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Abstract

Background: Costimulation of murine macrophages with immune complexes (ICs) and TLR ligands leads to alternative
activation. Studies on human myeloid cells, however, indicate that ICs induce an increased pro-inflammatory cytokine
production. This study aimed to clarify the effect of ICs on the pro- versus anti-inflammatory profile of human polarized
macrophages.

Materials and Methods: Monocytes isolated from peripheral blood of healthy donors were polarized for four days with IFN-
c, IL-4, IL-10, GM-CSF, M-CSF, or LPS, in the presence or absence of heat aggregated gamma-globulins (HAGGs). Phenotypic
polarization markers were measured by flow cytometry. Polarized macrophages were stimulated with HAGGs or
immobilized IgG alone or in combination with TLR ligands. TNF, IL-6, IL-10, IL-12, and IL-23 were measured by Luminex and/
or RT-qPCR.

Results: HAGGs did not modulate the phenotypic polarization and the cytokine production of macrophages. However,
HAGGs significantly altered the TLR-induced cytokine production of all polarized macrophage subsets, with the exception of
MWIL-4. In particular, HAGGs consistently enhanced the TLR-induced IL-10 production in both classically and alternatively
polarized macrophages (M1 and M2). The effect of HAGGs on TNF and IL-6 production was less pronounced and depended
on the polarization status, while IL-23p19 and IL-12p35 expression was not affected. In contrast with HAGGs, immobilized
IgG induced a strong upregulation of not only IL-10, but also TNF and IL-6.

Conclusion: HAGGs alone do not alter the phenotype and cytokine production of in vitro polarized human macrophages. In
combination with TLR-ligands, however, HAGGs but not immobilized IgG shift the cytokine production of distinct
macrophage subsets toward IL-10.
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Introduction

Macrophages play an important role in a wide variety of

physiological and pathological processes including host defence,

acute and chronic inflammation, and tissue homeostasis and

remodelling. These pleiotropic cells can scavenge debris, sense

microbial dangers signals, process and present antigens, and

produce an array of pro- and anti-inflammatory mediators.

Macrophage function, including the production of key cytokines

such as TNF and IL-10, is not only determined by their activation

but also by previous exposure to cytokines, growth factors, and

other mediators during their differentiation from monocyte to

macrophage. This so-called polarization process was originally

proposed to distinguish classically activated macrophages (M1),

which drive pro-inflammatory responses, from alternatively

activated macrophages (M2), which steer immunoregulation

and/or tissue remodelling [1–4]. Subsequent studies with mice

and, to a lesser extent, human myeloid cells have lead to several

more complex polarization models [5–7]. Using here the

nomenclature proposed by Mantovani et al [5], the best

characterized subsets are M1, M2a, and M2c, which are induced

by IFN-c, IL-4, or IL-10, respectively. Functional differences are

accompanied by distinct phenotypic profiles, and we recently

validated in vitro a number of specific phenotypic markers for each

of these three macrophage subsets [8].

Of particular interest in the model proposed by Mantovani [5],

are the so-called M2b macrophages, which result from polariza-

tion with ICs in combination with TLR ligands, such as LPS.

Original studies showed that stimulation of mouse macrophages

with ICs resulted in enhanced production of IL-10 and

prostaglandins, especially PGE2 [9], while IL-6, IL-1, and TNF
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levels were not affected [10–12]. Polarization of mouse bone-

marrow derived macrophages (BMDMs) with IFN-c, followed by

stimulation with ICs and LPS resulted also in an increased IL-10

production, which led to the conclusion that ICs modulate the

macrophage cytokine production profile towards alternative

activation, in a similar fashion as IL-10, TGF-b, or glucocorticoids

[5,7,13–15].

Although this model has been confirmed by several studies, two

important aspects remain incompletely understood. Firstly, it is

unclear whether ICs induce macrophage polarization to a distinct

subset or rather modulate the function of polarized macrophages.

The previously mentioned experiments using IFN-c polarized

BMDMs could suggest namely either that M1 polarization can be

reversed by ICs, or that ICs modulate the function of macrophages

irrespective of their polarization status. Secondly, most of these

experiments were performed in mice and only few studies

analyzed the effects of ICs on human myeloid cells. In human

monocytes, cross-linking of FccRs decreased IL-12 and increased

IL-1ra, IL-10, and PGE2 production, which is in agreement with

the M2 profile in mice [16,17]. The increased IL-10 production

was not only observed after monocyte stimulation with artificial

ICs, but also with ICs from SLE sera [18]. At the same time,

however, the production of pro-inflammatory factors such as TNF,

GM-CSF, IL-6, IL-8, and IL-1b by monocytes was also increased

by FccR cross-linking [19–24]. This was not only observed in

human monocytes, since we demonstrated previously that

costimulation of human monocyte-derived DCs with ICs and

TLR ligands leads to increased production of TNF and IL-6 [25].

Similarly, stimulation of M-CSF polarized human macrophages

(MWM-CSF) with immobilized HAGGs (iHAGGs) or ACPA-

containing ICs induced higher TNF production [26,27].

In order to clarify the effect of ICs on human macrophages and

to assess whether the existing discrepancies in the literature are

due to interspecies differences or to specific polarization

conditions, we systematically studied the effect of HAGGs in the

presence or absence of TLR stimuli on the phenotype and

cytokine production of human polarized macrophages.

Materials and Methods

Ethics statement
This study was conducted with the approval of the Medical

Ethical Committee of the Academic Medical Center/University of

Amsterdam and all blood donors gave their written informed

consent.

