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Abstract

Normal tissue toxicity still remains a dose-limiting factor in clinical radiation therapy. Recently, plasminogen activator
inhibitor type 1 (SERPINE1/PAI-1) was reported as an essential mediator of late radiation-induced intestinal injury. However,
it is not clear whether PAI-1 plays a role in acute radiation-induced intestinal damage and we hypothesized that PAI-1 may
play a role in the endothelium radiosensitivity. In vivo, in a model of radiation enteropathy in PAI-1 2/2 mice, apoptosis of
radiosensitive compartments, epithelial and microvascular endothelium was quantified. In vitro, the role of PAI-1 in the
radiation-induced endothelial cells (ECs) death was investigated. The level of apoptotic ECs is lower in PAI-1 2/2 compared
with Wt mice after irradiation. This is associated with a conserved microvascular density and consequently with a better
mucosal integrity in PAI-1 2/2 mice. In vitro, irradiation rapidly stimulates PAI-1 expression in ECs and radiation sensitivity is
increased in ECs that stably overexpress PAI-1, whereas PAI-1 knockdown increases EC survival after irradiation. Moreover,
ECs prepared from PAI-1 2/2 mice are more resistant to radiation-induced cell death than Wt ECs and this is associated
with activation of the Akt pathway. This study demonstrates that PAI-1 plays a key role in radiation-induced EC death in the
intestine and suggests that this contributes strongly to the progression of radiation-induced intestinal injury.
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Introduction

Radiation therapy is crucial in the therapeutic arsenal used for

more than half of cancer patients. However, normal tissue side

effects associated with this treatment limit the effective radiation

dose than can be delivered to the tumor [1,2]. Most patients

treated with ionizing radiation will develop acute complications

and 5 to 10% chronic late damage such as fibrosis. Initiation and

progression of radiation-induced injury involves different mecha-

nisms such as the coagulation system activation, DNA repair, cell

death, inflammation, endothelium activation, angiogenesis and

matrix remodeling [3].

The plasminogen activator (PA) system, which controls the

formation and activity of plasmin, plays a key role in vascular

homeostasis. PAI-1 (or standard gene symbol SERPINE1) belongs

to the family of serine protease inhibitors and is the primary

physiologic inhibitor of plasminogen activators in vivo [4]. Both

plasminogen activators (u-PA and t-PA) convert plasminogen to

plasmin, which degrades insoluble fibrin. PAI-1 inhibits u-PA and

t-PA and thus reduces plasmin generation. PAI-1 is not only an

antifibrinolytic molecule, but also plays a role in extracellular

matrix remodeling by reducing plasmin-dependent matrix metal-

loproteinase (MMP) activation. The role of PAI-1 in fibrosis has

been widely studied and it has been shown that PAI-1 is

upregulated in several fibrotic diseases [5–8].

Radiation-induced endothelial injury has been described as a

crucial event in initiation of normal tissue damage [1]. Radiation-

induced activation of endothelial cells (ECs) is associated with a

pro-inflammatory, pro-thrombotic and antifibrinolytic phenotype

[9]. Precise regulation of the fibrinolytic system determines

vascular homeostasis, but also physiological processes such as

wound healing. In vitro radiation increases PAI-1 expression in

cancer [10,11] and normal cells [12–14]. Moreover, PAI-1

overexpression has been described in radiation-induced nephro-

sclerosis in rats [15,16] and in human radiation enteritis [17]. Our

group and others have described upregulation of PAI-1 in ECs in

vitro and in vivo after irradiation [12,18,19], and radiation-induced

intestinal damage in patients treated with radiotherapy is

associated with upregulation of PAI-1 in the endothelium [12].

Recently, PAI-1 was demonstrated as playing a crucial role in

radiation-induced intestinal fibrosis. In a model of radiation-

induced enteropathy in mice, PAI-1 knockout mice are protected

against intestinal radiation-induced injury with increased survival

and better intestinal function compared with wild-type (Wt) mice

[12]. However, the role of PAI-1 in radiation-induced acute side

effects is still unclear. As described in our previous study, 40 to

45% of Wt mice died within 10 days after localized irradiation at

19 Gy, whereas no PAI-1 knockout mice died. The two survival

curves separate within two days after irradiation, suggesting a
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contribution of PAI-1 in early events occurring after radiation

exposure. Among acute effects observed in normal tissue response

to high-dose radiation, depletion of microvascular and stem cell

compartments is clearly determinant [20,21]. Most studies show

that gastrointestinal syndrome following total-body irradiation in

mice is in part due to a destruction and sterilization of

radiosensitive compartments such as stem/clonogenic epithelial

cells and microvascular endothelium. PAI-1 has been described as

playing either pro- or anti-apoptotic roles [22–24]. PAI-1 has an

anti-apoptotic and neurotrophic action in the central nervous

system [25], and is pro-angiogenic and anti-apoptotic in vascular

tumor cells [26] and vascular smooth muscle cells [27,28].

Paradoxically, primary ECs isolated from aortas of PAI-1 2/2

mice are protected from wortmannin-induced apoptosis and have

enhanced rates of proliferation [29,30].

Here we hypothesized that PAI-1 may influence EC radiosen-

sitivity and the aim of this work was to explore the effects of

genetic deficiency on radiation-induced cell death of radiation-

sensitive compartments of the intestine. We report a critical role of

PAI-1 in radiation-induced microvascular EC apoptosis.

Materials and Methods

Mice and irradiation procedures
Experiments were performed on Wt C57BL/6J (PAI-1 +/+)

and PAI-1 2/2 mice (Charles River Laboratories) in compliance

with legal regulations in France for animal experimentations. In

total, 160 animals (10–12 weeks old) were included in this study.

Animal care and experimental procedures were approved by the

ethics committee of the Institute for Radiological Protection and

Nuclear Safety (number T23, 05–09). Radiation-induced enter-

opathy was produced by exposure of a localized intestinal portion

to a single ionizing radiation dose as previously described [12].

