vertex v in the direction d

at selected vertex locations (usually on a boundary surface of the

image volume). The condition of force equilibrium (step (c)) can

then be expressed as

F (v,d)~0, ð5Þ

at all free vertex/direction pairs (i.e., those without applied

boundary conditions). Therefore, the number of equations in this

linear system is equal to Nv, the number of free (displacement)

variables. The (macroscopic) linear system for the force can be
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expressed as

AU~B, ð6Þ

where A is a sparse Nv|Nv matrix referred to as the macroscopic

stiffness matrix and U are the displacements at all free vertex/

direction pairs. The right-hand side, B is defined according to the

applied boundary conditions. The central (and most time-

consuming) step in the mechanical modeling procedure is to solve

this linear system (6).

Conjugate gradient iteration
Because the microscopic stiffness matrix C (e.g. Equation (2)) is

symmetric, one can show that the macroscopic stiffness matrix A is

positive definite (this condition is equivalent to the total energy

always being nonnegative, for any vertex displacement configura-

tion). We may therefore use the preconditioned conjugate-gradient

(PCG) algorithm to solve equation (6) [30,31]. Because we will

subsequently refer to the details of this algorithm, the processing

steps are outlined below for the conjugate gradient procedure.

Algorithm 1. Conjugate Gradient Algorithm
Step 0: Select an initial displacement configuration u0, compute

the residual r0 and set the initial search direction (for simplicity we

leave out the preconditioner in this description):

r0~B{Au0

p0~r0:

Set n : = 0.

Step 1: Compute qn~Apn:

Step 2: Compute an~
Srn,rnT
Spn,qnT

(where Sa, bT stands for inner

product of two vectors a, b), and then compute the new

displacement and residual vectors:

unz1~unzanpn

rnz1~rn{anqn

Step 3: Compute bn~
Srnz1,rnz1T

Srn,rnT
and then compute the new

search direction:

pnz1~bnpnzrnz1:

Step 4: If within error tolerance, stop. Otherwise increment

n: = n+1 and return to Step 1.

Memory usage estimation
Even when using a memory-efficient sparse-matrix storage

scheme, construction of the Nv|Nv sparse matrix A is highly

memory-intensive as compared with the element-by-element

(EBE) approach [32,33]. Because each vertex has up to 27

neighbor vertices (including itself), a single row of the matrix can

have up to 81 non-zero entries (three displacement directions for

each vertex), requiring storage of up to (81 entries per variable)x(4

bytes per entry) = 324 bytes per free variable (this is even

neglecting memory required to store the entry locations).

Throughout this paper, we empirically estimate the number of

variables as approximately 4 times the number of elements,

Nv&4Ne, where Ne is the number of elements (note: if bone were

to occupy the entire volume of the image, this ratio would equal 3,

but accounting for boundary vertices, this ratio tends to be closer

to 4). Therefore, the full-matrix method (i.e. storing A using an

efficient sparse matrix scheme) requires up to 1,296 bytes per

element for matrix storage alone.

In contrast, the EBE method demands substantially less

memory, since only the BVF scaling factor and vertex indices

need to be stored for each element. The key assumption is that the

24624 kernel matrix (Ckernel) is identical (up to BVF scaling factor)

at all elements. However, there is a tradeoff in terms of

computation time. With the sparse matrix construction method,

each matrix multiplication (Step 1 in the CG algorithm) involves

up to 81Nv multiplication operations, compared with 24|24Ne

for the EBE approach. Assuming Nv&4Ne as above, this suggests

that EBE would be slower by a factor of around 1.8. However, the

true ratio for comparing the two methods may differ depending on

the efficiency of the sparse matrix multiplication algorithm, and

the actual average number of entries per row (recall that 81 is an

upper estimate). Nevertheless, the significant memory savings of

the EBE technique generally outweighs the modest loss in iteration

speed.