Monocyte isolation and in vitro polarization
Monocyte isolation and in vitro polarization were performed as

previously described [8]. Briefly, monocytes from peripheral blood

of healthy volunteers were isolated by gradient centrifugation with

Lymphoprep (Axis-Shield PoPAS, Oslo, Norway) and, subse-

quently, Percoll gradient separation (GE Healthcare, Uppsala,

Sweden). Monocytes were cultured at a concentration of 0.56106/

ml in Iscove’s Modified Dulbecco’s Medium (Invitrogen, Breda,

The Netherlands) supplemented with 10% fetal calf serum (FCS)

(PAA Laboratories, Cölbe, Germany) in 6 well culture plates

(Corning Incorporated, New York, NY, USA). Cells were cultured

in medium alone or polarized with human recombinant IFN-c
(50 ng/ml; R&D Systems, Abingdon, UK), IL-4 (40 ng/ml;

Miltenyi Biotec, Bergisch Gladbach, Germany), IL-10 (50 ng/

ml; R&D Systems), GM-CSF (50 ng/ml, R&D Systems), or M-

CSF (50 ng/ml, R&D Systems) for 4 days. Polarization with LPS

(100 ng/ml, E. coli 0111:B4; Sigma Aldrich, Zwijndrecht, The

Netherlands) was additionally used for the phenotypic experi-

ments. Human HAGGs (50 mg/ml), prepared as previously

described [28], were added to each polarizing condition.

Flow cytometric analysis
Cultured macrophages were recovered by scraping of the plate.

Surface marker expression was analyzed by flow cytometry (BD

FACS Calibur Flow Cytometer, Erembodegem, Belgium) using

fluorochrome-labeled monoclonal antibodies against CD14 (clone

61D3, eBioscience, San Diego, CA), CD16 (clone DJ130c, AbD

Serotec, Düsseldorf, Germany), CD32 (clone AT10, abcam,

Cambridge, UK), CD64 (clone 10.1, BioLegend, Uithoorn, The

Netherlands), CD80 (clone L307.4, BD Pharmingen, Breda,

Nederland), CD163 (clone GHI/61, BD Pharmingen), CD200R

(clone OX108, AbD Serotec), TLR2 (clone T2.5, abcam) and

TLR4 (clone 76B357.1, abcam). Equivalent concentrations of

matched isotype controls were included in all experiments. Before

staining, Fc receptors were blocked with 10% human serum

(Lonza, Cologne, Germany). Data were analyzed with Flow Jo

Flow Cytometry Analysis software (Tree Star, Ashland, OR) after

gating on the myeloid population in the FSC/SSC window.

Values were expressed as the ratio of the geometric mean

fluorescence intensity (gMFI) of the marker of interest over the

gMFI of the isotype control.

Cytokine production
To assess the cytokine production of polarized macrophages,

the in vitro polarized cells were harvested and extensively washed

at day 4. Macrophages were subsequently activated with HAGGs

(50 mg/ml) and/or the following TLR ligands: LPS (100 ng/ml;

Sigma Aldrich), Pam3CSK4 (5 mg/ml; EMC microcollections,

Tübingen, Germany), or R848 (2 mg/ml; InvivoGen, San Diego,

CA). In order to study the effect of immobilized IgG, macrophages

were also cultured on IgG coated plates (96-well plate, Corning).

The supernatant of these cultures was recovered after 20 hours of

stimulation and analyzed using commercially available Luminex

kits (Bio-Rad Laboratories, Hercules, CA) according to the

manufacturer’s instructions. Cytokine levels of TNF, IL-6, and

IL-10 were measured and analyzed with the Bio-Plex system (Bio-

Rad). The sensitivity of the cytokine assay was ,5 pg/ml for all

measured cytokines.

Quantitative real-time PCR
Total RNA was isolated from in vitro polarized macrophages

using GenEluteTM Mammalian Total RNA Miniprep Kit (Sigma

Aldrich) and reverse transcribed using RevertAidTM H Minus First

Strand cDNA Synthesis Kit (Fermentas, St. Leon-Rot, Germany).

RNA concentration was determined with the Nanodrop (Nano-

drop Technologies, Wilmington, DE). Quantitative real-time PCR

was performed using StepOnePlusTM Real-Time PCR System

(Applied Biosystems, Foster City, CA). Each 12 ml reaction was

performed in a 96-well format with 5 ng of cDNA, 10 ml of SYBR

green PCR Master Mix (Applied Biosystems) and a concentration

of 50 nmol of each primer. The primers comprised IL-10 (forward

59-GATGCCTTCAGCAGAGTGAA, reverse 59-CCCAGGT-

AACCCTTAAAGTCC), IL-23p19 (forward 59-TTCTCTGCT-

CCCTGATAGCC, reverse 59-CCTCAGGCTGCAGGAGTT),

and IL-12p35 (forward 59- ACCAGGTGGAGTTCAAGACC,

reverse 59-TGGCACAGTCTCACTGTTGA), respectively. All

reactions were performed in duplicate. The mRNA expression

levels were normalized to those of the human housekeeping gene

glyceraldehyde 3-phosphate dehydrogenase (GAPDH). Oligonu-

cleotide primers were designed using the online tool for Real-time

PCR (TaqMan) Primer Design (Genscript) and obtained from

Invitrogen.

Effect of Immune Complexes on Macrophage Subsets
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Statistics
Statistical analysis was performed using Prism software

(GraphPad, La Jolla, CA). Data were expressed as mean 6

SEM. ANOVA followed by Bonferroni post test were used for

comparisons between more than 2 groups. For comparisons

between 2 groups (stimulation with and without HAGGs) we used

the Wilcoxon matched pair test. A P value of less than 0.05 was

considered to be statistically significant.