Briefly, mice were anesthetized with isoflurane and, after

laparotomy, a 3-cm long intestinal segment (10 cm from the

ileocecal valve) was exteriorized and exposed to a single dose of 19

Gy gamma irradiation (Co60 source, dose rate 1.2 Gy/min). Sham

irradiation was performed by maintaining the intestinal segment

exteriorized without radiation exposure. After radiation exposure

or sham-irradiation, the exposed segment was returned to the

abdominal cavity and peritoneum/abdominal muscles and skin

were separately closed with interrupted sutures.

Histology and immunohistochemistry
To perform global analyses of the irradiated tissues, histology

and immunohistochemistry analyses were performed on different

groups of animals. For routine histology analysis, intestines were

fixed in 4% formaldehyde solution and embedded in paraffin.

Longitudinal sections (5 mm) were stained with hematoxylin-eosin-

saffron. Radiation injury was determined in a blinded manner

independently by two authors using a described and validated

radiation injury scoring system [12]. For immunohistochemistry

experiments, intestinal tissues were embedded with Tissue-Tek

OCT mounting media and frozen in isopentane cooled by liquid

nitrogen. CD31/TUNEL and E-Cadherin/TUNEL double

staining was performed on 5 mm frozen sections after fixation

with 4% paraformaldehyde for 20 minutes. For CD31 immuno-

staining, sections were permeabilized with a PBS-0.1% Triton-

0.1% sodium citrate solution for 2 minutes at 4uC and nonspecific

sites were blocked in 3% Normal Goat Serum (Dako) diluted in

PBS. Sections were then incubated with anti-CD31 antibody

(clone 390, Abcam) 1:50e for 1 hour at room temperature. For E-

cadherin immunostaining, sections were incubated in PBS-1%

BSA-0.2% nonfat milk-0.3% Triton for 10 minutes and were

incubated with anti-E-cadherin antibody (rat monoclonal ECCD-

2, Zymed) at a dilution of 1:200 for 1 hour at room temperature.

Negative controls were not exposed to primary antibodies. All

samples were incubated with an Alexa fluor 568-conjugated goat

anti-rat antibody (Molecular Probes) 1:200 for 1 hour. The first

immunostaining was fixed with 4% paraformaldehyde for

10 minutes. TUNEL staining was performed using the In situ Cell

Death Detection Kit (Roche Applied Science) according to the

manufacturer’s instructions. The ECs and apoptotic cells were

counted in the lamina propria of 60 to 70 villi (full longitudinal

sections of complete villi) from seven or eight different animals for

each group. The apoptotic epithelial cells were counted in about

100 to 150 crypt sections per sample from the same animals.

Analyses of intestinal vascular density were performed after

CD31/Sytox Green staining of 20 mm frozen sections. After

fixation with 4% paraformaldehyde and permeabilization with

TBS-0.15% Triton, sections were incubated with anti-CD31

antibody for 2 hours followed by incubation with Alexa fluor 568-

conjugated goat anti-rat antibody. Nuclei were counterstained

with Sytox Green (Invitrogen) according to the manufacturer’s

instructions. Confocal analyses were performed on a Bio-Rad

MRC 1024 ES confocal imaging system. Z-stack images were

collected at 1 mm steps. Images were imported and analyzed with

Histolab software. Red fluorescence was automatically detected

and its area was related to the villus area.

Total RNA isolation, reverse transcription and real-time
PCR

Total RNA was prepared with the total RNA isolation kit

(Rneasy Mini Kit; Qiagen, Valencia, CA). Total RNA integrity

was analyzed using Agilent 2100 and after quantification on a

NanoDrop ND-1000 apparatus (NanoDrop Technologies, Rock-

land DE), reverse transcription was performed using the High

Capacity Reverse Transcription Kit (Applied Biosystems) accord-

ing to the manufacturer’s instructions. Pre-developed TaqManH
Gene Expression Assays (Applied Biosystems) were used and PCR

was performed with the ABI PRISM 7900 Sequence detection

system (Applied Biosystems). PCR fluorescent signals were

normalized to a PCR fluorescent signal obtained from the

housekeeping gene GAPDH (for in vitro experiments) or 18S

(for in vivo experiments). Relative mRNA quantification was

performed by using the comparative DDCT method.

Cell culture and irradiation
Human umbilical vein endothelial cells (HUVECs) were

obtained from Lonza and cultured in EGM-2 MV culture

medium (Lonza) according to the manufacturer’s instructions.

Cells were used between passages 3 and 6 and were irradiated with

a 137Cesium source. Levels of living cells after irradiation were

determined by counting viable cells using a hemocytometer and

the trypan blue exclusion method.

Murine endothelial cells: preparation and
characterization

Murine primary aortic ECs were isolated from Wt and PAI-1

2/2 mice. Wt and PAI-12/2 mice (six mice/preparation) were

anesthetized by intraperitoneal injection of a mixture of ketamine

(100 mg.kg21) and xylazine (10 mg.kg21). The rib cage was cut

and we identified the aortic arch, which is attached to the heart

and links the kidney and iliac branch point. The aortic tree was

then placed in PBS to remove debris and blood and transferred

into complete medium EBM2-MV (Lonza) at room temperature.

Aortas were cut into small sections (2 to 3 mm) and opened
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longitudinally. Each segment was positioned lumen side down

onto culture dishes coated with Matrigel (Becton Dickinson) and

placed in incubator at 37uC. After 3 days we observed some

outgrowth from the tissue and culture medium was changed every

3 days At each change, one part of the Matrigel was removed,

allowing the cells to adhere to the plastic. After twenty days, cells

were trypsinized and labeled with CD105-PE antibody (e-

biosciences d:1/25). Cells were sorted by flow cytometry using a

BD Facsvantage TM apparatus. Sorted CD105-positive cells were

directly recovered in complete medium. The purity of the EC

population was checked after labeling with CD105-PE and

CD106-FITC (e-biosciences) antibodies and flow cytometry

analyses. More than 92- 96% of cells passed were CD105- and

CD106-positive cells. Cells were routinely cultured in EBM2-MV

and purity of ECs was checked until 12 passages. Before

experiments using murine ECs from Wt and PAI-1 2/2 mice,

analyses of phenotype were completed by immunohistochemistry

with CD105, CD106, CD31 and vWf labeling and mRNA

detection with real-time PCR of EC markers: FLt-1, KDR,FLt-4,

angiopoietin-1, angiopoeitin-2, Tie-2, VEGF-A, VEGF-B,

CD105, CD106, CD54/ICAM-1, u-PA, tPA, uPAR and PAI-1.

