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Abstract

Background: Chemoautotrophic ammonia oxidizing bacteria (AOB) have the metabolic ability to oxidize ammonia to nitrite
aerobically. This metabolic feature has been widely used, in combination with denitrification, to remove nitrogen from
wastewater in wastewater treatment plants (WWTPs). However, the relative influence of specific deterministic
environmental factors to AOB community dynamics in WWTP is uncertain. The ecological principles underlying AOB
community dynamics and nitrification stability and how they are related are also poorly understood.

Methodology/Principal Findings: The community dynamics of ammonia oxidizing bacteria (AOB) in a pilot-scale WWTP
were monitored over a one-year period by Terminal Restriction Fragment Length Polymorphism (T-RFLP). During the study
period, the effluent ammonia concentrations were almost below 2 mg/L, except for the first 60 days, indicting stable
nitrification. T-RFLP results showed that, during the test period with stable nitrification, the AOB community structures were
not stable, and the average change rate (every 15 days) of AOB community structures was 10%68%. The correlations
between T-RFLP profiles and 10 operational and environmental parameters were tested by Canonical Correlation Analysis
(CCA) and Mantel test. The results indicated that the dynamics of AOB community correlated most strongly with Dissolved
Oxygen (DO), effluent ammonia, effluent Biochemical Oxygen Demand (BOD) and temperature.

Conclusions/Significance: This study suggests that nitrification stability is not necessarily accompanied by a stable AOB
community, and provides insight into parameters controlling the AOB community dynamics within bioreactors with stable
nitrification.
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Introduction

Ammonia in aquatic environments can be toxic to fish and

other aquatic life and contributes to eutrophication of water bodies

[1]. Accordingly, removal of ammonia in wastewater is one of the

primary tasks of the modern wastewater treatment process.

A widely used method to remove ammonia in wastewater

treatment plant (WWTP) is biological nitrification by which

ammonia is oxidized to nitrite by ammonia oxidizing bacteria

(AOB) and then nitrite is subsequently oxidized to nitrate by nitrite

oxidizing bacteria (NOB). Although activated sludge is a common

process for wastewater treatment, nitrification failure unfortunate-

ly occurs frequently in many WWTPs [1,2], since nitrifiers,

especially AOB, grow very slowly, and they are highly sensitive to

several environmental and engineering factors, including temper-

ature, pH, dissolved oxygen (DO), and a wide variety of chemical

inhibitors [3,4]. Therefore, a better understanding of the microbial

ecology of AOB in WWTPs could potentially improve the

nitrification stability [5].

Culture-dependent methods are biased by the selection of

species which obviously do not represent the real dominance

structure, and hence give a poor understanding of AOB

community structure [6]. To overcome these limitations, currently

molecular biology techniques can be used to analyze sequences of

the 16S rRNA and amoA genes to reveal AOB communities in

various environments [7].

A number of studies have used molecular biology techniques to

examine the influence of various factors on AOB community

structure in WWTPs [4,8,9,10,11]. To date, however, the relative

influence of specific deterministic environmental factors to AOB

community dynamics in WWTP (with associated concurrent

changes in a multitude of environmental parameters) is uncertain

[2].

Also, the ecological principles underlying AOB community

dynamics and nitrification stability and how they are related are

poorly understood. Wittebolle et al [12] have showed that in a

laboratory-scale sequential batch reactor (SBR), the AOB

community had a weekly change rate of 1365% on 16S rRNA

gene level despite the stable function of nitrification. This

suggested that in laboratory-scale reactors, the functional stability

of nitrification was not necessarily accompanied by AOB

community stability. In the larger dimensional WWTPs, it remains

unknown whether the frequent arrival of allochthonous organisms

leads to a more stable or more dynamic community structure [8].
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An equilibrium model based on island biogeography also predicts

that the scale of the bioreactor will affect the microbial

communities within it [13]. Wells et al. [2] observed the temporal

oscillations of AOB populations within a full-scale WWTP while

nitrification remained stable. However they did not evaluate the

change rate, thus it is not clear whether the larger dimensional

WWTP harbor a more stable or more dynamic community

structure. Therefore, it is necessary to study the relationship

between functional stability of nitrification and the AOB

community dynamics in larger dimensional WWTPs.

The aim of this study was to determine if the functional stability

of nitrification was correlated with a stable microbial community

structure in a relatively large-scale WWTP (a pilot-scale plant with

a volume of 72 m3), and to identify operational and environmental

factors that most significantly correlate with the dynamics of AOB

community structure. Accordingly, the samples were collected

from a pilot-scale WWTP every 15 days over a one-year period,

and then these samples were analyzed via amoA-based Terminal

Restriction Fragment Length Polymorphism (T-RFLP) to monitor

the AOB community dynamics, and used multivariate statistical

tools to identify operational and environmental variables that

significantly correlated to the dynamics of AOB community.

Results

System performance
The process performance of the pilot-scale WWTP during the

study period is presented in Figures 1 and S1. Despite BOD in the

influents varying from 153 to 288 mg/L, the BOD removal

efficiency was always excellent (.92%) over the duration of the

study. The average BOD concentration in the effluent was found to

be below 10 mg/L (Figure 1 a). During most of the study period, the

effluent ammonia concentrations were below 2 mg/L, except in the

first 60 days (Figure. 1 b). The average nitrite concentration of final

effluent was smaller than 1 mg/L and no nitrite accumulation

phenomenon was detected in the final effluent. The average

concentration of nitrate in the effluent was 26 mg/L (Figure 1 c).

