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Abstract

Objectives: To explore the effect of ketamine-xylazine anesthesia on light-induced retinal degeneration in rats.

Methods: Rats were anesthetized with ketamine and xylazine (100 and 5 mg, respectively) for 1 h, followed by a recovery
phase of 2 h before exposure to 16,000 lux of environmental illumination for 2 h. Functional assessment by
electroretinography (ERG) and morphological assessment by in vivo imaging (optical coherence tomography), histology
(hematoxylin/eosin staining, TUNEL assay) and immunohistochemistry (GFAP and rhodopsin staining) were performed at
baseline (ERG), 36 h, 7 d and 14 d post-treatment. Non-anesthetized animals treated with light damage served as controls.

Results: Ketamine-xylazine pre-treatment preserved retinal function and protected against light-induced retinal
degeneration. In vivo retinal imaging demonstrated a significant increase of outer nuclear layer (ONL) thickness in the
non-anesthetized group at 36 h (p,0.01) and significant reduction one week (p,0.01) after light damage. In contrast,
ketamine-xylazine pre-treated animals showed no significant alteration of total retinal or ONL thickness at either time point
(p.0.05), indicating a stabilizing and/or protective effect with regard to phototoxicity. Histology confirmed light-induced
photoreceptor cell death and Müller cells gliosis in non-anesthetized rats, especially in the superior hemiretina, while
ketamine-xylazine treated rats showed reduced photoreceptor cell death (TUNEL staining: p,0.001 after 7 d), thicker ONL
and longer IS/OS. Fourteen days after light damage, a reduction of standard flash induced a-wave amplitudes and a-wave
slopes (p = 0.01) and significant alterations in parameters of the scotopic sensitivity function (e.g. Vmax of the Naka Rushton
fit p = 0.03) were observed in non-treated vs. ketamine-xylazine treated animals.

Conclusions: Our results suggest that pre-treatment with ketamine-xylazine anesthesia protects retinas against light
damage, reducing photoreceptor cell death. These data support the notion that anesthesia with ketamine-xylazine provides
neuroprotective effects in light-induced cell damage.
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Introduction

The term neuroprotection refers to an intervention that may

prevent, retard or reverse neuronal cell death after acute or during

chronic insult [1]. The general aim of neuroprotective strategies is

to minimize damage and/or maximize recovery by influencing

underlying etiology or pathogenesis [1,2]. Evidence of the

neuroprotective effect of anesthetics includes the capacity of

general anesthesia to increase neuronal tolerance to hypoxic and

ischemic insults [3,4] and their protective effects in neurodegen-

erative diseases [5] including Alzheimer [6] and animal models of

Parkinson [7]. However, limited evidence is available on the effects

of anesthetic agents in terms of retinal neuroprotection. In

axotomized rat retinal ganglion cells (RGC) neuroprotection has

been reported in vivo when combinations of chloral hydrate-

buprenorphine, ketamine-xylazine or fentanyl-medetomidine-mid-

azolam were used for anesthesia; chloral hydrate alone or in

combination with carprofen did not affect the numbers of

surviving RGCs [8].

The ability of light to cause severe retinal degeneration has been

well described [9,10]. Retinal light damage is indeed used as

model for human retinal degeneration (RD) arising from

environmental insult, aging and genetic disease [11]. However,

published protocols for light damage differ in exposure time,

illumination strength and emission spectrum of the applied light

source [10]. Here, we used a very similar protocol as described by

Grimm et al. to induce profound retinal degeneration [12].

In a model of light-induced RD, halothane, a gaseous inhalation

anesthetic agent, led to protection against photoreceptor apoptosis
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[13]. Another anesthetic regimen, ketamine-xylazine, is widely

used in experimental research [14], and is recommended in studies

of the central and peripheral nervous system [15,16]. However,

there are as of yet no reports on the effect of this commonly used

anesthetic regimen on RD, even though many studies in murine

models of induced and/or hereditary RD use ketamine-xylazine

for narcosis in in vivo analyses to determine the natural disease

progression or the effect of experimental therapeutic interventions

on the course of RD. Given the above mentioned evidence in the

literature on the potential neuroprotective influence of anesthetics,

it is of considerable interest to analyze whether ketamine-xylazine

might have potential confounding effects on RD. Therefore, our

study aimed to determine the effect of ketamine-xylazine

anesthesia in a light-induced model of RD in rats.