Tube formation assay
The ability of murine ECs to form capillary-like structures was

studied. Briefly, 12-well culture plates were pre-coated with 650 ml

of Matrigel. ECs obtained from Wt or PAI-1 2/2 mice were

plated at the same density and were irradiated 2 hours later at 10

or 20 Gy. 24 hours after irradiation, capillary like-structures were

quantified. For each individual point 8 images in different view-

fields were realized with size-calibrated fields of vision using a

standard microscope interfaced with Histolab software. In each

image branch points were counted and averaged.

Establishment of PAI-1-expressing stable cell lines
Construction of pCMV6-Neo-PAI-1 plasmid: pCMV6-Neo

plasmid and pCMV6-XL5-PAI-1 plasmid (both from Origene)

were digested with NotI (Promega). Digested pCMV6-Neo

plasmid was then dephosphorylated with TSAP (Promega).

pCMV6-Neo and pCMV6-XL5-PAI-1 digestion products were

each gel-purified (Promega Wizard SV Gel and PCR Clean-Up).

The 538 kb dephosphorylated and NotI-digested pCMV6-Neo

fragment was ligated with the 3.2 kb NotI-digested PAI-1

fragment using Quick T4 DNA Ligase (Biolabs). The reaction

mixtures were purified with the Geneclean III kit (QBiogene) and

transformed into chemocompetent E. coli strain XL10-Gold

(Stratagene). Transformation mixtures were spread on LB agar

plate with ampicillin and plasmid DNA was obtained from

minicultures (Promega Wizard Plus SV Minipreps). Transfor-

mants were screened by ApaLI digestion and one positive clone

was amplified by LB culture supplemented with 0.1 mg/ml

ampicillin. Pure plasmid was obtained using Qiagen Endofree

Plasmid Maxi Kit. pCMV6-Neo-PAI-1 plasmid DNA integrity

was checked by agarose gel analysis after ApaLI digestion and

confirmed by sequencing. HUVECs (passage 3) were transfected

with pCMV6-Neo-PAI-1 plasmid using the Amaxa nucleofection

method according to the manufacturer’s instructions. Cells were

cultured for 7 days in complete medium supplemented with

100 mg/mL of G418 (Invitrogen). Clones were obtained after

three passages and culture complete medium supplemented with

50 mg/mL of G418. Overexpression of PAI-1 was confirmed by

western blot for each clone compared with control HUVECs used

at the same passage.

Clonogenic assays
The radiosensitivity of HUVECs overexpressing PAI-1 was

assayed by clonogenic assay. Briefly, cells were seeded in 6-well

culture plates (1000 cells/well) and, three hours after plating, were

irradiated at different doses (1, 2, 3 and 4 Gy). Twelve days after

irradiation, cells were fixed and stained with an absolute methanol

solution containing 0.25% crystal violet and 3% paraformalde-

hyde. Colonies containing more than 50 cells were counted and

the surviving fraction was calculated according to the following

formula: (Number of colony counts/Number of cells plated)6
(plating efficiency), where plating efficiency was defined as

(Number of colony counts)/(Number of cells plated for non-

irradiated controls). The surviving fraction at 2 Gy and survival

curves were generated for each clone and for control HUVECs by

combining data from two experiments with each experiment

performed in triplicate.

RNA interference
siRNA targeting PAI-1, PTEN or PDK-1 were from Dharma-

con (Thermo Scientific). Cells were transfected with 100 nM of

siRNA using Dharmafect as transfection reagent. Two days after

transfection, cells were lysed for RNA and protein extraction as

previously described. Knockdown efficiency was measured by real-

time PCR and/or western blot.

Western blotting
Total proteins were extracted using RIPA buffer supplemented

with phosphatase and protease inhibitors. Protein concentration

was determined using BCA assay (Sigma Aldrich) and equal

amounts of protein were resolved by SDS-PAGE. The following

protein-specific primary antibodies were used: anti-PAI-1 (Novo-

castra Laboratories Ltd, Newcastle, UK), anti-GAPDH (Biode-

sign), anti phospho-Akt (ser473), anti-Akt, anti-Phospho PTEN

(ser380), anti-PTEN , anti Phospho-PDK-1 (ser241), anti BCL2,

anti-BCL-XL, anti phospho-p38 MAPK (Thr180/Tyr182), anti-

phospho Erk1/2 (Thr202/Tyr204), anti-NF-kB p65 (Cell Signal-

ing Technology).

Statistical analyses
All data are presented as mean 6 SEM. For in vivo

experiments, differences between different groups were tested for

statistical significance using ANOVA. The 2-tailed Student’s t test

was used for all other experiments. A p value ,0.05 was

considered statistically significant.

Results

PAI-1 genetic deficiency is associated with reduced acute
and late radiation-induced intestinal injury

In this study, we chose to use a model of localized irradiation of

an intestinal segment. In this model, mRNA levels of components

involved in the plasminogen activation system were determined by

real-time PCR. Initiation of radiation-induced enteropathy in

mice is associated with a strong upregulation of PAI-1 mRNA level

and a slight upregulation of uPAR (Figure S1), with no

modification of uPA and tPA. These results suggest that PAI-1 is

the most probably part of the plasminogen activation system

involved in radiation-induced enteropathy. Radiation injury

scoring revealed that PAI-1 2/2 mice are protected against

radiation damage in both the late and acute phases, confirming

previous results [12,31] (Figure 1A). Detailed analyses performed

at 3 and 14 days showed that differences in radiation injury

between Wt and PAI-1 2/2 mice are strongly associated with

PAI-1 and Radiation-Induced Endothelial Cell Death
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protection of the mucosae (Figure 1B–C). This was confirmed by

the quantification of mucosal integrity 3 days after irradiation,

showing that the length of the crypt/villus axis was reduced in Wt

but not in PAI-1 2/2 mice (Figure 1D).

