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Abstract

Continuous antiretroviral therapy is currently the most effective way to treat HIV infection. Unstructured interruptions are
quite common due to side effects and toxicity, among others, and cannot be prevented. Several attempts to structure these
interruptions failed due to an increased morbidity compared to continuous treatment. The cause of this failure is poorly
understood and often attributed to drug resistance. Here we show that structured treatment interruptions would fail
regardless of the emergence of drug resistance. Our computational model of the HIV infection dynamics in lymphoid tissue
inside lymph nodes, demonstrates that HIV reservoirs and evasion from immune surveillance themselves are sufficient to
cause the failure of structured interruptions. We validate our model with data from a clinical trial and show that it is possible
to optimize the schedule of interruptions to perform as well as the continuous treatment in the absence of drug resistance.
Our methodology enables studying the problem of treatment optimization without having impact on human beings. We
anticipate that it is feasible to steer new clinical trials using computational models.
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Introduction

The increase in life expectancy of HIV positive individuals

raised both costs and side effects of combination Anti-Retroviral

Therapy (cART), stimulating research into Structured Treatment

Interruptions (STI). Latest clinical trials on STI [1,2] indicated

they are less effective than continuous treatment. We show that the

STI tested so far in clinical trials would fail regardless of the

emergence of drug resistance and that this failure is caused by HIV

reservoirs and immune evasion.

For many HIV positive individuals treatment interruptions are

unavoidable. Although clinical studies proved that increased risks

are associated to cART interruptions, patient-initiated unstruc-

tured treatment interruptions are still quite common in the clinical

practice [3]. A recent systematic review [4] of cohort studies and

clinical trials indicates a proportion of unstructured treatment

interruptions ranging from 5.8% to 83.1% with a median of

23.1%. The mean duration of cART interruptions ranges from

11.5 days to 18 months with a median of 150 days. The main

reported reasons for treatment interruptions are laboratory

toxicity and clinical side effects. Less frequent arguments are

patient compliance, treatment fatigue, intercurrent illness and

other reasons.

The problem of unstructured interruptions is getting worse

because of the increasing duration of treatment. Recent studies

suggest an earlier use of cART as a way to fight effectively the HIV

epidemics [5,6]. Current cART guidelines defer the treatment to

the time when CD4+ counts drop below 350 (European guidelines

- EACS) or 500 cells per microliter (US guidelines - DHHS and

IAS-USA) whereas recent studies indicate that an early start of

cART (CD4+ counts .500 cells per microliter) could significantly

improve survival [5,7–9]. Regardless of the success of anti-

retroviral therapies, HIV’s ability to mutate and evade both

antiviral treatments and vaccines shifted the attention from curing

affected individuals to fighting the epidemics. Some predictive

models investigate the effects of different strategies on the HIV

epidemics [6,10]. Recent clinical investigations [9] indicate that a

more intensive and earlier use of cART is effective in reducing the

spread of the virus. Indeed, another study highlighted the

effectiveness of preventive use of cART in reducing the chance

of being infected in case of sexual contact with a seropositive

individual [11]. Strategies aimed at reducing the spread of

infection not only extend the duration of cART for an infected

individual but also increase the number of individuals simulta-

neously under cART, raising the - already high - global cost of

cART treatments.

STI aimed at discontinuing the therapy according to a schedule

so as to minimize the side effects without losing substantial

protection. In a large, randomized clinical trial [1,2] STI were

associated with an increased risk of death and opportunistic

diseases connected to treatment interruptions. Earlier studies
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[12,13] indicated positive results for STI, in some cases associated

to supporting drugs [14]. Subsequently, many clinical studies on

different STI schedules resulted in generally neutral or negative

outcomes [15–17], although the reasons are still not fully

understood. Results from the Staccato randomized trial indicated

substantial drug savings and did not result in increased drug

resistance in the STI arm, while treatment related adverse events

were more frequent with continuous treatment [18].