Results

Soluble ICs do not alter phenotypic polarization of
human macrophages

Several reports indicate that stimulation of murine macrophages

with ICs in combination with TLR ligands induces alternative

macrophage polarization [7,10,12–14,29]. Therefore, our first aim

was to investigate whether HAGGs had a similar polarizing effect

on human macrophages. We tested whether the expression of

phenotypic markers for specific polarized macrophage subsets was

altered by HAGGs alone, in combination with LPS, or in

combination with IFN-c, IL-4, or IL-10 as major polarizing

cytokines [5,7]. IFN-c polarization resulted in upregulation of

CD80 (p,0.05 compared to medium, IL-4 and IL-10) and CD64

(p,0.05 compared to IL-10, and p,0.01 compared to medium,

IL-4 and LPS), IL-4 upregulated CD200R (p,0.01 for all

comparisons) and downregulated CD14 (p,0.05 compared to

IFN-c and IL-10, and p,0.01 compared to LPS), while IL-10

induced a higher expression of CD163 (p,0.05 for all compar-

isons), CD16 (p,0.05 for all comparisons), and CD32 (p,0.05

compared to IFN-c, and p,0.01 compared to medium, IL-4 and

LPS), respectively [8] (Figure 1). LPS used as polarizing stimulus

strongly increased the expression of CD14 (p,0.01), as described

previously [30]. Stimulation with HAGGs alone or in combination

with LPS did not lead to upregulation of specific phenotypic

markers, in particular those associated with IL-4 and IL-10

polarization (Figure 1). Additionally, HAGGs did not influence the

Figure 1. Expression of phenotypic markers on in vitro polarized human macrophages. Healthy peripheral blood monocytes were
cultured for 4 days in medium or in medium supplemented with IFN-c, IL-4, IL-10, or LPS in the absence (white bars) or presence (black bars) of
HAGGs. Expression of MWIFN-c markers CD80 and CD64, MWIL-4 markers CD200R and CD14, and MWIL-10 markers CD163, CD16 and CD32 was
measured by flow cytometry. Bars represent the mean 6 SEM of 4 independent experiments. *p,0.05, **p,0.01, #p,0.01.
doi:10.1371/journal.pone.0035994.g001

Effect of Immune Complexes on Macrophage Subsets
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phenotypic effects of IFN-c, IL-4, or IL-10, with the exception of

CD32 downregulation on MWIL-10 (p,0.01) (Figure 1). Taken

together, these experiments did not show any polarizing effect of

HAGGs on the phenotype of human macrophage subsets.

Macrophage polarization determines the TLR-induced
production of pro- and anti-inflammatory cytokines

Numerous reports indicate that, besides phenotype, a main

difference between distinct polarized macrophage subsets is the

production of key cytokines such as TNF, IL-6, IL-10, IL-12 and

IL-23 upon activation [5,7,13,15,31–33]. Before evaluating the

effect of HAGGs on the cytokine production of polarized human

macrophages, we first determined the cytokine production profile

of MWIFN-c, MWIL-4, and MWIL-10 upon TLR stimulation. As

depicted in Figure 2, the production of TNF, IL-6 and IL-10 was

very low for all macrophage subsets in the absence of TLR

stimulation. In these basal conditions, MWIL-10 produced signif-

icantly more IL-10 than all other macrophage subsets (p,0.01).

Following TLR stimulation, MWIFN-c produced more IL-6 than all

other macrophage subsets (p,0.001 for the P3C and R848

stimulations, and p,0.01 for the LPS stimulation). There was a

similar albeit less pronounced trend for TNF (p,0.05 versus

MWIL-10 for the LPS stimulation), which was partially due to the

fact that MWIL-4 also produced more TNF, especially after LPS

and R848 stimulation. IL-10 levels were similar in all polarized

subsets, with the exception of a higher production by MWIL-4

versus MWIFN-c after LPS stimulation (p,0.05). Despite the fact

that some comparisons did not reach statistical significance, these

findings confirm previous reports of a pro-inflammatory profile of

MWIFN-c versus a more neutral to anti-inflammatory profile for

MWIL-4 and MWIL-10 upon TLR stimulation [5,7,13,15].

Soluble ICs enhance the TLR-induced IL-10 production by
polarized macrophages

Since ICs were described to induce an immunoregulatory

function in mouse macrophages [10,18,29,34,35], we next

investigated whether HAGGs alter the pro- versus anti-inflamma-

tory cytokine production of differentially polarized human

macrophages. In the absence of TLR stimulation, HAGGs did

not alter the low basal production of TNF, IL-6, and IL-10 by any

of the macrophage subsets (Figure 3). Using P3C as prototypical

TLR stimulation, costimulation with HAGGs had variable effects

on the production of pro-inflammatory cytokines, with a decrease

in TNF production by unpolarized macrophages and MWIL-10,

and an increased IL-6 production by MWIFN-c (p,0.05 compared

to P3C alone for all 3 comparisons) (Figure 3). In contrast,

HAGGs consistently enhanced IL-10 production by all macro-

phage subsets, with the exception of MWIL-4 (p,0.01 for all

comparisons) (Figure 3). In particular, HAGGs almost doubled the

IL-10 secretion by MWIFN-c. These data were confirmed by

Figure 2. TLR-induced production of TNF, IL-6, and IL-10 by MWIFN-c, MWIL-4, and MWIL-10. Healthy peripheral blood monocytes were
cultured for 4 days in medium or in medium supplemented with IFN-c, IL-4, or IL-10. Polarized macrophages were not stimulated, or stimulated for
20 hours with P3C, LPS, or R848. Bars represent the mean 6 SEM of 6 independent experiments. *p,0.05, **p,0.01, ***p,0.001.
doi:10.1371/journal.pone.0035994.g002
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repeating the experiments with other TLR stimuli. HAGGs

together with LPS or R848 induced a modest and variable effect

on TNF and IL-6 production (data not shown), but a consistent

and significant increase in IL-10 production by all macrophage

subsets, with the exception of MWIL-4 (p,0.05 compared to TLR

stimulation without HAGGs) (Figure 4). Thus, costimulation of in

vitro polarized human macrophages with HAGGs and TLR

ligands resulted in an increased IL-10 production by all polarized

macrophage subsets, excepting MWIL-4.

Effect of soluble ICs on the IL-10 production by MWM-CSF

and MWGM-CSF

Both phenotypic analyses and cytokine profiling indicated that

GM-CSF polarized macrophages (MWGM-CSF) tend to resemble

MWIFN-c, whereas M-CSF mimics the effects of alternative

polarization stimuli, in particular IL-10 [8,32,33,36]. We therefore

investigated whether stimulation with HAGGs also modulated the

IL-10 production of MWGM-CSF and MWM-CSF. HAGGs alone did

not have any effect on the IL-10 production. However, after co-

stimulation with TLR ligands, HAGGs induced an increased IL-

10 production by MWM-CSF but not MWGM-CSF (p,0.05 for P3C,

and p,0.01 for R848) (Figure 5). Concluding, MWM-CSF showed a

higher TLR-induced IL-10 production after stimulation with

HAGGs.