Table 1 shows a breakdown of the total theoretical memory

usage for the EBE technique. In addition to bone-volume fraction

(1 byte per element), 24 variable indices must be stored at each

brick element (8 vertices63 directions per vertex). Assuming 32-bit

integers are used for storing indices, this requires 2464 = 96 bytes

per element. However, if variables are stored sequentially

according to 4-dimensional coordinates (three spatial and one

direction, with direction as the inner iteration), then only one sixth

of these variable indices need to be stored by the element, because

other indices can be obtained by offsetting the base indices. Thus

only 16 bytes per element are required for variable indices. The

bulk of memory usage (<80 bytes per element) is required by the

five CG vectors: displacement (u), residual (r), search direction (p),

search direction multiplied by A (q = Ap), and the vector storing the

Jacobi preconditioner. Finally, we need to store the variable index

lookup map, so that vertex-variable indices can be related to

locations on the original image grid. This requires 4 bytes per

Table 1. Estimated memory usage by number of elements.

Expected Memory Usage: Element-by-Element Method

Bone-volume fraction map (1 byte)6Ne

Element vertex-variable indices (16 bytes)6Ne

Five vectors in the conjugate gradient algorithm: u, r, p, q, +preconditioner (4 bytes)6Nv65<(80 bytes)6Ne

Variable index lookup map (4 bytes)6NxNyNz<(32 bytes)6Ne

Total <(130 bytes)6Ne

doi:10.1371/journal.pone.0035525.t001
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image vertex, or at most 32 bytes per element (assuming at least 1/

8 of image voxels are occupied by positive bone volume fraction).

As described below, parallel computing requires allocation of

additional memory since data located at the interface between sub-

regions must be duplicated between multiple processor threads (see

Figure 1). Assuming that the structure is split into sub-regions

along the Z-direction (inferior-superior direction in most

cases), the formula for the fraction of overhead is given by
2(K{1)

Nzz1
where K is the number of threads (or number of sub-

regions) and Nz is the number of voxels along the Z direction. For

example, if K = 8 threads are used and Nz = 100, then the overhead

would be around 14%, for an expected memory usage of around

150 bytes per element.

Parallel processing
To make use of multiple processors for speeding up the

simulation, it is necessary to divide the workload among the

processors [34]. Ideally, with perfect distribution of computations,

total simulation time will be reduced by a factor equal to the

number of processors. However, as with memory usage estimates,

we need to consider the cost of additional computations performed

on the interfaces between sub-regions. Below is a parallelized

version of the PCG algorithm. Within each sub-region, we

distinguish between inner and outer vertices according to the color-

coding of Figure 1. For example, the blue vertices are the inner

vertices of Region #2, whereas this region also contains two rows

of outer vertices (red and black).

Algorithm 2 (below) has been reorganized (compare with

Algorithm 1) in order to facilitate parallel computing. Steps 1a, 1b,

and 3a can all be implemented independently within each sub-

region. On the other hand, steps 2 and 3b involve interaction

between sub-regions. Fortunately, 2 and 3b do not require

significant computation time as compared with the remainder of

the algorithm. Therefore, we can expect to achieve close to a K-

fold speedup. Toward this end, the sub-regions should be chosen

so that the vertices are distributed as uniformly as possible. In the

present implementation, we chose the sub-region bounding planes

to be parallel to one another, and optimize their positions so that

each sub-region has an approximately equal share of vertices.

Algorithm 2. Parallelized Conjugate Gradient Algorithm
Step 0: Select an initial displacement configuration u0, compute

the residual r0 and set the initial search direction (for simplicity we

leave out the preconditioner):

r0~B{Au0

p0~r0:

Set n : = 0.

Divide the volume into K sub-regions S1, …,Sk (as shown in

Figure 1), where K is the number of processing threads. The

choice of sub-regions should be load-balancing (e.g. using the

technique described below).

Step 1a: For each sub-region, compute qn~Apn on the inner

vertices.

Step 1b: For each sub-region Sk, compute the following partial

inner products

Srn,rnTIk
, Srn,qnTIk

, Spn,qnTIk
, Sqn,qnTIk

where

Sv,wTIk
~
X
m[Ik

vmwm

And the sum is computed over the inner vertex indices Ik of the

subregion Sk.

Step 2: Compute the full inner-products Srn,rnT, Srn,qnT,

Spn,qnT, Sqn,qnT by summing over the partial inner products from

step 1b in the following manner:

Sv,wT~
XK

k~1

Sv,wTIk
:

Then, compute an~
Srn,rnT
Spn,qnT

.

bn~
Srnz1,rnz1T

Srn,rnT
~1z2

Srn,qnT
Spn,qnT

z
Srn,rnTSqn,qnT

Spn,qnT2
:

Step 3a: For each sub-region, compute the new displacement

on all (inner and outer) vertices

unz1~unzanpn

and compute the new residual and search direction vectors on the

inner vertices only:

rnz1~rn{anqn

pnz1~bnpnzrnz1:

Step 3b: For each sub-region, update pn+1 on the outer vertices

by retrieving the information from the inner vertices of

neighboring sub-regions.