Hereafter we resort to a computational model to gain a better

understanding of the reasons of STI failure. A number of

mathematical models describe the HIV infection dynamics and

the related immune response. Some of them take into account the

use of cART [19–21]. Most mathematical models use a continuous

description of time, allowing the use of optimal control techniques

to search for the best time to deliver the therapy [22–24]. Recently

a mathematical model searched for the underlying reasons of STI

failure [25]. That model confirms that viral mutation and the

emergence of drug resistant strains may be accelerated by STI,

although only activated CD4+ cells and macrophages were

considered as possible hosts for the virus. The study of HIV

through cellular automata and agent-based models is also common

[26–31] due to the discrete nature of the biological entities

involved in the phenomena. In this work we use a well-established

and validated agent-based model (ABM) of HIV infection [32–36].

See File S1 for a brief description of the model used in this work.

Our aim is to gain a better understanding of the reasons behind

STI failure: are they inherent to the HIV dynamics or

consequential of other mechanisms like the emergence of drug

resistance? By excluding to model the resistance to the drugs we

restrict the possible causes of STI failure to mechanisms such as

virus reservoirs in macrophages and resting/memory CD4+ T

lymphocytes. In addition, in this simplified formulation, we search

for an optimal STI and compare it to the optimal one found in a

previous work [32]. A similar attempt to optimize clinical

treatments using in silico modeling has been applied to cancer-

preventing vaccinations [37]. In that case the predictions of the

computational model were validated through specific in vivo

experiments on mice. That paper proved that an integrated in

vivo-in silico approach is able to improve mathematical and

biological models for cancer immunoprevention.

In the present work we investigate treatment interruptions with

two in silico simulations: in the first simulation we test three STI

used in clinical trials and compare their efficacy to that of the

continuous (i.e., uninterrupted) treatment, while in the second

simulation we search for an optimal STI scheduling and compare

it with random treatment and continuous treatment. By ‘optimal

schedule’ we mean the one that less impairs the ability to mount

an immune response while keeping the amount of drugs used to a

minimum. We use the Simulated Annealing (SA) technique to

search for the optimal STI schedule. We simulate the disease

progression for a group of 250 virtual (i.e., in silico) HIV positive

patients. For each group of virtual patients we compare the effects

of different treatment strategies on the HIV infection over a

therapeutic period of 48 weeks, three years after seroconversion.

We finally evaluate the efficacy of each STI schedule by

challenging the immune system of the virtual HIV patients with

a simulated opportunistic bacterial infection at the end of the

treatment.

Results

Optimization results
To quantitatively evaluate the effect of a STI schedule of cART

we define a fitness function that measures the health of the virtual

patient’s immune system and the amount of drugs received over

the 48 weeks period. The fitness function is described in the

Materials and Methods section. We performed 50 SA optimiza-

tions by using different initial conditions. These optimizations

resulted in 50 optimized treatment schedules with an average

fitness score of 2.325 and a standard deviation of 0.012. The

optimal treatment schedules have 29 weeks of therapy on average

and a standard deviation of 3 weeks. The optimized schedules are

shown in a histogram (Figure 1) in which each bin represents the

frequency of a given week of therapy in the optimized schedules.

The histogram shows a peak every 3 weeks spaced out by 2 weeks

in which the drug administration has a lower but still significant

frequency. Due to the requirement of providing a schedule as

regular as possible, we define as ‘‘optimal’’ a schedule having 2

weeks of therapy followed by an interruption of 1 week for 32

weeks after the initial two months. The optimization shows a

different pattern for the initial two months of treatment (Figure 2).

The optimal schedule has 29 weeks of therapy and is shown in

Figure 2. According to our simulations the last 4 weeks of the

therapeutic period have limited importance. In other words, the

effect of cART at later times is somehow less important,

supporting the current opinion that it is more rewarding to

support the immune system with anti-retroviral treatment at

earlier times.