Increased LPS-induced IL-10 versus IL-23 and IL-12
expression after stimulation with soluble ICs

In order to confirm the increase in TLR-induced IL-10

production by polarized macrophages after stimulation with

HAGGs, we measured the mRNA expression of IL-10 by each

macrophage subset after 7 hours of stimulation with LPS, in the

presence or absence of HAGGs. As shown in figure 6, HAGGs

increased the expression of IL-10 in all macrophage subsets

(p,0.05 for MWIFN-c and MWIL-10). As IL-23 and IL-12 protein

levels were undetectable in the supernatants of the previous

experiments, we investigated the effect of HAGGs on these

cytokines at mRNA level. In contrast with IL-10, we did not

observe any significant effect of HAGGs on IL-23p19 and IL-

12p35 mRNA expression. Taken together, these data confirm the

specific increase in IL-10 expression after costimulation with

HAGGs and TLR ligands, with the strongest effects observed in

MWIFN-c and MWIL-10.

Immobilized IgG enhances the cytokine production of
polarized macrophages without shifting the balance
towards IL-10

As the consistent increase in IL-10 production by HAGGs in

our experiments contrasted with previously published data on

increased TNF production by human macrophages upon

Figure 3. TNF, IL-6, and IL-10 production by MWIFN-c, MWIL-4, and MWIL-10 after stimulation with HAGGs and P3C. Healthy peripheral
blood monocytes were cultured for 4 days in medium or in medium supplemented with IFN-c, IL-4, or IL-10. Polarized macrophages were not
stimulated, or stimulated for 20 hours with P3C, in the presence or absence of HAGGs. Bars represent the mean 6 SEM of 9 independent
experiments. *p,0.05, **p,0.01.
doi:10.1371/journal.pone.0035994.g003
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stimulation with iHAGGs or immobilized IgG [26,27,37], we next

investigated the effect of immobilized IgG on the cytokine

production of differentially polarized macrophages. In contrast

with HAGGs, even in the absence of P3C stimulation,

immobilized IgG increased the production of TNF (p,0.05 in

unpolarized macrophages, p,0.01 in MWIL-10, and p,0.001 in

MWIFN-c), IL-6 (p,0.05 in MWIL-10) and IL-10 (p,0.05 in MWIL-10)

(Figure 7). Similarly, immobilized IgG strongly augmented the

TLR-induced production of TNF (p,0.05 in MWIL-4, p,0.01 in

unpolarized macrophages, and p,0.001 in MWIL-10), IL-6 (p,0.05

in MWIL-4 and MWIL-10) and IL-10 (p,0.05 in MWIL-10, and

p,0.01 in MWIL-4). Comparable results were obtained when using

LPS or R848 as TLR stimuli (data not shown). These data indicate

that immobilized IgG augments the spontaneous, as well as the

TLR-induced cytokine production of polarized macrophages,

without shifting the balance from pro-inflammatory cytokines to

IL-10.

Figure 5. IL-10 production by MWGM-CSF and MWM-CSF after stimulation with HAGGs and TLR ligands. Healthy peripheral blood
monocytes were cultured for 4 days in medium supplemented with GM-CSF or M-CSF. MWGM-CSF and MWM-CSF were not stimulated, or stimulated for
20 hours with P3C, LPS, or R848, in the presence or absence of HAGGs. Bars represent the mean 6 SEM of 6 independent experiments. *p,0.05,
**p,0.01.
doi:10.1371/journal.pone.0035994.g005

Figure 4. IL-10 production by MWIFN-c, MWIL-4, and MWIL-10 after stimulation with HAGGs and LPS, or R848. Healthy peripheral blood
monocytes were cultured for 4 days in medium or in medium supplemented with IFN-c, IL-4, or IL-10. Polarized macrophages were not stimulated, or
stimulated for 20 hours with LPS, or R848, in the presence or absence of HAGGs. Bars represent the mean 6 SEM of 6 independent experiments.
*p,0.05.
doi:10.1371/journal.pone.0035994.g004

Effect of Immune Complexes on Macrophage Subsets
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Discussion

ICs in combination with TLR ligands have been described to

increase the IL-10 production of mouse macrophages, leading to a

distinct alternative macrophage activation type (M2b) [5]. ICs also

stimulated the in vivo IL-10 production in different animal models,

which induced immune regulation [34,38]. In host defence, this

mechanism could represent a physiological feed-back loop,

Figure 6. mRNA expression of IL-10, IL-23p19, and IL-12p35 after macrophage stimulation with HAGGs and LPS. Healthy peripheral
blood monocytes were cultured for 4 days in medium or in medium supplemented with IFN-c, IL-4, or IL-10. Polarized macrophages were stimulated
for 7 hours with LPS, in the presence or absence of HAGGs. mRNA expression levels were measured by quantitative RT-PCR and were normalized to
those of the human housekeeping gene GAPDH. Bars represent the mean 6 SEM of 6 independent experiments. *p,0.05.
doi:10.1371/journal.pone.0035994.g006

Figure 7. TNF, IL-6, and IL-10 production by MWIFN-c, MWIL-4, and MWIL-10 after stimulation with immobilized IgG and P3C. Healthy
peripheral blood monocytes were cultured for 4 days in medium or in medium supplemented with IFN-c, IL-4, or IL-10. Polarized macrophages were
not stimulated, or stimulated for 20 hours with P3C, in the presence or absence of immobilized IgG. Bars represent the mean 6 SEM of 3
independent experiments. *p,0.05, **p,0.01, ***p,0.001.
doi:10.1371/journal.pone.0035994.g007

Effect of Immune Complexes on Macrophage Subsets
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contributing to the down-regulation of innate tissue inflammation

at the moment that microorganisms are cleared by the adaptive

immune system. The effect of ICs on human myeloid cells,

however, is less clearly defined, as several reports indicate that they

do not only increase the production of anti-inflammatory

mediators such as IL-10 [16–18], but also strongly upregulate

pro-inflammatory mediators [19–27]. This discrepancy may be

related to differences between species, cell types (monocytes versus

macrophages, or dendritic cells), or macrophage polarization

conditions. In this study we show that HAGGs in the absence of

TLR stimuli do not alter the phenotype and cytokine production

of in vitro polarized human macrophage subsets. Costimulation

with HAGGs and TLR ligands, however, resulted in markedly

increased IL-10 production in most macrophage subsets, while the

modulation of TNF and IL-6 production was more discrete and

dependent on the macrophage polarization status. As previously

shown in mouse macrophages [10,12,13,29], costimulation with

ICs and TLR ligands also augmented the IL-10 production of

human MWIFN-c, which are prototypical pro-inflammatory cells.