Figure 1. Two-dimensional representation of the finite element
model, with each point representing a vertex or node in the
system. Parallel computing requires additional memory allocation
since vertices located at the interfaces between sub-regions must be
stored twice.
doi:10.1371/journal.pone.0035525.g001
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Step 4: If within error tolerance, stop. Otherwise increment

n : = n+1 and go to Step 1.

Convergence criterion
Traditionally, the magnitude of the residual vector rn, is used to

determine when to halt the conjugate gradient iteration procedure.

However, the direct quantity of interest is the computed total stress

(as a function of applied strain), and we are therefore most

interested in how closely this computed value at each iteration is to

its converged (i.e., ‘‘true’’) value. Here we describe a method for

estimating the relative error in this total stress in order to more

accurately determine when to halt the conjugate gradient

iterations.

Let Sn be the computed total stress after the nth iteration. We

assume that, after a finite number of iterations, Sn will converge

approximately exponentially to its (unknown) true value S?

according to

Sn&S?zae{bn:

Taking the log of the absolute derivative, with respect to n, we get

log S’nj j&log aj jzlog bj j{bn,

which is a linear function of n. Therefore, by performing a linear

fit to log S’nj j(for n indexing, say, the 30 most recent iterations), we

can estimate a and b, and then use these to estimate the relative

error:

En~
S?{Snj j

S?
&

ae{bn

Sn

:

In this study we used finite differences to estimate the absolute

derivative of Sn.

Pre-iteration on coarser grids (PICG)
To further reduce the total simulation time, a pre-iteration on

coarser grids (PICG) approach was applied (which is similar to the

multilevel method [35]). Instead of running simulation directly on

the original grid, we first perform simulations on a sequence of

coarser grids, obtained by downsampling from the original (fine)

grid, as illustrated in Figure 2. Starting from the coarsest grid,

displacements obtained on each grid (for, say grid #2) were

utilized as the initial displacements to CG iteration on the next

grid (grid #1 in this case). This method significantly speeds up

simulation since solutions obtained on coarser grids progressively

approach the final solution. An overview of the entire problem-

solving pipeline is provided in Figure 3, including image pre-

processing, application of boundary conditions, pre-iteration on

course grids, and parallelized conjugate gradient iteration.

Experiments
To estimate actual memory usage and computation time as a

function of the number of elements, fourteen sub-volumes of

various sizes were extracted from a single 3D mCT image of a

cadaver specimen of the human distal tibia (25 mm isotropic voxel

size) and processed via simulated compression tests as described

above. The simulation sizes for each sub-volume ranged between 1

and 75 million elements, corresponding to a range of 4.6 to 290

million variables for the linear systems. These were processed

using 1, 2, 4, and 8 threads of execution.

In-vivo MR image data of the distal tibia of a postmenopausal

woman previously acquired with a 3D fast spin-echo sequence

[36] at 13761376410mm3 resolution as part of an ongoing study

to evaluate the effect of treatment with antiresorptive drugs were

subjected to mFE analysis as described previously. The patient had

been treated with zoledronic acid (ReclastTM) and was examined

at the start of intervention(baseline) and re-examined 12 months

thereafter. Mechanical analysis was performed on both data sets

(after mutual registration [37]) to evaluate the potential of the

method to detect a possible improvement in the bone’s mechanical

Figure 2. Total simulation time can be significantly decreased by performing initial iterations on coarser grids prior to solving the
system on the original (fine) grid. Since the solution obtained at the coarser scale is already close to the final solution, fewer iterations are
required at the finest scale.
doi:10.1371/journal.pone.0035525.g002
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competence in response to drug intervention. Structural param-

eters known to affect bone strength (e.g. bone volume fraction

(BVF) and trabecular thickness) were evaluated at the two time-

points as well.