The aim of the treatment was to suppress the HIV viral load

and induce immune restoration, resulting in an immune system

capable of dealing with opportunistic infections. To assess the

efficacy of the optimal therapy indicated by the SA algorithm, we

ran simulations of an opportunistic infection starting immediately

after the therapeutic period. Bacteria were injected in the virtual

patients as soon as the 48 weeks of therapy were over. The

immune system reaction against those bacteria depended on its

efficiency at injection time. We compared the result of the

schedule optimized by the SA algorithm with three different

simulated control groups (Figure 3). In the first group (‘‘Contin-

uous Therapy’’) the drugs were administered every day for a

therapeutic period of 48 weeks as prescribed by the cART

guidelines; in the second group (‘‘Random Therapy’’) the total

amount of drug was equal to that of the optimal therapy but

administration within the therapeutic period was performed

randomly; finally, in the last group, there was no therapy (‘‘Void

Therapy’’). To measure the effectiveness of the optimized STI we

monitored the survival curve in a population of 250 virtual HIV+
patients infected by a bacterium 4 years after their initial HIV

Figure 1. Optimized HAART Histogram: the histogram shows
50 optimized therapeutic schedules. Each bin represents the
frequency of a given week of therapy in the optimized schedules.
doi:10.1371/journal.pone.0036108.g001

Failure of Structured Treatment Interruptions
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infection. For the same 250 patients we compared the effects of

continuous therapy, void therapy, optimal therapy and random

therapy.

Our results show that the optimal therapy provided a survival

rate comparable to the continuous therapy using 40% less drug.

Survival rate for untreated patients was 45.4%. The optimal

therapy performed significantly better than the void one (survival

rate 90% versus 45.4%). The optimal therapy also performed

better than a random therapy with the same amount of drugs (a

survival rate of 90% vs. 81.9%). The latter result indicates that the

schedule identified by the SA algorithm is optimized for both the

amount of medicine and the administration schedule, supporting

the importance of finding a specific scheduling to reduce

therapeutic failures.

Comparison with clinical trials
Even though different structured treatment schedules have been

tested in clinical trials, a comparison with multiple trials is often

difficult due to the heterogeneity of their experimental conditions.

The clinical trials that tested the STI simulated in our work have

different durations and different criteria for the enrollment of

patients. Such diversity makes it difficult to compare their results

with a single optimized schedule. In terms of initial conditions and

treatment duration our simulations can be related to the clinical

trial by Dybul et al. [16]. As in Dybul’s clinical trial, our

simulations have a treatment period of 48 weeks, enroll patients

with similar CD4+ cells counts (CD4+ cells .300 cells/mm3) and

test the STI schedule with 8 weeks of treatment and 4 weeks of

interruption. The main difference is that in our simulations we use

patients that have been never exposed to HAART and thus with a

higher viral load whereas the clinical trial enrolled patients

receiving a 3-drug HAART regimen with HIV RNA levels ,500

copies/mL plasma for .6 months and ,50 copies/mL at

screening.

The parameters that control the pharmacodynamics of HIV in

our model have been tuned by using clinical information from

about twenty-two patients selected at the Clinical Department of

the National Institute of Infectious Diseases ‘‘L. Spallanzani’’ in

Rome [38]. No special tuning has been performed for the model

parameters of the three STI schedules tested in the present work.

For this reason we can validate our model results by comparing

the simulations for both continuous treatment and the structured

treatment interruption with data from Dybul’s clinical trial. Those

data consists of the median and range of CD4+ cell counts at

baseline, at week 40 and at week 48 of the treatment period

observed in 52 patients randomized in the continuous and STI

arm of the clinical trial. In (Figure 4) we compare the simulations

results with the values observed in the clinical trial. Simulated

CD4+ cell counts are within the ranges observed in the clinical

trial. In Table S1 we show the variation of immunological

parameters for all the schedules tested in our virtual cohort. In the

Figure 2. At time 0 a virtual patient is infected with HIV. The
therapeutic period of 48 weeks starts after 3 years of untreated
infection (day 1096). The optimal therapy is shown in the figure. At the
end of the 48 weeks of therapy we inject a fixed amount of bacteria in
the virtual patient, challenging his immune system. The patient dies if
the antigens exceed a threshold of 46106 bacteria/ml. An efficient
therapy is capable of restoring the patient’s immune system enough to
contain the bacterial infection.
doi:10.1371/journal.pone.0036108.g002

Figure 3. Survival curves: percentage of survivors over time in a population of 250 HIV+ virtual patients. 30 days after bacterial
challenge survival rates are the following: continuous therapy 91.53%, optimal therapy 90%, random therapy 81.85% and void therapy 45.38%. A
reduction of 40% of the drug intake corresponds to less than 5% reduction in the survival rate.
doi:10.1371/journal.pone.0036108.g003

Failure of Structured Treatment Interruptions
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table we report the median value and the range observed in the

virtual cohort at week 40 and week 48 of the treatment period.