PAI-1 genetic deficiency is associated with reduced
radiation-induced apoptosis in vivo

Radiation-induced apoptosis is a crucial event in the acute

effects of radiation. mRNA analyses determined in total intestinal

tissues showed that genetic deficiency of PAI-1 is not associated

with differences in mRNA levels of apoptosis/survival-related

genes such as Bax, Caspase3, Bcl-2, Bcl-XL, Survivin, AKT1 and

PTEN (Table S1). Moreover, irradiation increased Bax and Bcl-

XL mRNA levels and decreased survivin mRNA levels, but no

difference was observed between Wt and PAI-1 2/2 mice (Figure

S2). Irradiation had no effect on mRNA levels of caspase3, Bcl2,

AKT1 and PTEN (Figure S2). These results obtained in total

tissues suggest that differences between Wt and PAI-1 2/2 mice

in response to radiation injury are related to a specific

compartment and not due to a global genetic-related effect. In

order to evaluate the effect of PAI-1 deficiency in crypt epithelial

cell death, E-cadherin/TUNEL double immunostaining was

performed (Figure 2A). The number of apoptotic epithelial cells

per crypt section increased 4, 5 and 24 hours after irradiation in

both Wt and PAI-1 2/2 mice, and no difference was found

between Wt and PAI-1 2/2 mice at 4 and 24 hours. We

observed a slight decrease in the number of apoptotic epithelial

cells per crypt section for irradiated PAI-1 2/2 mice compared

with irradiated Wt mice for the 5 hours time point (Figure 2B–C).

These results suggest that another radiosensitive compartment

may be involved. Single TUNEL staining showed that irradiation

induced a significant increase in the number of TUNEL-positive

cells in the villus lamina propria of Wt and PAI-12/2 mice with a

5.9-fold increase at 4 hours and a 9-fold increase at 5 hours in Wt

mice, but only a 3.4-fold increase at 4 hours and a 4.7-fold

increase at 5 hours in PAI-12/2 mice (Figure S3). In order to

determine the level of EC apoptosis, we performed double staining

of TUNEL and CD31 as a marker of ECs. Apoptotic ECs were

identified by green nuclei surrounded by red CD31 staining

(Figure 3A). Quantification of apoptotic ECs in the lamina propria

of the villus showed an increase of apoptotic ECs 4 and 5 hours

after radiation exposure in both strains, but the effect was stronger

(p,0.05) in Wt mice compared with PAI-1 2/2 mice (Figure 3B–

C). The percentage of apoptotic ECs/total ECs revealed that there

Figure 1. PAI-1 genetic deficiency is associated with reduced acute and late radiation-induced intestinal injury. Global radiation injury
score (RIS) in Wt and PAI-12/2 mice 3, 14 and 42 days after irradiation (A). Detailed spider histograms of RIS 3 and 14 days after irradiation (n = 8 to
10 mice/group) (B). RIS includes A: mucosal ulceration, B: epithelial atypia, C: thickening of subserosa, D: vascular sclerosis, E: intestinal wall fibrosis, F:
ileitis cystica profunda, G: lymph congestion. Representative images of intestinal damage 3 days after 19 Gy in Wt and PAI-1 2/2 mice (C).
Quantitative assessment of mucosal integrity in mice 3 days after 19 Gy (D). (n = 8 to 10 mice/group) # p,0.05 versus the three other groups.
doi:10.1371/journal.pone.0035740.g001
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are 35% and 37% of ECs undergoing apoptosis respectively 4 and

5 hours after radiation exposure in Wt mice, whereas there are

only 7% and 11% of apoptotic ECs in PAI-12/2 mice

(Figure 3D). Moreover, PAI-1 genetic deficiency is associated

with reduced microvascular EC damage, by decreasing the

percentage of villi showing significant EC apoptosis (3 or more

positive cells per villus) (Figure 3E). Microvascular network density

after irradiation was assessed using CD31 immunostaining and

computerized by confocal microscopy (Figure 4A). Staining areas

of CD31 were compared between the two irradiated groups and

the results showed greater microvascular density 24 hours after

irradiation in PAI-12/2 mice compared with Wt mice

(Figure 4B–C).

PAI-1 2/2 genetic deficiency in endothelial cells is
associated with radiation resistance in vitro

ECs were prepared from Wt and PAI-1 2/2 mice (Figure

S4A–D) and the endothelial phenotype was confirmed by flow

cytometry, immunohistochemistry and detection of a panel of

endothelial-specific transcripts by real-time PCR (Figure S4E–F).

Interestingly, irradiation increased PAI-1 expression in Wt ECs

(Figure S4G). In order to assess EC functionality after irradiation,

Wt and PAI-12/2 cells were irradiated at 10 and 20 Gy in

Figure 2. PAI-1 contributes slightly to radiation-induced intestinal epithelial cell apoptosis in crypts. High magnification of double
TUNEL/E-cadherin staining in crypts in Wt mice 5 hours after 19 Gy. Arrows indicate apoptotic epithelial cells. Nuclei were counterstained with DAPI
(blue) (A). Representative double TUNEL/E-cadherin staining in Sham (A–C) and irradiated (B–D) Wt (A–B) and PAI-1 2/2 (C–D) mice 5 hours after 19
Gy. (B). Quantitative assessment of TUNEL+/E-cadherin+ cells in crypts in Wt and PAI-1 2/2 mice 4, 5 and 24 hours after irradiation (C). Radiation-
induced epithelial cell apoptosis in crypts was stimulated in both types of mice. The number of apoptotic epithelial cells was higher in Wt mice than
in PAI-1 2/2 mice only 5 hours after irradiation. (n = 6 mice/group) # p,0.05 versus sham mice with the same genotype. * p,0.05 between
irradiated Wt and PAI-1 2/2 mice.
doi:10.1371/journal.pone.0035740.g002