In an additional experiment designed to evaluate the perfor-

mance of the algorithm for processing of very large data sets, the

proximal end of an intact human proximal femur was studied. The

specimen was imaged by mCT on an X5000 industrial X-ray

Figure 3. Flow diagram for the processing pipeline. (a) Mechanical properties for the image-based finite-element model are obtained via the
relationship between simulated input strain (applied boundary conditions) and resulting simulated stress, computed from the equilibrium
displacement map. (b) The equilibrium displacement map is obtained using a series of parallelized conjugate gradient solvers (c) applied at a series of
resolutions (pre-iteration on courser grids).
doi:10.1371/journal.pone.0035525.g003
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inspection system (North Star Imaging, Rogers, MN) at an

isotropic voxel size of 45 mm. The reconstructed images were then

digitally stitched together to produce a single 3D volumetric image

of matrix size 24446111561770. The mFE solver was utilized to

simulate compression applied to the top surface of the femoral

head through a fictitious cap encompassing the top region of the

femoral head (to mimic force transmitted through the acetabu-

lum).

All simulations were performed on a laboratory desktop

computer (dual quad core Xeon 3.16 GHz CPUs equipped with

40 GB of RAM).

Results

Memory usage
Figure 4 provides the results of the memory usage experiments,

showing the actual memory allocation during the conjugate

gradient iterations as a linear function of the number of elements.

The slopes suggest that 138 bytes per element are required for a

single thread and 149 bytes per element when using eight threads.

This is somewhat higher than the theoretical expectation of 130

bytes per element (single thread), partly because when estimating

the theoretical expectation, approximations were made between

number of elements, number of variables and the product of

dimensions. These data suggest that on a system with 4 GB of

RAM, we can expect to be able to simulate a system with ,20

million elements, whereas 100 million elements would be possible

on a computer with 16 GB of RAM.

Figure 4. Memory usage (GB) versus number of elements (millions) for mFE simulations on sub-volumes of a single mCT image using
a single thread and eight threads. The total number of elements in the mFE models ranged from 1 to 75 million. Symbols represent experimental
data points, straight lines are best fits.
doi:10.1371/journal.pone.0035525.g004

Figure 5. Average time per iteration (seconds) versus number
of elements (millions) for running mFE simulations on sub-
volumes of a single mCT image using one, two, four, and eight
threads respectively. Symbols represent experimental data points,
straight lines are best fits. Linear relationships were found in all cases
with R2$0.998.
doi:10.1371/journal.pone.0035525.g005

Table 2. Total number of iterations to reach 1% accuracy
estimated with and without using the PICG approach in mFE
simulations on sub-volumes with different number of
elements.

Without PICG With PICG (‘4 2 1’)

One-million-element data set 224 88

Three-million-element data set 448 232

Six-million-element data set 459 240

Eight-million-element data set 476 235

Eleven-million-element data set 475 344

Twenty-seven-million-element
data set

594 333

Forty-nine-million-element data
set

598 317

Seventy-five-million-element
data set

603 295

doi:10.1371/journal.pone.0035525.t002

Computationally-Optimized Bone Mechanical Modeling
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Computation time
Figure 5 displays plots of average computation time per

iteration versus number of elements for running mFE simulations

on sub-volumes of a single mCT image using different numbers of

threads: one, two, four, and eight. A speedup factor of 6.5 was

observed when comparing eight processor threads to a single

thread, compared with an ideal speedup factor of 8. The

discrepancy is caused partly by interface communications between

threads as well as the ,1–2% non-parallel part within each

iteration, as described in the Methods. If 600 iterations are

required based on the analysis above, then 2.2 hours would be

needed to run a simulation on a data set with seventy-five million

elements (using 8 threads). Furthermore, if applying the pre-

iteration on coarser grids (PICG) approach, the total number of

iterations on the finest grid could be reduced to 295 (see Table 2).

Thus, approximately 1.3 hours (including computation time spent

on the coarser grids) would be needed to run the same simulation

in this context.

In Figure 6, the true relative errors (on the finest grid) obtained

from using six different combinations of coarser grids in the PICG

approach are plotted. For simulations on the coarser grids 200

iterations were used, whereas 500 iterations were used in

simulation on the finest grid (the objective was to determine the

true converged value, and then to retrospectively study the rate of

convergence). As can be seen in Figure 6 the combination ‘4 2 1’

achieves the same accuracy as the more time-consuming

combination ‘8 4 2 1’.