Results of the STI strategies tested in clinical trials are shown in

Figure 5. As observed in the clinical trials, all the STI strategies are

associated with an increased number of deaths compared to the

continuous treatment. The ratio of deaths associated to the ‘‘Week

On/Week Off’’ strategy over that of continuous therapy is 1.95 at

the end of the 30 days after opportunistic bacterial infection. The

same ratio is 3.52 for the ‘‘4 Weeks On/4 Weeks Off’’ strategy and

2.05 for the ‘‘8 Weeks On/4 Weeks Off’’. We observe a ratio of

deaths of 1.19 for the Optimal therapy and 2.14 for the Random

therapy.

The effects of the different STI on virological and immunolog-

ical parameters are shown in (Figure 6). The parameters that show

the strongest correlation with the survival of the virtual patients in

the long term are CD4+ cell count and provirus levels. The levels

of provirus seem to be responsible for the failure of STI treatment

as much as the CD4+ cells count. The ‘‘4 Weeks On/4 Weeks Off

’’ schedule has the worst survival because of the high level of

provirus even though it shows a CD4+ cells count comparable to

that of the ‘‘Week On/Week Off ’’ STI. The difference in the ratio

of deaths associated to ‘‘ 8 Weeks On/4 Weeks Off ’’ and the

optimal STI (2.05 versus 1.19) should be due to their difference in

the level of provirus, since both schedules show comparable CD4+

cell counts. These results lead us to point out the importance of

HIV reservoirs as one of the main causes of STI failure. As

expected, a treatment interruption longer than 10 days leads to a

viral rebound and a decrease in CD4+ cell count. We observe that

the viral rebound is proportional to the duration of the

interruption. Treatment interruptions of one or two weeks have

a smaller viral rebound whereas for longer interruptions the viral

load reaches levels comparable to the ones before treatment (data

not shown).

For both optimal and continuous treatment the outcome of the

opportunistic infection is correlated more to the level of provirus

than to the level of CD4+ lymphocytes. For all other schedules it

seems that both CD4+ and provirus are relevant in determining

fatal outcomes of the bacterial infection. In Figure 7 we show the

CD4+ cell counts versus provirus level of the 250 virtual patients

for each of the treatment schedules tested in the present work. For

each STI schedule we separate the 250 virtual patients in two

groups (survivors and casualties) depending on the outcome of the

opportunistic infection. We perform a Kolmogorov-Smirnov two-

sample test to compare the distributions of the CD4+ cell counts at

the end of the treatment period in both groups. The null

hypothesis is that the CD4+ cell counts in the group of survivors

and the one in the group of casualties are from the same

distribution. For all the treatment schedules tested, except the

optimal and continuous treatment, the null hypothesis is rejected

with p-values between 1.1*1025 and 1.6*1022. Surprisingly for the

optimal and continuous treatment the CD4+ cell count are not

related to the outcome of the opportunistic infection (p-value 0.29

and 5.1*1022). We perform the same test to compare the

distributions of provirus in survivors and casualties. In this case

the null hypothesis is rejected for all the schedules with p-values

between 9.1*10212 and 1.5*1022.