Methods

Ethic statement
All procedures were performed in compliance to the Statement

of the Association for Research in Vision and Ophthalmology

Statement for the use of animals in Ophthalmic and Visual

Research and approved by the Tuebingen University committee

on animal protection. Protocols compliant the German law on

animal protection were reviewed and approved by the Regional

Council in Tuebingen (approval ID AK 10/09). All efforts were

made to minimize the number of animals used and their suffering.

Animals
Twenty-seven Sprague DawleyH rats (Charles River Laborato-

ries GmbH, Sulzfeld, Germany) with a mean weight of

218.32 g621.40 g (mean 6 standard deviation (SD)) at baseline

were included. The rats were housed under standard laboratory

conditions with light-dark cycles of 12 h/12 h under room

illuminations of 200 lux.

Anesthesia and Light Exposure
Before experimental light exposure animals were dark adapted

for 12 h. All preparatory steps prior to light exposure were

performed under dim red light. Three experimental groups were

considered (Table 1). The light damage (LD) group was exposed to

light without prior anesthesia. The group with light damage and

prior anesthesia (LDA) was kept under anesthesia for 1 h with a

combination of ketamine 100 mg/kg and xylazine 5 mg/kg

(WDT eG, Garbsen, Germany) injected intraperitoneally and

kept in darkness after anesthesia for 2 h to awake, before light

exposure. All rats were awake before light damage. The pupils

were dilated using one drop of tropicamide (MydriatikumH 0.5%,

Stulln, Germany) 30 minutes before light damage. The cages were

lined with aluminum foil to reach an environmental illumination.

During light exposure, the temperature in the cages and the rats

were checked every 15 minutes to avoid sleeping or eye closure.

The LD and LDA groups received light exposure for 2 h under a

mean brightness of 16 000 lux (4 Philips TLD 965H lamps,

Hamburg, Germany) and subsequently were again kept in

darkness for 12 h [17]. A third group was not anesthetized or

illuminated (control).

Electroretinography (ERG)
Baseline ERG was recorded in all rats of the LD and LDA

group at the beginning of the study prior to light exposure for

intra-individual comparison at follow-up examinations, which

were performed once a week for 2 consecutive weeks after light

damage. The ERG was measured after a period of 12 h of dark

adaptation. To dilate the pupils one drop of tropicamide

(MydriatikumH 0.5%, Stulln, Germany) was applied 20 minutes

before the ERG measurement started. A Dawson-Trick-Litzkow

electrode was used as active electrode [18]. MethocelH eye-gel (2%

methylcellulose, Omnivision GmbH, Puchheim, Germany) was

applied to avoid exposure keratopathy. Two subcutaneous needle-

electrodes (AmbuHNeuroline Twisted Pair Subdermal, Bad

Nauheim, Germany) one inserted between the eyes and the other

in the tail served as reference and ground electrodes, respectively.

An acceptable impedance level of ,10 kV at 25 Hz was ensured

before and during the ERG recording.

The dark adapted ERG protocol consisted of 16 steps with

increasing stimulus strength from 361025 to 60 scot cd.s/m2,

which were produced by a mixed light (white 6500 K) using a

Ganzfeld stimulator (ColorDomeH, Diagnosys LLC, Cambridge,

GB). The duration of flashes was 4 ms. All scotopic flashes were

delivered without background illumination and constant inter-

stimulus-intervals of 1 s for dim flashes and up to 45 s for bright

flashes to ensure stable dark adapted conditions. Band-pass

filtering was applied from 0.3 to 300 Hz using the machine’s

built-in software algorithm (EspionH, Diagnosys LLC, Cambridge,

GB). Averages ranged from 20 sweeps for dim flashes to 2 sweeps

for bright flashes. The photopic ERG protocol consisted of an

initial light adaptation phase with a background illumination of 30

cd/m2 (white 6500 K) for 10 minutes. For single flash responses

five steps with increasing stimulus strengths from 0.3 to 20 phot

cd.s/m2 were chosen. Three flicker steps from 6 to 20 Hz were

applied with constant stimulus strength of 3 cd.s/m2. Twenty

sweeps were averaged for single flash responses and 30 sweeps for

flicker stimulation.