Figure 7 provides a comparison of the true relative errors (on

the finest grid) obtained using a different number of iterations on

the downsampled grids using the combination ‘4 2 1’, which was

shown in Figure 6 to be optimal. To achieve 1% accuracy, around

200 iterations were needed on the finest grid when running 200

iterations on each of the coarser grids, while almost 400 iterations

were needed on the finest grid when running 12 iterations on those

coarser grids. Therefore the combination ‘4 2 1’ was used in all

subsequent experiments, with 200 iterations on the coarser grids.

In addition to the experimental results in terms of computation

time using the authors’ algorithms and programs, comparisons in

computational performance with data reported in the literature

are summarized in Table 3.

Convergence criterion
Figures 8a and b show comparisons of different convergence

criteria (in log scale) using two experiments (compression

simulations on sub-volumes of the mCT image with 1 and 3

million elements respectively). The estimated relative error was

obtained from applying the log-derivative approach as described

in the Method Section; the scaled residual was obtained from

scaling the ratio between the L2 norm of the residual from each

iteration and the L2 norm of the right hand side of Eq. (6), which is

equivalent to the ratio between the residual in the net force from

each iteration and the force imposed on the boundary surfaces;

Figure 6. Plots of the ‘‘true’’ relative errors on the finest grid
obtained after using four different combinations of pre-
iteration on coarser grids: ‘1’, ‘2 1’, ‘4 2 1’, and ‘8 4 2 1’. E.g.,
‘4 2 1’ means running simulations on data sets downsampled from the
original data set by a factor of 4 and 2 sequentially, and then running
simulations on the original data set. The combination ‘4 2 1’ achieves
the same accuracy as the more time-consuming combination, ‘8 4 2 1’.
doi:10.1371/journal.pone.0035525.g006

Figure 7. Comparisons of the true relative errors on the finest grid obtained from running different number of iterations (200: red;
100: green; 50: purple; 25: blue; 12: orange) on all coarser grids in the combination strategy ‘4 2 1’. Using 200 iterations on each coarser
grid reduced the total number of iterations on the finest grid to around 200 compared to around 400 when using no pre-iteration for a 1% accuracy.
doi:10.1371/journal.pone.0035525.g007
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and the true relative error was obtained using
x{xtruek k

xtruek k , where x

is the computed solution (the primary stress in our case) from each

iteration and xtrue is the true solution obtained from running many

more iterations than needed.

Retrospectively tested, the estimated relative error has similar

trends as the true relative error while the scaled residual does not.

Furthermore, the estimated relative error is accurate to within a

factor of at most two of the true relative error and tends to be

increasingly accurate as the iteration number increases.

Table 2 lists the total numbers of iterations required to achieve

around 1% accuracy of the true solution (the ‘‘infinitely

converged’’ solution) for data sets with different numbers of

elements. Results with and without applying the PICG approach

are given, showing that using PICG reduces the total number of

iterations required to reach a 1% accuracy by a factor of ,2.

Based on our experimental results (see Figures 6 and 7), the

combination strategy ‘4 2 1’ was utilized here in the PICG

approach.

Applications to trabecular bone mechanics
Simulated axial compression tests of the 7T MRI patient image

data for the two 3D data sets described in the Methods section

(baseline and 12-month follow-up) contained approximately 0.2

million elements taking 27 seconds to converge. Measured bone-

volume fraction, trabecular thickness and axial stiffness were found

to have increased over the course of the one-year treatment

period. BVF had increased from 7.4 to 8.7%; trabecular thickness

from 99.5 to 102.4 mm; and axial stiffness from 247 to 293 MPa.

Figure 9 displays mutually registered parametric strain energy

maps at the two time-points. The images at the two time-points

show remarkable similarity indicative of relatively small remodel-

ing changes (Figures 9b and f) which, however, appear to have

significant mechanical consequences as suggested by the 19%

increase in predicted stiffness. We also notice a rather unequal

loading pattern exhibiting greater strain medially than laterally at

least in the anterior region displayed in Figures 9d and f.