Discussion

The three STI strategies (‘‘Week On/Week Off’’, ‘‘4 Weeks

On/4Weeks Off’’ and ‘‘8 Weeks On/4Weeks Off’’) have lower

performances compared to continuous treatment regardless of the

emergence of drug resistance since the ratio of death associated to

a clinically tested STI strategy over that of continuous treatment is

between 1.95 and 3.52. Since in the model we don’t allow HIV to

develop resistance to cART drugs, the failure of STI seems to be

inherent to the HIV infection dynamics, rather than caused by the

emergence of drug resistant strains. We conclude that the amount

of HIV reservoirs both in macrophages and latently infected

resting/memory CD4+ T lymphocytes are sufficient to cause a

failure of the STI schedules tested so far in clinical trials regardless

of drug resistance. This observation may have relevant implica-

tions for the design of future treatment strategies. Indeed, efforts

directed towards the reduction of the size of HIV reservoirs in

humans, might facilitate the adoption of subsequent strategies

aimed at reducing the antiretroviral treatment exposure, such as

STI or treatments with less drugs [39].

We also show that, without the emergence of drug resistance, it

is possible to find an optimized STI whose efficacy is close to that

of a continuous treatment with a reduction of 40% in drug

Figure 4. Model validation: CD4+ cell counts/mm3 at three
different time points (Baseline, Week 40 and Week 48). In the
upper panel we compare the median CD4+ cell counts of 250 virtual
patients with the data of real patients from the continuous treatment
arm of Dybul’s clinical trial. In the lower panel we compare the median
CD4+ cell counts of 250 virtual patients with the data of real patients
from the STI arm of Dybul’s clinical trial.
doi:10.1371/journal.pone.0036108.g004

Failure of Structured Treatment Interruptions
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administration. In addition by showing the failure of the ‘‘8 Weeks

On/4 Weeks Off’’ STI we show that adherence to the optimal

treatment schedule is more important than the amount of drug

taken over the treatment period. The efficacy of random therapies

with the same amount of drug of the optimal treatment is sensibly

lower than that of optimal treatment. Results indicate a ratio of

death of 2.14 for the random treatment instead of 1.19 observed

for the optimal. We conclude that the SA optimization was

successful in identifying an optimal schedule of drug administra-

tion for the set of conditions studied in this work.

The result obtained in a previous work [32] on a shorter

therapeutic period (6 months) and optimized by using a genetic

algorithm indicated an optimized therapy with a week-on week-off

pattern after a period of about 2 months of continuous therapy.

The initial period of continuous therapy is not necessary according

to our study, possibly because the immune system is not

compromised enough to require an initial strong recovery phase.

In the previous study the percentage of survivors for full and

optimal therapy was comparable (34.1% and 30.5% respectively)

whereas random and void therapy had lower performances

(21.9% and 20.2%). The differences in the optimized treatments

indicate that the best therapeutic strategy changes with the

progressive damage that HIV infection inflicts on the immune

system. Since at 3 years post infection the immune system is

usually not severely compromised, in the present study the

percentage of survivors is higher than the one observed in the

previous study in which the therapy started almost 8 years after

HIV infection. An interesting difference is the effect of random

therapy. In our study we notice that a random therapy has less

negative effects if the patient receives early (CD4+ cell counts

.500 cell/mm3) cART. If treatment starts later random therapy

has virtually no effect, as shown in [32]. This result indicates that

unstructured interruptions have a less negative effect on the short

term when the immune system is still healthy but further

investigation is required to evaluate their effects in the long term.

The increased risk of opportunistic infections associated to

provider-directed structured therapeutic interruptions led to

abandoning this strategy in favor of the safety of a continuous

treatment. Yet continuous treatment is not always possible as

suggested by the proportion of patient-initiated unstructured

interruptions. Since new studies suggesting the beneficial effects of

early treatment may increase the duration of cART in a patient’s

life, a further growth of the already common unstructured

interruptions can be foreseen. Moreover, so far, no clinical study

has compared the risk of opportunistic infections associated with

unstructured interruptions to the risk associated with STI. Finally,

the sustainability of life-long antiretroviral therapy at global level,

both from an economic and toxicity points of view, still represents

a major challenge. For these reasons, exploring the mechanisms

behind the failure of structured therapeutic interruptions and the

possible optimal STI is still an open topic.