These findings raise the critical issue of the exact relationship

between polarization, phenotype and function of human macro-

phages. The macrophage polarization models originally refer to

the production of pro- versus anti-inflammatory mediators to

define classically (M1) versus alternatively activated macrophages

(M2) [1–3,5–7]. Macrophage polarization is also associated with

the expression of specific phenotypic markers [4,8,8,39–41]. Our

experiments confirm that polarization affects both the phenotype

and the function of macrophages, as exemplified by the distinct

cytokine production of MWIFN-c, MWIL-4, and MWIL-10 upon TLR

stimulation. Concerning the effect of ICs, we show that HAGGs

can modulate the TLR-mediated cytokine production of human

polarized macrophages, despite the lack of phenotypic alterations.

The capacity of so-called ‘pro-inflammatory’ macrophages to

produce significant amounts of IL-10 upon costimulation with

HAGGs and TLR ligands illustrate the functional plasticity of

these cells. Furthermore, our data indicate that the production of

pro- versus anti-inflammatory mediators by macrophages is not

only related to their polarization, but also to the type of activation

and that, as a consequence, phenotypic polarization markers do

not fully correlate to the macrophage function.

An important aspect in this context is the expression of FccRs

on polarized macrophage subsets. Studies using different IgG

subtypes, specific FccR blocking antibodies, or FccR knockout

animals demonstrated that the differential expression of the

activating versus inhibitory FccRs on immune cells influences

their response to ICs [23,28,37,42–45]. We previously confirmed

that the high affinity FccRI (CD64) was upregulated on MWIFN-c,

while the low affinity FccRII (CD32) and FccRIII (CD16) were

specifically expressed by MWIL-10. Furthermore, the activating and

inhibitory isoforms of CD32 (CD32a and CD32b, respectively)

were differentially expressed on the 3 macrophage subsets, with a

lower CD32a/CD32b ratio on MWIL-4 versus MWIL-10 and

MWIFN-c [8]. A shifted FccR balance towards FccRIIb on IL-4

primed human monocytes in comparison to IFN-c, TNF, and IL-

10 primed monocytes was previously related to the failure of these

cells to upregulate TNF after crosslinking by IgG [37]. Finally, also

the expression of TLR2 and TLR4 was differentially modulated

by polarization, with lower expression levels on MWIL-4 versus

MWIL-10 and MWIFN-c (Figure S1). Although it is beyond the scope

of this study to investigate the exact signal transduction in these

conditions, the low expression of activating FccRs, TLR2, and

TLR4 on MWIL-4 could at least partially explain their poor

responsiveness to HAGGs.

In an attempt to clarify the discrepancy between our findings

and reports indicating increased TNF production by monocytes

and macrophages upon stimulation with immobilized IgG

[26,27,37], we used immobilized IgG in the same experimental

conditions and observed a number of differences with soluble

HAGGs. Firstly, immobilized IgG, but not HAGG was able to

stimulate cytokine production by polarized macrophages in the

absence of TLR co-stimulation. Secondly, whereas MWIL-4

appeared to be poorly responsive to HAGGs, all polarized

macrophage subsets reacted strongly upon stimulation with

immobilized IgG. Finally and most importantly, HAGGs

consistently augmented IL-10 production, whereas immobilized

IgG upregulated the production of TNF, IL-6 and IL-10. These

data are consistent with previous reports in which prevention of IC

phagocytosis by using immobilized IgG was shown to induce

persistent ERK signaling and high TNF production by both

monocytes and macrophages [26,46,47]. Furthermore, the TLR-

induced IL-10 production by human monocytes was higher after

immobilized IgG versus HAGG stimulation, and immobilized IgG

was able to induce IL-10 production even in the absence of TLR

ligands [48]. This data emphasize that, besides many other factors

such as IgG isotype, monomeric versus polymeric IgG, antigen-

antibody ratio, and natural versus artificial ICs, the capacity to

internalize ICs is a key determinant of the functional outcome of

IC stimulation of macrophages [16,18–23,42,49].

The differential effects of soluble versus immobilized IgG do not

only emphasize the functional plasticity of polarized macrophages,

but may also be relevant for our understanding of specific

pathological and therapeutic conditions. In autoimmune diseases,

ICs are thought to contribute to chronic tissue inflammation when

deposited in tissues, with as prototypical examples lupus nephritis

and rheumatoid synovitis. In this immobilized form, ICs may

promote mainly pro-inflammatory over anti-inflammatory re-

sponses by tissue macrophages. Moreover, IC binding to myeloid

cells in these conditions was also reported to inhibit their

responsiveness to IL-10 [50,51]. In sharp contrast, intravenous

administration of soluble immunoglobulins (IVIg) has been used

for a long time in the treatment of diverse autoimmune diseases

[52–55]. The immunosuppressive effect of macrophage FccR

ligation has been attributed to blocking of the activating FccRs,

stimulation of FccRIIb, and increased anti- versus pro-inflamma-

tory cytokine production [10,12,16,18,45,56]. Our in vitro data

thus support the hypothesis that soluble ICs shift the balance of

pro- towards anti-inflammatory cytokine production. Interestingly,

this effect may be important not only for the therapeutic efficacy of

IVIg, but also of targeted biological therapies. It was indeed

recently demonstrated that anti-TNF antibodies induce IL-10

producing macrophages in an Fc-dependent manner and that

these immunoregulatory macrophages are involved in mucosal

healing in inflammatory bowel disease [56,57]. These studies

reveal that monoclonal antibody therapy can drive anti-inflam-

matory responses by Fc region-dependent and target-independent

modulation of macrophage function.