In vivo retinal imaging
Imaging was performed in all rats of the LD and LDA group

36 h and 7 d after light exposure. Data from control animals

served as reference. For confocal scanning laser ophthalmoscopy

(cSLO) and spectral domain optical coherence tomography (SD-

OCT) imaging a SpectralisTM HRA+OCT device (Heidelberg

Engineering, Germany) was used as previously described [19].

The near-infrared channel at 795 nm was used for en face cSLO

imaging of the peripapillary central region. Vertical and horizontal

SD-OCT cross-sections centered on the optic disc were recorded

consecutively to ensure perpendicular orientation of peripapillary

retinal tissue and thereby avoiding oblique recordings. Quantifi-

Table 1. Experimental groups used in this study.

Group Abbreviation exposed to light ketamine-xylazine anesthesia measurement

Light damage with prior anesthesia LDA yes yes ERG, in vivo imaging and histology

Light damage only LD yes no ERG, in vivo imaging and histology

Control - no no In vivo imaging and histology

doi:10.1371/journal.pone.0035687.t001
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Figure 1. Scotopic sensitivity function and corresponding ERG curves in LD and LDA rats. (A) ERG responses to 9 flashes of increasing
stimulus strength (0.000003–0.03 cd.s/m2) under dark-adapted condition for representative rats of each group (LD, LDA). Examinations are shown for
baseline measurement, 7 days (7 d) and 14 days (14 d) after light damage. A decrease of ERG potentials were indicated in the LD group after light
damage. The LDA group shows an increase of amplitudes after light damage due to normal growth. (B) Scotopic fits (described by Vmax, k and n) of
the same measurements as illustrated in A: The b-wave amplitudes (mV) were fitted against stimulus strength (cd.s/m2). Points demonstrate single
ERG b-waves with increasing stimulus strength. The fits show the increase in amplitudes during the whole study period in the LDA group and the
decrease of amplitudes in the LD group after light damage (note the difference between baseline and 7 d and 14 d in both groups).
doi:10.1371/journal.pone.0035687.g001

Figure 2. Comparison of a-wave amplitudes between LD and LDA rats at rising stimulation strengths. A-wave analysis at different
stimulus strengths (0.3–60 cd.s/m2) measured under dark adapted condition. For descriptive analysis means were connected (line) and standard
deviations were marked (whiskers). Single measurements of a-waves are illustrated by points. A significant difference between both groups (LD vs.
LDA) was detected at 14 days after light damage (* = p,0.05, ** = p,0.01). Higher amplitudes were measured for the LDA group.
doi:10.1371/journal.pone.0035687.g002
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cation of central retinal thickness based on high resolution vertical

line scans was performed using the proprietary software from

Heidelberg Engineering (Eye Explorer version 1.6.4.0, HRA/

Spectralis Viewing Module version 5.3.2.0). Briefly, total retinal

thickness (TRT) and outer nuclear layer thickness (ONL) were

quantified at eight equidistant loci, 250 mm apart, towards the

periphery along a vertical meridian (superior and inferior central,

mid-central, mid-peripheral and peripheral) in LDA, LD and

control animals. For this, segmentation lines were manually placed

to detect TRT (vertical distance from inner limiting membrane to

retinal pigment epithelium) or ONL (vertical distance between

outer plexiform layer and outer limiting membrane), respectively.

Each line scan covered a distance of ca. 2 mm.

Histology
The rats were sacrificed with CO2, the eyes immediately

enucleated and the anterior parts and lenses removed; for paraffin

sectioning, fixed eyecups (4% paraformaldehyde (PFA) in 0.1 M

phosphate buffer (PB; pH 7.4) for 1 h at 4uC) were dehydrated in

EtOH, immersed in Chloroform and embedded in paraffin.

Radial 5 mm sections were stored at 4uC.

Histologic methods included the quantification of outer nuclear

layer (ONL) thickness and inner/outer segments (IS/OS) length,

which was measured at four equidistant positions, ,300 mm apart,

starting next to the optic nerve along the superior and inferior

hemiretina.