In an additional experiment designed to evaluate the perfor-

mance of the algorithm for processing of very large data sets, the

proximal end of an intact human proximal femur was studied. A

sample slice of the simulated strain-energy map in coronal view is

given in Figure 10. The total number of elements in the mFE

model for the downsampled data was 90.3 million and the total

time for solving the resultant linear system was 6.8 hours on the

desktop computer (as described in the Methods) using parallel

computing with eight threads. The PICG approach was also

applied for comparison. Because of the large size of the femur

data, a combination ‘32 16 8 4 2 1’ was utilized where a total of

200 iterations were performed on simulations based on the coarse

grids, thereby reducing total computation time to 2.3 hours.

Discussion

We have conceived and implemented substantially improved

algorithms yielding a computationally efficient program for large-

scale finite-element simulations of bone mechanics on the basis of

mMR and mCT images. The work’s primary goal was to enable the

performance of such simulations on desktop computers within

practical computation times. Three key factors for improving

efficiency were investigated: memory usage, computation time and

convergence criteria.

The implementation of the EBE approach [32,33] avoids

storing the entire linear system thereby greatly reducing memory

usage. The theoretical memory savings (from using EBE), was

estimated in this work as a factor of 10, agreeing well with the

estimate of a factor of 9 from [38]. A row-by-row (RBR) approach

was also proposed in [38], but based on numerical examples, the

RBR approach appears to use as much as 35% more memory

than the EBE approach.

Thus far, computational constraints on desktop computers

limited image-based FE analyses of bone structure networks to

Table 3. Comparisons in computational performance with literature-reported data.

Ref. Year
Anatomic
Location

Number of
Elements
(million)

Number of
Processors FE Solver Computer Type

Comp. Time/Million
Elements

[29] 1995 N/A 0.35 not reported N/A Supercomputer 12 h

[43] 2003 Femur 96 30 N/A SGI-Origin2000 260.4cpuh

[43] 2003 Femur 33 16 N/A SGI-Origin3800 606.1cpuh

[40] 2004 N/A 135 4000 Olympus IBM SP Power3 ,25.2 s

[44] 2006 N/A #2.7 not reported Olympus Cray-Dell PowerEdge Xeon
cluster parallel supercomputer

4.5 h**

[45] 2007 N/A 5.44 256 ParFE Cray XT3 10.8 s

[46] 2008 N/A 247.73 1024 ParFE Cray XT3 2.9 s

[47] 2009 radius & tibia 8 not reported Scanco Workstation 45 m

[30] 2010 N/A ,375* 8192 ParFE IBM Blue Gene ,3.6 s*

[39] 2011 Radius 2 not reported Scanco N/A 1.5 h

[39] 2011 Tibia 5 not reported Scanco N/A 1 h

2011 Tibia 0.2 8 FESBI desktop computer 4.52 m

2011 Femur 90.3 8 FESBI desktop computer 2.25 m

Note: numbers marked with.
*are approximations based on reported number of degrees of freedom; numbers with.
**are approximated averages; the last two rows (bold) are performance results from the authors’ software. Although difficult to compare different
methodologies (with varying parameters, etc), these numbers are accurate to the best of the authors’ knowledge.
doi:10.1371/journal.pone.0035525.t003
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models with relatively small numbers of finite elements. Simulation

of a distal tibia model with 5 million elements, for example,

typically takes around 5 hours as reported in recent work [39].

With the enhanced FE algorithms detailed in the present work, a

bone structure model of this complexity can be solved in 9 minutes

to achieve 1% estimated accuracy in the output parameter.

Large-scale FE simulations of trabecular bone networks have

previously been performed on highly scalable, implicitly parallel,

one-of-a-kind supercomputers. For example, Adams et al. in 2004

solved a FE model of a vertebral body with 135 million elements

using an ASCI White supercomputer consisting of 292 computer

nodes [40]. A recent study reported solving FE systems with up to

about 1.5 billion unknowns (,375 million elements) within half an

hour using 8192 cores of the Blue Gene/L supercomputer at IBM

T.J. [30]. Our current desktop FE implementation can achieve a

comparable task consisting of a system with 135 million elements

in approximately 6 hours utilizing 20 GB of memory. Currently,

with our 8-core laboratory computer is equipped with 40 GB of

memory, we project a maximum solvable system size of around

266 million elements in ,13 hours. To the best of the authors’

knowledge, solving of such large-scale models of trabecular bone

networks on a single desktop computer has not previously been

feasible.