The ethical problems associated to further studies of STI in light

of the previous failures make the use of modeling techniques

appealing. The possibility of simulating STI in silico to predict the

success or failure of a given STI strategy is a powerful tool that can

support the design of clinical studies without having impact on

human beings. The optimization of treatment interruptions is

another clear example of the usefulness of modeling approaches to

foster the understanding of complex problems.

For the HIV infection the lack of fully predictive animal models

[40] makes it difficult to accurately validate the prediction of

computational models. It is very difficult to address the ethical

implications of testing computational predictions on humans,

given the potential loss of human lives that could be caused by a

wrong prediction. Yet, clinical trials are still needed and any tool

that could be used to assist those trials should be considered.

Regardless of the difficulties in validating the predictions of our

model, our results can be used to orientate qualitatively the design

of clinical trials. In silico simulations could be used to predict if a

STI schedule might fail because of the size of the HIV reservoir

regardless of the emergence of drug resistance. In this way clinical

trials could be directed toward schedules with a higher chance of

success.

Figure 5. STI Survival curves for different STI strategies: percentage of survivors over time in a population of 250 HIV+ virtual
patients. 30 days after bacterial challenge, survival rates are the following: Week On/Week Off STI 83.60%, 8 Weeks On/4 Weeks Off 82.66% and 4
Weeks On/4 Weeks Off 70.28%. Survival rates for continuous therapy and void therapy are 91.53% and 45.38% respectively.
doi:10.1371/journal.pone.0036108.g005
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Materials and Methods

In silico approach
In this paper we adopt a two phases approach similar to the one

used in Castiglione et al. 2007 [32] to study the existence of an

optimal treatment that minimizes the drug administration without

compromising the immune system response to HIV. Firstly we

search for the optimal STI schedule (‘‘optimal therapy’’) by using

the simulated annealing optimization algorithm. In this phase,

looking at the conditions of the immune system at the end of the

therapeutic period, we evaluate the potentially administered

therapeutic schedule by means of computer simulations. The SA

algorithm is applied to search for the optimal schedule of cART

interruptions that maximizes both the immune system recovery

and viral control and, at the same time, minimizes the amount of

drugs used in a therapeutic period. Secondly, once we have found

the optimal schedule, we test it by challenging the immune system

with an opportunistic infection simulated by introducing a

bacterium in a group of 250 virtual patients. Therefore, we

compare the survival curves of the different control groups with

the survival curve of the optimal therapy. In the first control group

patients have a continuous course of therapy (i.e., uninterrupted)

for the whole period (‘‘continuous therapy’’). Patients of the second

control group receive the same amount of medicine as in the

optimal therapy, but the drugs are randomly administered in time

(‘‘random therapy’’). The last control group consists of untreated

patients (‘‘void therapy’’), that is, patients that do not receive

therapy at all. Performing this test in silico allows us to use the same

virtual patients for each group, whereas in clinical trials the control

groups consist of different individuals. Such choice enables us to

directly relate the survival of rates of each group to the effect of the

different therapies.

In addition to the search for an optimal STI we also study the

effects of STI strategies tested in clinical trials by comparing their

effect on the HIV dynamics of the virtual patients over a period of

48 weeks of treatment. As control groups for this experiment we

use groups of 250 virtual patients under continuous treatment and

void treatment. Since the model does not include drug resistance,

Figure 6. Simulation results. Median CD4+ cells count (upper panel) and provirus levels (lower panel) of the 250 virtual patients during the 48
weeks treatment period. In each panel we show the different STI tested in this study, the optimal therapy and the continuous therapy. The levels of
provirus seem to be responsible for the failure of STI treatment as much as the CD4+ cells count. The ‘‘4 Weeks On/4 Weeks Off’’ schedule has the
worst survival curve because of the high level of provirus even though it has a CD4+ cells count comparable to that of the ‘‘Week On/Week Off’’ STI.
doi:10.1371/journal.pone.0036108.g006

Failure of Structured Treatment Interruptions
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the outcomes of the STI strategies can be traced back to the

dynamics of the immune response to the HIV virus and in

particular to the action of antibody producing B lymphocytes and

to the CD4+ and CD8+ T cells.