Immunohistochemistry
Tissue sections were deparaffinized and rehydrated. Antigen

retrieval was achieved by pressure cooking in 0.1 M citrate buffer,

pH 6 for 10 minutes, followed by cooling at room temperature

before incubation with the antibodies. Radial sections were

preincubated with phosphate buffered saline (PBS; 50 mM,

pH 7.4) containing 20% normal goat serum and 0.03% Triton

X-100 (Sigma-Aldrich) for 2 hours at room temperature in order

to block nonspecific antibody binding. Subsequently, the sections

were incubated overnight at 4uC with specific primary antibodies.

The following antibodies were used: Rhodopsin clone RET-P1

(Mouse, mAb, 1:400, Millipore Chemicon) and Glial Fibrillary

Acidic Protein (GFAP) Clone G-A-5 (Mouse, mAb, 1:400,

Sigma).The immunoreaction was visualized with Alexa Fluor

488 anti-rabbit antibody (Rockland, Gilbertsville, PA) diluted

Figure 3. Mixed rod-cone b-wave amplitudes compared between LD and LDA rats. (A) Examples of ERG waves elicited by stimulus
strengths rising from 0.3 to 60 cd.s/m2 under dark adapted conditions for both groups (LD, LDA) and three measurements (baseline, 7 days (7 d) and
14 days (14 d) after light damage). A decrease of amplitudes was detected after light damage in the LD group. The application of anesthesia before
light damage (LDA group) could protect retinal function against degeneration. (B) Statistical analysis of b-wave amplitudes at 3 cd.s/m2 under dark
adapted conditions illustrated by diamonds of agreement with mean (middle line within the diamonds) and 95% confidence interval (upper and
lower corners of the diamonds). The dashed circle indicates the statistical significant difference between groups (LDA with significant higher
amplitudes marked black [group and circle]; ANOVA with post hoc Tukey’s analysis p = 0.059 at 7 d and p = 0.009 at 14 d).
doi:10.1371/journal.pone.0035687.g003
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1:750. Controls were carried out by omitting the first antibody. All

micrographs were taken from the superior region of the retina

using an Olympus AX70 microscope. Images shown in figures are

representative for least three different animals for each group.

TUNEL Assay
Terminal deoxynucleotidyltransferase-mediated biotinylated

UTP nick end labeling (TUNEL) staining [20] was performed

using an in situ cell death detection kit (Fluorescein or TMR;

Roche Diagnostics GmbH, Mannheim, Germany) as suggested by

the manufacturer.

Data analysis
ERG data extraction and analysis was performed using

previously described software [21,22]. B-waves were analyzed

after extracting oscillatory potentials using a discrete Fourier

transform algorithm with a low and high cut-off of 75–300 Hz.

For low intensity flashes an estimate of rod sensitivity was fitted

using the Naka-Rushton paradigm [23]. ERG responses of 9 steps

(0.000003–0.03 scot cd.s/m2) were related to stimulus strength

(scot cd.s/m2) and parameters of the Naka-Rushton fit (Vmax as

maximum response; k as stimulus strength needed for 50% of Vmax;

n as gradient of fit) were extracted (Formula (1)).

Figure 4. Representative virtual cross sections from noninva-
sive SD-OCT imaging in LDA and LD retinas after light
exposure. 36 h (upper panel) and 7 d (lower panel). (A, C) LDA cross
sections maintained similar laminar architecture at both time points.
Signal composition in (B) LD retina 36 h after light exposure appeared
similar compared to (A) LDA retina at the same time point. However, (D)
7 days after light exposure LD retina revealed near complete loss of
ONL and photoreceptor inner/outer segments. LD: Animals with light
exposure; LDA: Animals with ketamine-xylazine anesthesia before light
exposure; NFL-IPL: Nerve fiber layer - inner plexiform layer; INL: Inner
nuclear layer; OPL: Outer plexiform layer; ONL: Outer nuclear layer; ELM:
External limiting membrane; I/OS: Inner/outer segment border; RPE/Ch:
Retinal pigment epithelium/Choroid.
doi:10.1371/journal.pone.0035687.g004