In conclusion, we showed here that distinct polarized macro-

phage subsets retain an important functional plasticity despite

maintenance of their specific phenotype. In particular, we

demonstrated that soluble ICs, but not immobilized IgG shifted

the balance of human macrophage cytokine production towards

IL-10. These findings raise the possibility of therapeutic modula-

tion of macrophage function in the context of chronic tissue

inflammation.
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Supporting Information

Figure S1 Expression of TLR2 and TLR4 on MWIFN-c,
MWIL-4, and MWIL-10. Healthy peripheral blood monocytes

were cultured for 4 days in medium or in medium supplemented

with IFN-c, IL-4, or IL-10. Expression TLR2 and TLR4 was

measured by flow cytometry. Bars represent the mean 6 SEM of 4

independent experiments. *p,0.05, **p,0.01

(TIF)

Author Contributions

Conceived and designed the experiments: CAA TRDJR DLPB. Performed

the experiments: CAA KCMS LvB MHW. Analyzed the data: CAA

KCMS LvB MHW. Contributed reagents/materials/analysis tools: CAA

KCMS LvB MHW PPT TRDJR DLPB. Wrote the paper: CAA TRDJR

DLPB.

References

1. Bogdan C, Vodovotz Y, Nathan C (1991) Macrophage deactivation by

interleukin 10. J Exp Med 174: 1549–1555.

2. Goerdt S, Orfanos CE (1999) Other functions, other genes: alternative activation

of antigen-presenting cells. Immunity 10: 137–142. S1074-7613(00)80014-X

[pii].

3. Gordon S (2003) Alternative activation of macrophages. Nat Rev Immunol 3:

23–35. 10.1038/nri978 [doi];nri978 [pii].

4. Stein M, Keshav S, Harris N, Gordon S (1992) Interleukin 4 potently enhances

murine macrophage mannose receptor activity: a marker of alternative

immunologic macrophage activation. J Exp Med 176: 287–292.

5. Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, et al. (2004) The

chemokine system in diverse forms of macrophage activation and polarization.

Trends Immunol 25: 677–686. S1471-4906(04)00295-9 [pii];10.1016/

j.it.2004.09.015 [doi].

6. Mosser DM (2003) The many faces of macrophage activation. J Leukoc Biol 73:

209–212.

7. Mosser DM, Edwards JP (2008) Exploring the full spectrum of macrophage

activation. Nat Rev Immunol 8: 958–969. nri2448 [pii];10.1038/nri2448 [doi].

8. Ambarus CA, Krausz S, van Eijk M, Hamann J, Radstake TR, et al. (2011)

Systematic validation of specific phenotypic markers for in vitro polarized

human macrophages. J Immunol Methods S0022-1759(11)00294-8

[pii];10.1016/j.jim.2011.10.013 [doi].

9. Bonney RJ, Naruns P, Davies P, Humes JL (1979) Antigen-antibody complexes

stimulate the synthesis and release of prostaglandins by mouse peritoneal

macrophages. Prostaglandins 18: 605–616.

10. Gerber JS, Mosser DM (2001) Reversing lipopolysaccharide toxicity by ligating

the macrophage Fc gamma receptors. J Immunol 166: 6861–6868.

11. Sutterwala FS, Noel GJ, Clynes R, Mosser DM (1997) Selective suppression of

interleukin-12 induction after macrophage receptor ligation. J Exp Med 185:

1977–1985.

12. Sutterwala FS, Noel GJ, Salgame P, Mosser DM (1998) Reversal of

proinflammatory responses by ligating the macrophage Fcgamma receptor type

I. J Exp Med 188: 217–222.

13. Edwards JP, Zhang X, Frauwirth KA, Mosser DM (2006) Biochemical and

functional characterization of three activated macrophage populations. J Leukoc

Biol 80: 1298–1307. jlb.0406249 [pii];10.1189/jlb.0406249 [doi].

14. Anderson CF, Mosser DM (2002) Cutting edge: biasing immune responses by

directing antigen to macrophage Fc gamma receptors. J Immunol 168:

3697–3701.

15. Martinez FO, Sica A, Mantovani A, Locati M (2008) Macrophage activation

and polarization. Front Biosci 13: 453–461. 2692 [pii].

16. Berger S, Ballo H, Stutte HJ (1996) Immune complex-induced interleukin-6,

interleukin-10 and prostaglandin secretion by human monocytes: a network of

pro- and anti-inflammatory cytokines dependent on the antigen:antibody ratio.

Eur J Immunol 26: 1297–1301. 10.1002/eji.1830260618 [doi].

17. Berger S, Chandra R, Ballo H, Hildenbrand R, Stutte HJ (1997) Immune

complexes are potent inhibitors of interleukin-12 secretion by human

monocytes. Eur J Immunol 27: 2994–3000. 10.1002/eji.1830271136 [doi].

18. Ronnelid J, Tejde A, Mathsson L, Nilsson-Ekdahl K, Nilsson B (2003) Immune

complexes from SLE sera induce IL10 production from normal peripheral blood

mononuclear cells by an FcgammaRII dependent mechanism: implications for a

possible vicious cycle maintaining B cell hyperactivity in SLE. Ann Rheum Dis

62: 37–42.

19. Abrahams VM, Cambridge G, Lydyard PM, Edwards JC (2000) Induction of

tumor necrosis factor alpha production by adhered human monocytes: a key role

for Fcgamma receptor type IIIa in rheumatoid arthritis. Arthritis Rheum 43:

608–616. 10.1002/1529-0131(200003)43:3,608::AID-ANR18.3.0.CO;2-G

[doi].