PAI-1 and Radiation-Induced Endothelial Cell Death
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Figure 3. PAI-1 contributes strongly to radiation-induced intestinal endothelial apoptosis. High magnification of double TUNEL/CD31
staining in the villus lamina propria in Wt mice 4 hours after 19 Gy. Arrows indicate apoptotic endothelial cells. Nuclei were counterstained with DAPI
(blue) (A). Representative double TUNEL/CD31 staining in Sham (A–C) and irradiated (B–D) Wt (A–B) and PAI-1 2/2 (C–D) mice 5 hours after 19 Gy

PAI-1 and Radiation-Induced Endothelial Cell Death
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Matrigel. 24 hours after irradiation, PAI-1 2/2 ECs were still

able to form vascular-like networks, whereas irradiation of Wt ECs

was associated with reduced ability to form vascular-like networks

(p,0.05 between Wt and PAI-12/2 cells after 20 Gy; Figure 5A).

To complete these results, ECs were plated on different coatings to

increase cell adhesion. One and two days after 20 Gy irradiation,

live cells were quantified and the results showed that PAI-1 2/2

ECs were more resistant than Wt ECs (Figure 5B).

Overexpression or knockdown of PAI-1 in endothelial
cells influences sensitivity to ionizing radiation

mRNA and protein levels of PAI-1 rapidly increased after

irradiation in HUVECs (Figure S5). In order to know if PAI-1

plays a role in EC radiation sensitivity, stable HUVEC clones

overexpressing PAI-1 protein at different levels were prepared

(Figure 6A–B). Clonogenic assays were performed on 3 different

clones and results were compared with those for control HUVECs.

Results showed that overexpression of PAI-1 was associated with

increased radiation sensitivity. Figure 6C shows that the surviving

fraction for each clone decreased for irradiation doses from 0 to 4

Gy, and we show a reduced surviving fraction at 2 Gy in HUVECs

overexpressing PAI-1 compared with control HUVECs

(Figure 6D). Knockdown of PAI-1 in human ECs was performed

using siRNA. Silencing efficiency was confirmed by real-time PCR

and western blot (Fig S6). Western blot experiments showed that

PAI-1 siRNA blunted the radiation-induced overexpression of

PAI-1 (Figure 7A–B). Silencing of PAI-1 was associated with an

increase in the percentage of living cells 24 hours after irradiation

compared with non-targeting siRNA transfected cells (Figure 7C–

D).

PAI-1 influences the pro-survival Akt activation by a PTEN
dependent and a PDK-1 independent mechanism

A Taqman low density apoptosis array approach was used to

explore the effect of a human PAI-1 recombinant in 20 Gy

irradiated HUVEC cells (Fig S7). Interestingly TLDA analysis

reveals that levels of both pro-apoptotic and anti-apoptotic related

genes are regulated in HUVECS exposed to 20 Gy with a strong

increase of FAS and a strong decrease of the pro-survival gene

BIRC5. No effect was observed following treatment with

exogenous human PAI-1 recombinant compared with a latent

form of PAI-1. These results suggest that PAI-1 does not influence

radiation sensitivity of cells directly by an exocrine effect but

probably by influencing intracellular signaling. So, we next

(B). Radiation-induced endothelial intestinal apoptosis was stronger in irradiated Wt mice than in irradiated PAI-1 2/2 mice 4 hours after irradiation.
Nuclei were counterstained with DAPI (blue). Quantitative assessment of TUNEL+/CD31+ cells in the villus lamina propria in Wt and PAI-1 2/2 mice
(C). Percentage of apoptotic endothelial cells/total endothelial cells in the villus lamina propria 4 and 5 hours after irradiation in Wt and PAI-1 2/2
mice (D). Frequency of apoptotic endothelial cells in the villus lamina propria in Wt and PAI-1 2/2 mice 4 and 5 hours after irradiation (E). (n = 6
mice/group) # p,0.05 versus sham mice with the same genotype. * p,0.05 between irradiated Wt and PAI-1 2/2 mice.
doi:10.1371/journal.pone.0035740.g003

Figure 4. PAI-1 genetic deficiency is associated with reduced acute radiation-induced intestinal vascular injury. Intestinal vasculature
was visualized by CD31 staining (red) and computerized with confocal microscopy imaging. Nuclei were counterstained with Sytox Green (A).
Representative images of intestinal vasculature 24 hours after irradiation in Wt and PAI-1 2/2 mice (B). Quantitative assessment of vasculature
integrity 24 hours after 19 Gy (C). (n = 6 mice/group) # p,0.05.
doi:10.1371/journal.pone.0035740.g004
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explored consequences of PAI-1 deficiency or silencing on

signaling pathways such as Akt, MAP kinase or NF-kb that can

affect both pro-survival, pro- apoptotic or anti-apoptotic response

of endothelial cells to radiation exposure. Whereas no differences

were observed for the activation of p38 MAP Kinase, ERK 1/2,

PAI-1 genetic deficiency is associated with activation of Akt

(Figure 8A–C). After irradiation, the level of Phospho-Akt is

decreased in Wt ECs whereas the high level of phospho-Akt in

PAI-1 2/2 ECs remains maintained (Figure 8B). Akt can be

activated by phosphoinositide dependent kinase 1 (PDK1) and can

be negatively regulated through the tumor suppressor phosphatase

and tensin homologue deleted on chromosome ten (PTEN).