Figure 5. In vivo analysis of ONL and total retinal thickness in LD (n = 3), LDA (n = 3) and control retinas (n = 3). 36 h (A, B) and 7 d (C, D)
after light exposure. Measurements were taken at equidistant positions (c = central, midcentral = mc, midperipheral = mp and inferior/superior
periphery = p) on virtual cross sections centered on the optic nerve (ON). All data are reported as mean 6 standard deviation (whiskers). (A) 36 h after
light exposure, animals in the LD group showed increased ONL thickness compared to LDA and control animals. (B) However, total retinal thickness
remained unchanged at this early time point. (C) One week after light exposure, LD animals showed a dramatic loss of ONL thickness, while LDA
animals remained at control levels of ONL thickness. (D) Retinal thinning in the LD group was now also evident in the total retinal thickness. LD:
Animals with light exposure; LDA: Animals with ketamine-xylazine anesthesia before light exposure; Control: No anesthesia or light exposure.
(* = p,0.05, ** = p,0.01, *** = p,0.001).
doi:10.1371/journal.pone.0035687.g005
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A-wave and b-wave amplitudes and implicit times of the mixed

rod-cone responses (0.3–60 scot cd.s/ms), the photopic single flash

and the flicker responses (only b-waves) were analyzed. Addition-

ally, a-wave slopes were compared between groups. Oscillatory

potentials (OP) were analyzed after offline band-pass filtering (75

to 300 Hz) of responses elicited by intense scotopic flash stimuli

(0.3–60 scot cd.s/m2). OPs were automatically calculated as area-

under-the-curve (AUC) by the software between the a-wave and

the peak of the b-wave.

Statistical Analysis and cell counting
Statistical analyses were performed using JMPH software

(version 8.0.2, SAS Institute Inc., Cary, NC, USA). ERG

parameters were compared using intra-individual ratios between

baseline and follow-up examination with analysis of variances

(ANOVA) and Tukey’s post hoc test. All OCT and histological

results are expressed as mean 6 standard deviation (SD) from at

least three animals in each group and significance was tested using

unpaired, two-tailed Students t-test. Significance level was set at

,0.05. Histological and OCT data included measurements of

healthy control rats for descriptive comparison. This group was

measured only once and not used for statistical analysis. For cell

quantifications, pictures of whole radial slices were captured using

Mosaic mode of AxioVisionTM 4.7 at 206magnification. Labelled

cells were counted manually. The total number of cells was

determined by dividing outer nuclear layer (ONL) area through

average cell size. The number of positive cells was then divided by

the total number of ONL cells giving the percentage of positive

cells.

Results

ERG
To assess functional properties and potential differences

between LD and LDA retinas after light damage (Table 1) we

analyzed ERG responses. No statistically significant differences

were found between groups at baseline measurements. Following

light damage the scotopic sensitivity function, described by a

Naka-Rushton fit, yielded significant differences in the maximum

response (Vmax) (Fig. 1) between LD and LDA groups (ANOVA

p = 0.05 at day 7 and p = 0.03 at day 14 after light damage) with

higher amplitudes after light damage for the LDA group,

indicating a positive influence on function and/or remaining

number of rod on-bipolar cells and on Müller cells. k (as a value

for the stimulus strength needed to evoke a half-maximal response

or 50% of Vmax) remained unchanged during the study (ANOVA

p = 0.67 at 7 d and p = 0.68 at 14 d), indicating that remaining

cells functioned properly. This finding suggests that retinal cells of

the rod system are reduced in quantity, but remaining cells are

functionally unaffected.

For high intensity stimuli (0.3–60 cd.s/m2) under scotopic

conditions comparison of a-waves as indicator for the photore-

ceptor function of rods and cones showed higher amplitudes for

the LDA group in comparison to the LD group (Fig. 2) at all time

points, reaching significance only at 14 d (ANOVA p = 0.01 at 3

cd.s/m2). Implicit times of a-waves did not differ between groups

at any time point. This indicates preservation of photoreceptor

function in the LDA group. The a-wave slopes also reached

significantly higher values for the LDA group 14 d after light

exposure (ANOVA p = 0.01 for 3 cd.s/m2). Since the a-wave slope

can be regarded as electrophysiological indicator of the photo-

transduction process in the photoreceptors, this finding suggests a

preservation of the phototransduction and hence of the photore-

ceptors in the LDA group.