20. Debets JM, Van de Winkel JG, Ceuppens JL, Dieteren IE, Buurman WA (1990)

Cross-linking of both Fc gamma RI and Fc gamma RII induces secretion of

tumor necrosis factor by human monocytes, requiring high affinity Fc-Fc gamma

R interactions. Functional activation of Fc gamma RII by treatment with

proteases or neuraminidase. J Immunol 144: 1304–1310.

21. Herrmann F, De Vos S, Brach M, Riedel D, Lindemann A, et al. (1992)

Secretion of granulocyte-macrophage colony-stimulating factor by human blood

monocytes is stimulated by engagement of Fc gamma receptors type I by solid-

phase immunoglobulins requiring high-affinity Fc-Fc gamma receptor type I

interactions. Eur J Immunol 22: 1681–1685. 10.1002/eji.1830220703 [doi].

22. Krutmann J, Kirnbauer R, Kock A, Schwarz T, Schopf E, et al. (1990) Cross-
linking Fc receptors on monocytes triggers IL-6 production. Role in anti-CD3-

induced T cell activation. J Immunol 145: 1337–1342.

23. Mullazehi M, Mathsson L, Lampa J, Ronnelid J (2006) Surface-bound anti-type

II collagen-containing immune complexes induce production of tumor necrosis
factor alpha, interleukin-1beta, and interleukin-8 from peripheral blood

monocytes via Fc gamma receptor IIA: a potential pathophysiologic mechanism
for humoral anti-type II collagen immunity in arthritis. Arthritis Rheum 54:

1759–1771. 10.1002/art.21892 [doi].

24. Polat GL, Laufer J, Fabian I, Passwell JH (1993) Cross-linking of monocyte

plasma membrane Fc alpha, Fc gamma or mannose receptors induces TNF
production. Immunology 80: 287–292.

25. Radstake TR, van Lent PL, Pesman GJ, Blom AB, Sweep FG, et al. (2004) High

production of proinflammatory and Th1 cytokines by dendritic cells from

patients with rheumatoid arthritis, and down regulation upon FcgammaR
triggering. Ann Rheum Dis 63: 696–702. 10.1136/ard.2003.010033 [doi];63/

6/696 [pii].

26. Clavel C, Nogueira L, Laurent L, Iobagiu C, Vincent C, et al. (2008) Induction

of macrophage secretion of tumor necrosis factor alpha through Fcgamma
receptor IIa engagement by rheumatoid arthritis-specific autoantibodies to

citrullinated proteins complexed with fibrinogen. Arthritis Rheum 58: 678–688.
10.1002/art.23284 [doi].

27. Laurent L, Clavel C, Lemaire O, Anquetil F, Cornillet M, et al. (2011)
Fcgamma receptor profile of monocytes and macrophages from rheumatoid

arthritis patients and their response to immune complexes formed with
autoantibodies to citrullinated proteins. Ann Rheum Dis 70: 1052–1059.

ard.2010.142091 [pii];10.1136/ard.2010.142091 [doi].

28. Radstake TR, Blom AB, Sloetjes AW, van Gorselen EO, Pesman GJ, et al.

(2004) Increased FcgammaRII expression and aberrant tumour necrosis factor
alpha production by mature dendritic cells from patients with active rheumatoid

arthritis. Ann Rheum Dis 63: 1556–1563. 63/12/1556 [pii];10.1136/

ard.2003.016550 [doi].

29. Anderson CF, Mosser DM (2002) A novel phenotype for an activated
macrophage: the type 2 activated macrophage. J Leukoc Biol 72: 101–106.

30. Landmann R, Knopf HP, Link S, Sansano S, Schumann R, et al. (1996) Human
monocyte CD14 is upregulated by lipopolysaccharide. Infect Immun 64:

1762–1769.

31. Gratchev A, Kzhyshkowska J, Kothe K, Muller-Molinet I, Kannookadan S, et

al. (2006) Mphi1 and Mphi2 can be re-polarized by Th2 or Th1 cytokines,
respectively, and respond to exogenous danger signals. Immunobiology 211:

473–486. S0171-2985(06)00076-3 [pii];10.1016/j.imbio.2006.05.017 [doi].

32. Verreck FA, de Boer T, Langenberg DM, Hoeve MA, Kramer M, et al. (2004)

Human IL-23-producing type 1 macrophages promote but IL-10-producing
type 2 macrophages subvert immunity to (myco)bacteria. Proc Natl Acad

Sci U S A 101: 4560–4565. 10.1073/pnas.0400983101 [doi];0400983101 [pii].

33. Verreck FA, de Boer T, Langenberg DM, van der Zanden L, Ottenhoff TH
(2006) Phenotypic and functional profiling of human proinflammatory type-1

and anti-inflammatory type-2 macrophages in response to microbial antigens

and IFN-gamma- and CD40L-mediated costimulation. J Leukoc Biol 79:
285–293. jlb.0105015 [pii];10.1189/jlb.0105015 [doi].

34. Shanley TP, Schmal H, Friedl HP, Jones ML, Ward PA (1995) Regulatory

effects of intrinsic IL-10 in IgG immune complex-induced lung injury. J Immunol

154: 3454–3460.

35. Virgin HW, Unanue ER (1984) Immune complexes suppress cellular immunity.
Ann N Y Acad Sci 437: 16–27.

36. Fleetwood AJ, Lawrence T, Hamilton JA, Cook AD (2007) Granulocyte-
macrophage colony-stimulating factor (CSF) and macrophage CSF-dependent

macrophage phenotypes display differences in cytokine profiles and transcription
factor activities: implications for CSF blockade in inflammation. J Immunol 178:

5245–5252. 178/8/5245 [pii].

37. Wijngaarden S, Van de Winkel JG, Jacobs KM, Bijlsma JW, Lafeber FP, et al.

(2004) A shift in the balance of inhibitory and activating Fcgamma receptors on
monocytes toward the inhibitory Fcgamma receptor IIb is associated with

prevention of monocyte activation in rheumatoid arthritis. Arthritis Rheum 50:

3878–3887. 10.1002/art.20672 [doi].

38. Tripp CS, Beckerman KP, Unanue ER (1995) Immune complexes inhibit
antimicrobial responses through interleukin-10 production. Effects in severe

combined immunodeficient mice during Listeria infection. J Clin Invest 95:

1628–1634. 10.1172/JCI117837 [doi].