We compared the computation time achievable by the present

work against literature-reported values (see Table 3). It is to be

noted that the majority of the work reported therein has been

performed on large-scale computer clusters, with hundreds to

thousands of processors using canned software packages. While

one to two orders slower than such computers, our system far

outperforms desktop-based systems currently in use. Furthermore,

the present program has been designed from scratch to optimally

handle bone structural images in terms of its I/O capabilities and

its computational efficiency is achieved with a mere eight cores of a

standard, readily available, desktop computer. With simulation

times on the order of minutes for typical array sizes for in vivo

images on the order of 1–2 million elements, on-line computation

as part of the image reconstruction and processing pipeline now

has become practical. The system makes simulations on very large

arrays such as those resulting from whole-bone mCT images

feasible, which previously required access to supercomputers.

Parallel programming on desktop computers is becoming

increasingly attractive with the availability of multi-core computers

systems. With the trend of continually increasing the number of

cores on a single computer (e.g. 16 or 32 cores), even larger FE

systems than those demonstrated here can be expected to be

solved on desktop systems in the near future without the need for

supercomputers with the algorithmic optimizations described in

this work. In some situations, computation time could be further

reduced by adapting the present methodology to graphics

processing unit (GPU) computing (substantially increasing the

parallelization factor). However, at present, the available RAM on

a GPU is often limited to around 1 GB, precluding simulations

involving more than around 10 million elements.

Comparison of computation times reported by different studies

is often not straightforward because convergence criteria are not

explicitly stated. The magnitude of the residual at a given iteration

is widely used to decide when to stop the simulation. However,

since the residual is computed as an internal step while solving the

linear system of equations, it is not directly reflective of the

magnitude of error in the output parameter (stiffness, for example)

at a given FE iteration. To overcome these limitations, a novel

convergence criterion was adopted in our FE implementation,

which indicates how close the computed stiffness value at each

iteration is to the ‘‘true’’ value. For this study, a 1% error in

stiffness was used as a convergence criterion. Our experiments

suggest that the total number of iterations needed using the new

convergence criterion is closer to the actual requirement than that

estimated using other convergence criteria, for instance, estima-

tions based on (relative/scaled) residual. With the PICG approach

the total number of iterations has been shown to decrease from

4856125 (without PICG) to 260683.

Compared to general-purpose FE software, the computational

infrastructure described here provides a number of advantages for

the target application of high-resolution image-based bone

biomechanics. First, an integrated interface is provided to directly

import raw medical images (including k-space) data for analysis,

thereby eliminating the need for additional file conversion

software. Second, since the FE model is generated by one-to-one

mapping of image voxels into finite elements, the mechanical

estimates are not influenced by differences in various mesh-

generation methods, which are also computationally demanding

for large systems [41]. Third, the program can operate in the

binary as well as gray-scale mode, customized for generating FE

models on the basis of high-resolution (e.g. micro-CT) and in-vivo

(e.g. MR or CT) images of bone to account for partial volume

mixing, or regional variations in attenuation coefficients.

Figure 8. Convergence criteria comparisons. (a) in example 1, the
estimated relative error (red) has almost the same trend as the true
relative error (blue), whereas the scaled residual (purple) deviates
substantially; (b) the estimated relative error (red) in example 2 also
better approximates to the true relative error (blue) than the scaled
residual (purple).
doi:10.1371/journal.pone.0035525.g008
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Some limitations of the present work are noted. So far, we have

confined the analysis presented here to the linear elastic regime,

although nonlinear FE modeling can provide additional informa-

tion on bone’s failure mechanisms [42]. We expect that the

substantial improvements in speed and resource utilization

achieved under the present work will make nonlinear analysis

feasible within clinically acceptable computation time limits.

Nonlinear analysis typically entails application of a series of

incremental strains with each step involving solution of a linear

system. Therefore, the present methodology may substantially

improve the efficiency of non-linear analyses. We project that

nonlinear analysis on an in-vivo MRI data set on the order of one

million elements could be tackled within an hour or at least in the

time needed currently with commercial desktop based systems for

linear analysis.

In conclusion, the desktop computer based FE approach

detailed here enables computational biomechanics of bone,

previously confined to research studies, in clinical settings.

Supporting Information

Appendix S1 Derivation of the kernel matrix for a single
element.

(DOC)
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