Intra-individual ratios of b-wave amplitudes at high intensity

stimuli (0.3–60 cd.s/m2; Fig. 3A) showed higher potentials after

light damage for the LDA group during the follow-up examina-

tions in comparison to the LD group (ANOVA p = 0.009 at 3

cd.s/m2 and 14 d; Fig. 3B) and unchanged implicit times. At this

intensity range, mixed b-wave responses mainly originate from rod

and cone bipolar cells and Müller glia cells. As such, functional

preservation points to a structural rescue of these cell populations

in the LDA compared to the LD group.

Analysis of photopic responses (flicker and single flash) and the

OPs revealed no differences between both groups (data not

shown). Thus, no functional influences were observed on isolated

cone function.

cSLO and OCT
In vivo cSLO and OCT imaging of the retina was performed to

detect structural changes in vivo such as edema formation or

neuronal degeneration [19,24]. Imaging data at the first time

point, 36 h post light damage (Fig. 4A–B, 5A–B), did not reveal

structural changes with normal retinal layering (e.g. outer nuclear

layer, ONL) and physiological total retinal thickness (TRT)

in the LDA group (TRTLDA = 216.13 mm69.36 SD, ONLLDA =

60.29 mm66.13 SD) compared to control animals (TRTcontrol =

209.67 mm616.85 SD, ONLcontrol = 54.04 mm66.92 SD). Con-

versely, LD animals demonstrated a significant increase in ONL

Figure 6. Retinal sections from LD and LDA retinas. 36 h (left
panel) and 7 d (right panel) after light exposure. Hematoxylin and eosin
staining (A–D) GFAP staining (E–H) and rhodopsin staining (I–L). 7 d
after light exposure, LD retinas showed an important decrease in the
photoreceptor cell numbers and disappearance of IS/OS, while
morphological degenerative changes in the INL and GFAP expression
on Müller cells indicating gliosis became apparent. Ketamine-xylazine
anesthesia before light exposure preserved retina morphology,
increased photoreceptor survival and prevented gliosis LD: Animals
with light exposure; LDA: Animals with ketamine-xylazine anesthesia
before light exposure. GCL: ganglion cell layer; IPL: inner plexiform
layer; INL: inner nuclear layer; OPL: outer plexiform layer; ONL: outer
nuclear layer; IS/OS: inner/outer segments.
doi:10.1371/journal.pone.0035687.g006
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thickness (ONLLD = 72.17 mm68.14 SD) compared to LDA (p,0.01)

at this early time-point, while no significant increase was found at the

level of total retinal thickness (TRTLD = 212.08 mm618.72 SD;

p = 0.35). However, one week after light damage (Fig. 4C–D, 5C–D),

both total retinal thickness and outer nuclear layer thickness

were significantly reduced in the LD vs. the LDA group

(TRTLD = 161.08 mm629.04 SD vs. TRTLDA = 219.38 mm612.24

SD, pTRT,0.01 and ONLLD = 30.50 mm615.18 SD vs. ONLLDA =

59.42 mm67.14 SD, pONL,0.01). In vivo imaging data thus suggests

retinal edema formation 36 h after light damage and subsequent loss of

total and more specifically ONL thickness, which would be expected in

photoreceptor cell death [19,24]. The complete set of data is available

as supplemental data (Table S1).

Histology
36 h after light-induced damage. Representative sections

from the superior retina are shown in Figure 6A and B. No

difference was found regarding GFAP staining (Fig. 6E and F) or

Rhodopsin (Fig. 6I and J) immunolabelling between LDA and LD

groups. Rhodopsin staining showed a normal distribution and was

restricted to photoreceptor OS. We performed TUNEL assay to

detect cell death [20]. At this early time point, LD retinas

demonstrated higher levels of TUNEL positive cells in the ONL

when compared to LDA (LD: 3.94%60.71 SD, n = 3; LDA:

0.42%60.36 SD, n = 3, p,0.003) (Fig. 7A, B and E). In control

retinas without induced light damage, no TUNEL-positive cells

were observed (data not shown). Exposure to high levels of light

induces shortening of photoreceptor inner and outer segments (IS/

OS) (Fig. 8A) in both, the LD and the LDA groups compared to

control retinas. No differences of IS/OS length were observed

between inferior and superior retina. Both groups showed a strong

reduction of the ONL thickness restricted to the superior retina;

ONL thickness in the inferior retina was normal (Fig. 8B).