Effect of Immune Complexes on Macrophage Subsets

PLoS ONE | www.plosone.org 9 April 2012 | Volume 7 | Issue 4 | e35994



39. Chroneos Z, Shepherd VL (1995) Differential regulation of the mannose and

SP-A receptors on macrophages. Am J Physiol 269: L721–L726.
40. Hogger P, Dreier J, Droste A, Buck F, Sorg C (1998) Identification of the

integral membrane protein RM3/1 on human monocytes as a glucocorticoid-

inducible member of the scavenger receptor cysteine-rich family (CD163).
J Immunol 161: 1883–1890.

41. Koning N, van Eijk M, Pouwels W, Brouwer MS, Voehringer D, et al. (2010)
Expression of the inhibitory CD200 receptor is associated with alternative

macrophage activation. J Innate Immun 2: 195–200. 000252803 [pii];10.1159/

000252803 [doi].
42. Mathsson L, Lampa J, Mullazehi M, Ronnelid J (2006) Immune complexes from

rheumatoid arthritis synovial fluid induce FcgammaRIIa dependent and
rheumatoid factor correlated production of tumour necrosis factor-alpha by

peripheral blood mononuclear cells. Arthritis Res Ther 8: R64. ar1926
[pii];10.1186/ar1926 [doi].

43. Ravetch JV, Bolland S (2001) IgG Fc receptors. Annu Rev Immunol 19:

275–290. 19/1/275 [pii];10.1146/annurev.immunol.19.1.275 [doi].
44. Wenink MH, Santegoets KC, Roelofs MF, Huijbens R, Koenen HJ, et al. (2009)

The inhibitory Fc gamma IIb receptor dampens TLR4-mediated immune
responses and is selectively up-regulated on dendritic cells from rheumatoid

arthritis patients with quiescent disease. J Immunol 183: 4509–4520.

jimmunol.0900153 [pii];10.4049/jimmunol.0900153 [doi].
45. Wernersson S, Karlsson MC, Dahlstrom J, Mattsson R, Verbeek JS, et al. (1999)

IgG-mediated enhancement of antibody responses is low in Fc receptor gamma
chain-deficient mice and increased in Fc gamma RII-deficient mice. J Immunol

163: 618–622. ji_v163n2p618 [pii].
46. Kim JW, Wierda WG, Kim YB (1991) Immobilized IgG immune complex

induces secretion of tumor necrosis factor-alpha by porcine alveolar macro-

phages. Am J Respir Cell Mol Biol 5: 249–255.
47. Gupta S, Booth JW (2010) ERK phosphorylation and tumor necrosis factor-

alpha production by monocytes are persistent in response to immobilized IgG.
Biochem Biophys Res Commun 402: 301–304. S0006-291X(10)01871-1

[pii];10.1016/j.bbrc.2010.10.020 [doi].

48. DiMartino SJ, Yuan W, Redecha P, Ivashkiv LB, Salmon JE (2008) Insoluble
immune complexes are most effective at triggering IL-10 production in human

monocytes and synergize with TLR ligands and C5a. Clin Immunol 127: 56–65.

S1521-6616(07)01413-1 [pii];10.1016/j.clim.2007.11.014 [doi].

49. Boross P, Verbeek JS (2006) The complex role of Fcgamma receptors in the

pathology of arthritis. Springer Semin Immunopathol 28: 339–350. 10.1007/

s00281-006-0049-9 [doi].

50. Ji JD, Tassiulas I, Park-Min KH, Aydin A, Mecklenbrauker I, et al. (2003)

Inhibition of interleukin 10 signaling after Fc receptor ligation and during

rheumatoid arthritis. J Exp Med 197: 1573–1583. 10.1084/jem.20021820

[doi];jem.20021820 [pii].

51. Yuan W, DiMartino SJ, Redecha PB, Ivashkiv LB, Salmon JE (2011) Systemic

lupus erythematosus monocytes are less responsive to interleukin-10 in the

presence of immune complexes. Arthritis Rheum 63: 212–218. 10.1002/

art.30083 [doi].

52. Ballow M (2011) The IgG molecule as a biological immune response modifier:

mechanisms of action of intravenous immune serum globulin in autoimmune

and inflammatory disorders. J Allergy Clin Immunol 127: 315–323. S0091-

6749(10)01645-3 [pii];10.1016/j.jaci.2010.10.030 [doi].

53. Ephrem A, Misra N, Hassan G, Dasgupta S, Delignat S, et al. (2005)

Immunomodulation of autoimmune and inflammatory diseases with intravenous

immunoglobulin. Clin Exp Med 5: 135–140. 10.1007/s10238-005-0079-y [doi].

54. Nimmerjahn F, Ravetch JV (2007) Fc-receptors as regulators of immunity. Adv

Immunol 96: 179–204. S0065-2776(07)96005-8 [pii];10.1016/S0065-

2776(07)96005-8 [doi].

55. Nimmerjahn F, Ravetch JV (2007) The antiinflammatory activity of IgG: the

intravenous IgG paradox. J Exp Med 204: 11–15. jem.20061788 [pii];10.1084/

jem.20061788 [doi].

56. Vos AC, Wildenberg ME, Duijvestein M, Verhaar AP, van den Brink GR, et al.

(2011) Anti-tumor necrosis factor-alpha antibodies induce regulatory macro-

phages in an Fc region-dependent manner. Gastroenterology 140: 221–230.

S0016-5085(10)01496-4 [pii];10.1053/j.gastro.2010.10.008 [doi].

57. Vos AC, Wildenberg ME, Arijs I, Duijvestein M, Verhaar AP, et al. (2011)

Regulatory macrophages induced by infliximab are involved in healing in vivo

and in vitro. Inflamm Bowel Dis 10.1002/ibd.21818 [doi].

Effect of Immune Complexes on Macrophage Subsets

PLoS ONE | www.plosone.org 10 April 2012 | Volume 7 | Issue 4 | e35994