Figure 5. PAI-1 genetic deficiency in ECs is associated with increased survival after irradiation. In vitro Matrigel endothelial tube
formation assay (A). Quantification was from three independent experiments performed in triplicate.* P,0.05. Percentage of living ECs 24 and
48 hours after 20 Gy. Wt and PAI-1 2/2 ECs were plated on vitronectin, poly-L-ornithine/laminin, poly-D-lysine or poly-L-lysine (B). For each coating,
results are the mean +/2 SEM for two independent experiments performed in triplicate. * P,0.05 versus unirradiated cells for each genotype. #
P,0.05 versus Wt irradiated cells.
doi:10.1371/journal.pone.0035740.g005
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Figure 6. PAI-1 overexpression is associated with increased radiation sensitivity of endothelial cells. Representative western blot (A)
and quantification of PAI-1 protein expression of five clones of HUVECs that stably overexpressed PAI-1 (B). Clonogenic assay in control HUVECs and
clones 1, 3 and 5 (C). Surviving fraction after 2 Gy (D). Results are the mean +/2 SEM (n = 6 per conditions) * p,0.05 versus control HUVECs.
doi:10.1371/journal.pone.0035740.g006

Figure 7. PAI-1 knockdown in human endothelial cells is associated with increased survival after irradiation. Representative western
blots and quantification of PAI-1 protein expression 8 hours (A) and 24 hours (B) after irradiation in the absence or presence of siPAI-1. Percentage of
living cells 24 hours after irradiation in the absence or presence of siPAI-1 (C). Results are the mean +/2 SEM of two independent experiments
performed in triplicate. * p,0.05 versus unirradiated HUVECs. Representative images of HUVECs 24 hours after 20 Gy in the absence or presence of
siPAI-1 (D).
doi:10.1371/journal.pone.0035740.g007
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Phospho-PDK1 levels remained unchanged whereas the inacti-

vated form of PTEN (phosphorylated PTEN) is increased in PAI-1

2/2 ECs compared with Wt ECs (Figure 8C). The percentage of

active form of PTEN is decreased in PAI-1 2/2 ECs (Figure 8D)

suggesting that Akt activation associated with PAI-1 genetic

deficiency is partly mediated by PTEN inactivation. In the same

way, PAI-1 silencing in HUVECS is associated with increased

activated Akt level (Figure 9A) whereas phospho-Akt expression is

reduced in HUVEC that stably overexpress PAI-1 (Figure 9B). In

siRNA PAI-1 transfected cells, no differences were observed for

p38 MAP Kinase, ERK 1/2, p65 or phospho-PDK1 levels and the

inactivated form of PTEN is increased (Figure 9A). Interestingly,

PAI-1 genetic deficiency and PAI-1 silencing is also associated with

increased levels of two anti-apoptotic proteins Bcl-2 and Bcl-XL.

We evaluated consequences of PTEN and PDK1 silencing on Akt

activation (Figure 9C). Whereas PDK-1 knockdown decreased the

Phospho-Akt level, PTEN or PAI-1 knockdown protects cells from

ionizing radiation and this is associated with Akt activation

(Figure 9D–E). Phospho-Akt, Bcl-2 and Bcl-XL increase in cells

transfected with siRNA PTEN, siRNA PAI-1 or both. This

observation was confirmed in murine ECs (Fig S8) and suggest

that pro-survival and anti-apoptotic pathways were involved in the

PAI-1-dependent ionizing radiation response of endothelial cells.

Discussion

Radiation-induced intestinal side effects remain a problem in

pelvic cancer treatment because of a lack of therapeutics to

prevent and/or reduce damage [32]. Most experiments in models

of radiation-induced intestinal damage were performed after total-

body irradiation with or without bone marrow transplantation. In

these models, endothelial and epithelial cell apoptosis is widely

described to be crucial in the initiation of gastrointestinal

syndrome. It has been shown that EC apoptosis is the primary

event initiating gastrointestinal syndrome in mice [20]. EC

apoptosis occurs in the 4–6 hours following irradiation and

precedes crypt epithelial clonogenic cell death. More recently,

Rotolo et al. showed that bax2/2 and bak 2/2 mice were

rescued from gastrointestinal syndrome and demonstrated that

bax and bak have nonredundant functional roles in radiation-

induced microvascular cell death, but not in crypt stem cell death

[33]. However, the relative contribution of microvascular

endothelium and clonogenic crypt cells to radiation-induced

gastrointestinal syndrome is still a matter of debate. This

controversy is born from the prevailing concept established for

many years claiming that gastrointestinal syndrome is mainly due

to the crypt stem and clonogenic cell death [21]. After total-body

irradiation, numerous studies have shown that gastrointestinal

syndrome is associated with EC death [20,34–37]. However,

therapeutic strategies to rescue mice from gastrointestinal

syndrome or transgenic mice protected from gastrointestinal

syndrome are sometimes associated with endothelial protection

[20,36,37], epithelial protection [34,38] or both [35]. Finally, one

group described no EC apoptosis in the intestine after specific

irradiation of the endothelium with intravascular boronated

liposomes [39,40]. However, technical difficulties and artifacts in

Figure 8. PAI-1 influences the pro-survival Akt pathway in murine endothelial cells. Representative western blots of phospho and total
Akt in Wt and PAI-1 2/2 ECs (A) and in Wt and PAI-1 2/2 ECs platted on different coatings 24 hours after 20 Gy (B). Representative western blots of
Phospho p38 MAPK, Phospho ERK1/2, Phospho PDK-1, Phospho PTEN and total PTEN in Wt and PAI-1 2/2 ECs 24 hours after 20 Gy (C). Percentage
of active PTEN in Wt and PAI-1 2/2 ECs 24 hours after 20 Gy (D). All experiments were realized in triplicates.
doi:10.1371/journal.pone.0035740.g008
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immunohistochemistry detection of apoptotic cells on paraffin

sections could in part explain the controversy [41,42]. Neverthe-

less, a lot of supportive evidence argues for a strong contribution of

microvascular destruction in early intestinal radiation toxicity, but

the causal relationship between EC apoptosis, crypt cell apoptosis

and consequent progression of intestinal damage is still unclear.

Here we used a pertinent model of localized intestinal injury

adapted to the study of acute and late effects [12,43]. In this model

we recently showed that PAI-1 pharmacological inhibition

conferred temporary protection against early lethality and that

PAI-1 genetic deficiency conferred complete protection [31].