Interestingly, increased ONL thickness as observed in OCT

imaging of LD retinas (Fig. 4 and 5) was not found in the ex vivo

histological observation. This might be due to tissue processing

(e.g. dehydration and fixation), which would be expected to

obscure e.g. retinal edema formation [19].

7 d after light-induced damage. Inferior to superior cross-

sections through the retina prepared 7 days after light exposure

Figure 7. TUNEL staining and quantification of photoreceptor cell death in LD and LDA retinas. 36 h (A and B) and 7 d (C and D) after
light exposure. At both points, significant protection was seen with ketamine-xylazine anesthesia. (*** = p,0.001). Mean + SD, n = 3. LD: Animals with
light exposure; LDA: Animals with ketamine-xylazine anesthesia before light exposure. GCL: ganglion cell layer; IPL: inner plexiform layer; INL: inner
nuclear layer; OPL: outer plexiform layer; ONL: outer nuclear layer.
doi:10.1371/journal.pone.0035687.g007
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revealed a pronounced loss of photoreceptors in the LD group

when compared to the LDA group (6C and D) and demonstrated

a statistically significant reduction of the ONL thickness in the

superior retina (Fig. 8D, p,0.01). This result matches our OCT

observations (Fig. 5C). The LD group showed a clear reduction in

the IS/OS length in the remaining photoreceptor cells,

predominantly in the superior retina (Fig. 8C, p,0.001).

Reduction of OS was confirmed by absence of rhodopsin

immunolabelling (Fig. 6 L). In the LD group GFAP

immunoreactivity was up-regulated indicating Müller cell gliosis

(Fig. 6H). At this later time point the number of TUNEL positive

cells decreased in both groups, however, the percentage of stained

cells in the ONL was still significantly increased in the LD group

compared to the LDA retinas (LD: 2,89%60.19 SD, n = 3; LDA:

0.02%60.02 SD, n = 3, p,0.001) (Fig. 7C–E). The complete set of

data is available as supplemental data (Table S2).

Discussion

Here we present novel evidence that anesthesia with ketamine-

xylazine has a protective effect on photoreceptor cell death caused

by light exposure in rats. Several trials indicate neuroprotective

effects of anaesthetic drugs on the CNS [25] with various degrees

of neuroprotection being observed when different paradigms of

intravenous, inhaled or combined anesthesia are compared (for a

summary of the current literature of the most commonly used

anaesthetic drugs and their role in neuroprotection see Schifilliti et

al 2010) [5]. Protective effects of anesthetics, specifically on the

retina, have also been described before [5,8,10,13] and several

explanations for its mechanism were suggested. However, the

great diversity of protocols e.g. in light-induced retinal degener-

ation experiments makes it difficult to conclusively interpret these

results. Numerous anesthetics and administration procedures,

different ages and animals used, diverse parameters to measure the

retinal damage and different techniques used to induce the light

damage are some examples [8,13,26]. Several studies point to a

neuroprotective effect of intravenous or volatile anesthetics [5] also

on axotomized retina [8] and animal models with light-induced

retinal degeneration [10,13].

Anesthetics like halothane can reversibly inhibit metabolic

rhodopsin regeneration and thus prevent rhodopsin from

absorbing high numbers of photons during light exposure [13].

In their study, Keller et al. found that anesthesia with halothane

prevented retinal degeneration induced by white light, but not by

Figure 8. Comparison of photoreceptors IS/OS length and ONL thickness between LD, LDA and control retinas. Measurements on
histological retinal sections 36 h (A, B) and 7 d (C, D) after light exposure. The equidistant positions (c, mc, mp and p, inferior and superior) of retinal
sections were analyzed around the optic nerve (ON). Measurements are shown as mean (point) and standard deviation (whiskers). 36 h after light
exposure, animals showed a reduction in the IS/OS length, in inferior and superior retina (B) and a decrease of ONL thickness was observed only in the
superior retina in both LD and LDA. (B). 7 d after light exposure, an important decrease in the IS/OS length and in the ONL thickness were found in LD
group when compare to LDA group in the superior retina. (n = 3) LD: Animals with light exposure; LDA: Animals with ketamine-xylazine anesthesia
before light exposure; Control: No anesthesia or light exposure. (* = p,0.05, ** = p,0.01, *** = p,0.001).
doi:10.1371/journal.pone.0035687.g008
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blue light [13]. Similar results were observed by Grimm et al.