Quantitative evaluation of STI
The simulation starts at time zero with an injection of HIV viral

particles and the HIV infection progresses untreated for three

years. At that point the disease is already in its chronic phase and

we start a therapeutic period of 48 weeks. During the therapeutic

period we administer the cART according to a given schedule

represented by TherStr, a 48-bit-long string, where a 0 stands for a

week without therapy (i.e., an interruption) and a 1 stands for a full

week of therapy (Figure 8). We assume the efficacy of the therapy

to drop to zero during an interruption so that the HIV life cycle

may progress unhindered through all its stages during the

interruptions. Most cART regimens administer a daily cocktail

of at least three drugs, commonly two RTIs and one PI. Although

we could optimize the therapy on a daily basis, we decided to

constrain the minimum administration/interruption period to one

week. Note that this is not a fundamental limitation in our

approach, but rather a practical one since no patient would be

able to follow a one-year-long therapeutic schedule changing on a

daily basis. In addition this choice allows a direct comparison with

a previous study based on a genetic algorithm. Another constraint

to the simulated cART dictated by medical practice is that RTI

and PI drugs are always administered at the same time. At the end

of the 48 weeks we measure the efficacy of the therapy by assigning

a score given by our fitness function. At the beginning of the

therapeutic period, the average CD4+ count measured in the

virtual patients is about 500 cells per microliter.

To quantitatively evaluate the effect of a STI schedule of cART

we define a fitness function Fi for the ith virtual patient. The fitness

function measures the health of the virtual patient’s immune

system as the outcome of a simulation and the amount of drugs

received over the 48 weeks period. Since the whole immune/HIV

dynamics depends on the therapy administered, the fitness score is

a function of TherStr. Fi is the sum of three terms Hi, Di and Zi.

Figure 7. Survivors and Casualties. In each panel we show the CD4+ cell counts versus provirus of the 250 virtual patients at the end of the
treatment period. The black markers indicate the patients that survived the opportunistic bacterial infection, whereas the red markers indicate the
patients that died within 30 days of the bacterial infection.
doi:10.1371/journal.pone.0036108.g007

Failure of Structured Treatment Interruptions
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N Hi takes into account the fitness of HIV which is computed as

the average of the sum of both virus contained in infected cells

and free viral particles divided by the viral set point here

defined as the sum of free virus and virus in infected cells at

time the treatment starts ts;

N Di is a measure of the fitness of the immune system and is given

by the average of the ratio between the CD4+ count of the

healthy individual (i.e., CD4+ count at time = 0, just before the

infection) and the CD4+ count during the treatment period;

N Zi measures the amount of drugs used as the ratio between the

number of weeks of active therapy and the 48 weeks of

treatment.

In order to partially account for inter-patient variability, the

optimization algorithm tries to minimize F, the average fitness

score of eight virtual patients.

F~
X8

i~1

Fi~
X8

i~1

HizDizZi ð1Þ

where

Hi~
1

(te{ts)

Xte

t~ts

Hi(t,TherStr)

Hi(ts)
ð2Þ

Di~
1

(te{ts)

Xte

t~ts

Di(t~0)

Di(t,TherStr)
ð3Þ

Zi~
zi(TherStr)

(te{ts)
ð4Þ

In the formulas above ts indicates the time the therapy starts (three

years post infection); te the time the therapy ends (i.e., 48 weeks

after ts); Hi(t,TherStr) is the sum of free virions and proviral HIV in

infected cells; Di(t, TherStr) is the T helper cell count in the

simulated space and zi(t, TherStr) is a function such that zi(t) = 1 if

the therapy is active at time t, zero otherwise. Minimizing the

fitness function implies decreasing the viral load and the amount of

drugs used, whereas increasing the CD4+ cell count over a period

of 48 weeks. C-ImmSim uses a time-step corresponding to 8 hours

of real life.

Simulated annealing optimization
To find the optimal schedule of the cART during the 48 weeks

therapeutic period we use a Simulated Annealing algorithm [41].