These results suggested that PAI-1 could be involved in

Figure 9. PAI-1 influences the pro-survival Akt pathway in human endothelial cells by PTEN inactivation. Representative western blots
of phospho-Akt, total Akt, phospho-PTEN, total PTEN, phospho-p38MAPK, p65/RelA, phospho-ERK1/2, phospho-PDK-1, Bcl-2 and Bcl-XL in HUVECs
transfected or not with siRNA PAI-1 24 hours after 20 Gy (A). Representative western blots of phospho and total Akt in HUVECs that stably
overexpress PAI-1. Akt activation is reduced in human ECs that overexpress PAI-1 (B). Silencing efficiency determined by western blot in HUVECs
transfected with siRNA PTEN or siRNA PDK-1 (C). Representative images of HUVECs knocked-down for PTEN, PDK-1, PAI-1, PTEN/PAI-1, or PDK-1/PAI-1
24 hours after 20 Gy (D). Representative western blots of phospho-Akt, total Akt, p65/RelA, phospho-ERK1/2, PTEN, BCL-2 and BCL-XL in HUVECs
transfected with siRNA PTEN, PDK-1 and/or siRNA PAI-1 24 hours after 20 Gy(E) .
doi:10.1371/journal.pone.0035740.g009
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radiosensitivity of the microvascular and stem cell compartments.

In the present work, immunohistochemical detection of apoptotic

endothelial and epithelial cells was performed on frozen sections to

avoid technique-dependent misinterpretation. In the model of

radiation enteropathy, our results strongly support the concept

that endothelial apoptosis is a key event involved in acute radiation

intestinal injury and consequently in the progression of radiation-

induced fibrosis. Reduced radiation-induced intestinal damage

observed in PAI-1 2/2 mice is associated with a strong reduction

in EC death. This observation in vivo was confirmed in vitro with

multiple approaches. First we show that, after irradiation, the

functionality of murine ECs isolated from PAI-12/2 mice aorta is

preserved. Using a functional test that integrates different

parameters such as the adhesion rate, the ability to proliferate

and to migrate, and the radiation-induced cell death test, we

showed that PAI-1 2/2 ECs are still able to form vascular-like

tubes after irradiation. It has been shown that murine PAI-12/2

ECs have enhanced rates of proliferation compared with Wt ECs

and are more resistant to wortmannin-induced apoptosis [29,30].

Our results obtained in murine ECs plated on different surfaces

coated with vitronectin, poly-L-ornithine/laminin, poly-L-lysine

or poly-D-lysine show that PAI-1 2/2 ECs are more resistant to

radiation-induced cell death than Wt ECs. Moreover we provide

evidence that PAI-1 genetic deficiency directly influences survival

of ECs suggesting that the differences in abilities of Wt and PAI 1

2/2 ECs to form vascular-like networks can be due to both lower

capacity of Wt cells to proliferate and higher levels of radiation-

induced apoptosis. To complete these observations, we modulated

PAI-1 gene expression in HUVECs. With a classic test of

radiosensitivity, we showed that overexpression of PAI-1 confers

enhanced radiation sensitivity on the cells, and the surviving

fraction is linked to the level of PAI-1 expression. In contrast, PAI-

1 knockdown is associated with an increased rate of survival in

HUVECs. Taken together, our results demonstrate that PAI-1

plays a key role in radiation-induced EC death and suggest that

this contributes strongly to the progression of radiation-induced

intestinal injury. PAI-1-dependent mechanisms associated with

pro-apoptosis or pro-survival pathways in irradiated endothelium

are unknown and require further study.

The role of PAI-1 in angiogenesis and apoptosis of vascular cells

is controversial. PAI-1 is described as pro-angiogenic [44] or anti-

angiogenic [45,46]. For example, studies on prostatic tumor PC-3

cells conditionally expressing active PAI-1 regulated by doxycy-

cline, showed that PAI-1 strongly decreased tumor progression

through the destruction of tumor vascularization. The doxycy-

cline-induced PAI-1 pool anti-angiogenic effect is due to an early

wave of apoptosis in tumor ECs and this effect was described as

vitronectin-dependent [47]. Clearly, the angiogenic effects of PAI-

1 are dose-dependent [48]. At physiological concentration PAI-1

promotes angiogenesis whereas high concentrations of PAI-1 are

anti-angiogenic. Interestingly, in vitro, the ceramide antagonist

sphingosine-1-phosphate (S1P) protects endothelial cells from

radiation-induced apoptosis [49] and, in vivo, S1P specifically

protects intestinal microvascular endothelial cells through a

mechanism involving activation of Akt [50]. Here, we showed

that PAI-1 genetic deficiency is associated with Akt activation in

endothelial cells and resistance to radiation-induced cell death. Akt

activation can occurs by different mechanisms including negative

regulation by PTEN or activation by the phosphoinositide-

dependent protein kinase 1 (PDK1). In our experimental

conditions, the PAI-1-dependent activation of Akt is not linked

to PDK-1 activation. Phosphorylation of PTEN results in its

inactivation and we report that PAI-1 genetic deficiency of murine

ECs or knockdown of PAI-1 in HUVECs increase the inactivated

form of PTEN. Consequently decreased active PTEN pool may

probably lead to Akt activation. This is in accordance with Balsara

et al who showed that PAI-1-deficient ECs have enhanced

Akt(Ser(P)473) level due to enhanced inactivation of PTEN. This

Akt hyperactivation is associated with increased levels of inactive

caspase-9 and lower levels of active caspase-3, thus rendering PAI-

1 2/2 ECs resistant to spontaneous apoptosis or chemical-

induced pro-apoptotic signals [29]. In addition, we observed that

PAI-1 genetic deficiency or silencing is associated with increased

expression of Bcl-2 and Bcl-XL. Interestingly Akt was reported to

increase these two anti-apoptotic genes in endothelial cells

contributing to cell survival [51,52]. Because neither p38MAPk,

ERK 1/2 or NF-kB seems to be influenced by PAI-1 knockdown,

our results strongly suggest that the PAI-1 dependent Akt

activation is involved in the overexpression of Bcl-2 and Bcl-XL.