(2001) who concluded that damage related with blue light was

rhodopsin mediated [26]. Another study confirmed that light

damage only occurred when the retina was supplied with 11-cis

retinal, the chromophore of rod and cone opsins. These data

suggested that it was indeed the halothane mediated block of

regenerated 11-cis retinal reincorporation that conveyed the

neuroprotective effect against light damage [10].

The quality of light used to induce retinal degeneration, its

exposure duration and intensity determine the severity of the

degeneration in light-induced damage [10]. Our light exposure

paradigm with an emission spectrum peaking in the blue range

results in rapid retinal degeneration, comparable with the damage

observed after short-term exposure to blue light [13,26]. Similar to

the effects observed under halothane anesthesia [13], in our study,

a single injection of ketamine-xylazine before light exposure was

enough to prevent light-induced damage.

Because ketamine is a poor muscle relaxant [14] it is commonly

used in combination with other anesthetics such as xylazine.

Xylazine is an alpha2 adrenergic agonist, similar to clonidine and

produces its effects by interaction with central and peripheral

alpha2adrenoreceptors, and it is used in veterinary medicine as a

sedative, analgesic and muscle relaxant [27–29]. However,

neuroprotective effects of ketamine have been seen with or

without using xylazine, suggesting that the neuroprotective effects

might be related with the use of ketamine [28].

While ketamine-xylazine has been shown to slow but not block

metabolic rhodopsin regeneration in rats [13], there are other

mechanisms that have been suggested to explain protection against

light-induced damage. These include activation of nitric oxide

synthase, increased intracellular calcium, generation of oxidative

stress and disturbed mitochondrial function [10,30]. Interestingly,

it has been shown that ketamine increases neuronal and astroglial

viability, preserves neuronal morphology, reduces cell swelling

after anoxia-hypoxia or glutamate injury, preserves cellular energy

status after ischemic insults and preserves ATP production [5,31].

Ketamine is a non-competitive antagonist of NMDA receptors

and is known to inhibit the transcriptional activity of the nuclear

factor kappa Beta (NF-kappaB) in CNS [5,32,33]. NF-kappaB is

activated in many neurodegenerative diseases and also in the

inherited retinal degeneration model, rd mice [34] and light-

induced retinal degeneration in mice [35].

In line with previous reports [36,37], we have found a localized

region in the superior retina of LDA and LD rats that shows

particularly light-induced outer segment shortening and photore-

ceptor loss. The reason for preferential damage in this sensitive

region is not completely understood but may be related to the

greater rhodopsin levels and ROS length in the superior

hemisphere of the rat eye [38].

The primary purpose of this study was to investigate, whether

the protocol for anesthesia using ketamine-xylazine, which is very

common in vision science and beyond, demonstrates a neuropro-

tective effect in the light damage paradigm. The results of this

study clearly show a strong and potentially confounding effect,

which previously had remained undetected. This finding has

potential implications on the interpretation of existing literature

and future experimental designs using light damage to induce

retinal degeneration in animals. However, the cross sectional

design and relatively small number of animals in the morpholog-

ical assessments (cSLO/SD-OCT, Histology) warrant further

studies to assess the biologic relevance of the neuroprotective

effect. Further studies are needed to dissect the mechanism of

ketamine-xylazine neuroprotection and analyze, whether it also

affects other forms of retinal degeneration. It would also be

interesting to compare the mechanism of halothane vs. ketamine-

xylazine, including measurement of rhodopsin levels during light

damage exposure and also pre-treatment with each drug of the

combination by itself.

In summary, our data indicate that pre-treatment with

ketamine-xylazine anesthesia protects retinas against light-induced

damage, reducing photoreceptor cell death. Consequently, the

neuroprotective properties of this widely used anesthetic mixture

must be taken into account when interpreting results of studies on

neuroprotection in these animals.
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