To optimize the STI we perform in silico experiments on a test

group of 8 virtual patients. The size of the test group is

purposefully chosen equal to the number of cores available in

each node of the computer cluster used to perform the

optimization. This choice allows us to simulate in parallel the

HIV infection on 8 virtual patients, by performing the computa-

tion on a single node.

We adapted the classic simulated annealing algorithm to take as

input a therapeutic schedule in the form of a 48 bits string where

each bit represents a week of therapy. We define an algorithm to

update the therapeutic schedule that modifies the previous

schedule by adding, removing or shifting 1 week of therapy (1

bit). By using this algorithm we assume that two consecutive

configurations in the Markov chain have comparable fitness scores

(i.e., the energy of two consecutive configurations is comparable),

which is a requirement for a correct annealing optimization.

The simulated annealing is characterized by a set of parameters

described in Table S2. For the annealing we resort to a geometric

cooling schedule [42]. We tested also logarithmic and adaptive

cooling schedules. The logarithmic cooling was soon discarded due

to the long computational times required and the adaptive did not

result in a better convergence.

A similar optimization problem has been studied in the past by

following an approach based on a genetic algorithm (GA) [32].

The GA study looked for the optimal therapy over a period of six

months starting after 7.5 years post infection. One of the main

differences between the present work and the previous one [32] is

that we reduce the time between seroconversion and treatment

from 7.5 to 3 years. This reduction allows considering the positive

effect of early cART, but increases the difficulty of the

optimization because the effect of cART on CD4 recovery is

dampened by the healthier immune system at the time of

treatment initiation. Another important difference is that we

attempt to optimize the schedule over a longer period (close to 1

year) instead of just 24 weeks. Extending the therapeutic period to

one year increases the complexity of the optimization problem. In

the previous study the state space had 224 possible configurations.

In the present work we face a state space of 248 configurations.

Doubling the therapeutic period allows to test if the optimal STI

can yield results similar to those observed in the shorter STI

previously studied [32]. Clinical studies on STI indicated a

reduction of the benefits over longer time periods [15,16,43]. By

using an extended period of STI we have the chance to verify if we

observe a similar behavior in the model.

In each iteration of the optimization algorithm we evaluated the

fitness function as the average among N = 8 virtual patients. The

evaluation of the fitness of a given STI schedule required the

simulation of 4 years of HIV infection dynamics in each individual

patient. Most of the computational time is due to the C-ImmSim

simulations, whereas the annealing algorithm has a relatively small

impact on the computation time. The longest annealing

optimizations use MAXITER equal to 27000 and take about 15

days to complete (Figure 9) using a L5520 eight-core processor

having a clock rate equal to 2.26 GHz.

We explore stochastically the configuration space of 248

different therapeutic schedules. We stop the optimization when

the standard deviation of the fitness score for the last homogeneous

Markov chains (i.e., parameter MARKOVCHAIN in the Table S2

in Supporting Information) is lower than an arbitrary threshold set

equal to 1024. Each instance of the optimization algorithm results

in an optimized schedule and a corresponding fitness score. We

Figure 8. HAART schedule is represented as a 48-bit string. In
the string, the jth bit set to 1 means that during the jth week the HAART
is administered to the patient.
doi:10.1371/journal.pone.0036108.g008
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find several local optimal therapies with comparable fitness scores.

As usual with most stochastic algorithms we do not have any

warranty that a better solution could not be found by continuing

the search.

Supporting Information

File S1 Description of the computational model used to
simulate HIV infection in virtual patients.
(DOC)

Table S1 Variations of immunological and virological
parameters: In the upper part of the table we report the
data from Dybul’s clinical trial [16]. In the lower part of the

table we show the results of our simulations. For each treatment

schedule tested in our simulations we report the median value for

the most important immunological and virological parameters. In

parentheses we report the minimum and maximum values

observed in the population of 250 virtual patients. For the viral

load measurement ND indicates level of infectious virions below

the detection level (,50 virions/ml).

(DOC)

Table S2 Parameters of the simulated annealing algo-
rithm.

(DOC)
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