The precise mechanism by which PAI-1 influences survival

pathways are still unclear and future researches are needed to

answer this question.

In conclusion, our results demonstrate that PAI-1 genetic

deficiency is associated with a strong anti-apoptotic effect on ECs

in the acute phase, with higher microvascular density and

decreased radiation-injury score during acute, sub-acute and late

phases of radiation enteropathy. This study indicates that

radiation-induced overexpression of PAI-1 in ECs has pro-

apoptotic effects and contributes to the destruction of the

microcirculation in the intestine. Further experiments are

necessary to explore the molecular mechanisms involved and the

sequential involvement of PAI-1 in the initiation and progression

of radiation-induced fibrosis.

Supporting Information

Figure S1 Effect of irradiation on mRNA levels of PAI-1,
uPAR, uPA and tPA in Wt and PAI-1 2/2 mice. mRNA

levels of plasminogen activation system in Wt and PAI-1 2/2

mice in total intestinal tissues were measured by Real time PCR

5 h and 24 h after irradiation. Results are +/2 SEM (n = 6 mice/

group). ND : not detected.

(TIF)

Figure S2 Effect of irradiation on mRNA levels of Bax,
Bcl-2, Caspase 3, Survivin, Bcl-XL, Akt and PTEN in Wt
and PAI-1 2/2 mice. mRNA levels in Wt and PAI-1 2/2

mice in total intestinal tissues were measured by Real time PCR

5 h and 24 h after irradiation. Results are +/2 SEM (n = 6 mice/

group).

(TIF)

Figure S3 PAI-1 genetic deficiency is associated with
reduced radiation-induced intestinal apoptosis. Three cm

of intestine from Wt and PAI-1 2/2 mice was irradiated with a

localized 19 Gy single dose. Apoptosis in irradiated intestine was

assessed by TUNEL staining. (A) Representative TUNEL staining

(green) in Wt (A) and PAI-1 2/2 (B) mice 4 hours after

irradiation. Nuclei were counterstained with DAPI (blue). (B)

Quantitative assessment of TUNEL+ cells in the villus in Wt and

PAI-1 2/2 mice 4 and 5 hours after irradiation. (n = 6 mice/

group) # p,0.05 versus sham mice with the same genotype. #
p,0.05 between irradiated Wt and PAI-1 2/2 mice.

(TIF)

Figure S4 Preparation and characterization of mice
endothelial cells isolated from aortas. The aorta was

harvested cut into pieces, opened longitudinally, and each segment

was positioned lumen slide down onto the Matrigel. Outgrowth of

cells from the tissue is observed after 7 days (A). These cells are in
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part CD106 + cells as observed after CD106 immuno-staining

(Nuclei were counterstained with DAPI (Blue) (B). Cells were

trypisinized and sorted after CD105-PE labelling using flow

cytometry and after sorting 95% of cells are CD105 positive (C)

with a typical endothelial cell morphology 5 days after plating (D).

Long term culture were performed and immuno-histochemical

labelling show that cells express CD31, CD106 CD105 and vWf

(E). Characterization of ECs isolated from mice (F): List of

transcripts detected in both Wt and PAI-1 2/2 ECs by real time

PCR. mRNA levels (fold induction) of ang2, CD106, CD54 and

PAI-1 in Wt ECs 24 h after 10 Gy (G). Value 1 was attributed to

un-irradiated Wt ECs. Results are mean of 3 independent

experiments realized in triplicates. * p,0.05 versus un-irradiated

Wt ECs.

(TIF)

Figure S5 Effect of irradiation on PAI-1 mRNA level in
HUVECs. Irradiation increases rapidly PAI-1 mRNA level in

HUVEC. Effect of irradiation on PAI-1 mRNA level 1, 4, 24 and

48 hours after 10 Gy. * p,0.05 versus unirradiated HUVEC cells.

Results are mean +/2 SEM of three independent experiments

realized in triplicates.

(TIF)

Figure S6 Effect of siPAI-1 on PAI-1 mRNA and protein
level in HUVECs. PAI-1 mRNA protein level in HUVEC 48 h

after transfection in absence or presence of 100 nM siPAI-1 (A).

Representative western blot (B) and quantification (C) of PAI-1

protein expression in HUVEC transfected for 48 h with or without

100 nM siPAI-1. Results are mean +/2 SEM (n = 3) * p,0.05

versus HUVEC cells transfected with 100 nm of non-targeting

siRNA.

(TIF)

Figure S7 Human active PAI-1 recombinant has no
effect on apoptosis-related genes profile. mRNA levels of

93 genes involved in apoptosis were measured in HUVEC treated

or not with a human active PAI-1 recombinant or a human Latent

PAI-1 recombinant using a TaqMan Low Density apoptosis Array

(TLDA) approach. Scatter plots analyses of Control versus

irradiated cells (A) and irradiated versus irradiated and treated

with human active PAI-1 recombinant are showed. Heat map

analyses (C) and fold changes (D) versus control reveal that

exogenous PAI-1 has no effect on apoptosis related-gene profile

after irradiation.

(TIF)

Figure S8 PAI-1 genetic deficiency is associated with
increased Bcl-XL and Bcl-2 expression. mRNA levels of

Bcl-XL and Bcl-2 in Wt and PAI-1 2/2 ECs 24 h hours after

irradiation (A). Results are mean +/2 SEM (n = 3). Representa-

tive western blots in Wt and Pai-1 2/2 ECs 24 h hours after

irradiation (B).

(TIF)

Table S1 Bax, Bcl-2, Caspase 3, Survivin, Bcl-XL, Akt
and PTEN mRNA levels in total intestinal tissues in Wt
and PAI-1 2/2 mice. mRNA levels in total intestinal tissues in

sham Wt and sham PAI-1 2/2 mice 5 h (A) and 24 h (B) after

surgery were determined by real time PCR. Results are +/2 SEM

(n = 6 mice/group).

(TIF)
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