The conversion of ammonia to nitrite and further to nitrate was

almost complete in the system over most of the study period.

Temporal dynamics of AOB community
During the study period from April 2007 to March 2008, 24

activated sludge samples taken from the system were analyzed by

T-RFLP of the amoA genes (Figure 2). The T-RFs with relative

abundance below 2% were regarded as background noise and

excluded from the analysis, and then, there were 3 remaining T-

RFs: 219 354 and 491 bp. The total relative abundance of rare T-

RFs (those with relative abundance below 2%) was not more than

5%. Moving-window analysis showed that change rates of AOB

communities between two consecutive dates (15 d) were between

1% and 25% (Figure 3). The average change rate (except for the

first 60 days) was 10%68%. In particular, the relative abundances

of the 219 and 354 bp T-RFs varied greatly. Prior to day 60, the

219-bp T-RF was present at a relative abundance of .70%, but

from day 60–90, it decreased dramatically, reaching 20% on day

90. After day 90, its relative abundance increased gradually,

reaching 87% at day 150. From day 180 to 345, the relative

abundance of this T-RF dramatically fluctuated between 18%–

47%. In contrast, the 354-bp T-RF with a relatively low ration of

,15% before day 45, increased dramatically and reached 80% on

day 90. After day 90, its relative abundance decreased gradually to

13% on day 150. After day 180, the relative abundance of this T-

RF fluctuated between 53%–82%. The 491 bp T-RF can be only

detected in a small number of samples (days 0, 15, 30, 105, 120,

330 and 345) with the relative abundance of ,13%.

Correlation of T-RFs and AOB clusters
Clone libraries were constructed for the sample collected on day

15. The selection of this specific sample allowed for the correlation

of clone sequences with T-RFs that were particularly interesting in

the T-RFLP analysis. 46 amoA clones were sequenced and then

grouped on a 97% similarity criterion. One representative

sequence from each group (a total of 15 sequences) was chosen

for phylogenetic analysis. Phylogenetic analysis cloned amoA genes

of each group showed that all of the sequences were closely related

to Nitrosomonas spp. (Figure 4). All of the amoA clones were

subjected to T-RFLP analysis. By combining the results of

sequencing the amoA genes and the T-RFLP profiles of clones, it

could be determined what AOB cluster each peak represents. The

results revealed that, in the system studied, the 219, 354, and

491 bp peaks indicated members of the Nitrosomonas europaea

cluster, Nitrosomonas oligotropha cluster and Nitrosomonas communis

cluster respectively. On day 15, although a minor fraction (8%) of

T-RFs was associated with T-RF 354 bp, the results were agreed

with a number of previously published papers [1,2,14].

Correlations of operational data and AOB community
dynamics

Direct gradient analysis was widely used to study the correlations

between microbial community structures and environmental

variables. The two most commonly used direct ordination

techniques are Redundancy Analysis (RDA) and Canonical

Correspondence Analysis (CCA). RDA is the constrained form of

Principle Component Analysis (PCA), and is inappropriate under

the unimodal model. CCA is the constrained form of Correspon-

dence Analysis (CA), and therefore is preferred for most ecological

data sets (since unimodality is common). Therefore, we chose CCA

to examine the relationships between AOB community structures

and environmental variables. The results of CCA showed that the

ordination explained all the variance (100%) of species–environ-

ment relations (i.e. T-RFs-environmental data), although this

represented about a half of the variance of species data (i.e. T-

RFs; 51%). Global Monte-Carlo permutation tests demonstrated

that both the first axis and all axes combined explained a significant

amount of the variability in AOB community structure (P,0.01).

The first axis was positively correlated with effluent ammonia and

BOD, but negatively correlated with temperature. The second axis

was positively correlated with DO (Figure 5). The angle of an

environmental parameter arrow in the ordination plot indicates

how that variable is associated statistically with the major extracted

axes, and the length of an arrow indicates the strength of the

correlation with the axis. Of the 10 operational and environmental

variables tested in this study, DO, temperature, effluent ammonia

and BOD concentrations were significantly linked to the AOB

community variability (P,0.05).

Mantel test was further performed to determine the most key

individual environmental factors affecting the AOB community

structure (Table 1). The results showed that DO temperature,

effluent ammonia and BOD concentrations were significantly

(P,0.05) correlated with the AOB community structures, which is

in accordance with the results of CCA.

Discussion

Correlation of T-RFs and AOB clusters
In this study, AOB community dynamics were examined by T-

RFLP, a highly reproducible and robust technique often used to
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characterize microbial community structures in different habits

[15]. For T-RFLP technique, an increasingly popular trend has

been to associate T-RF with represent microorganisms by using in

silico digestion or T-RFLP of clones. However, some previous

works reported that there was a discrepancy ranging from 1 to

7 bp between in silico-determined T-RF length and actual T-RF

length determined by clone T-RFLP, which can significantly affect

identification of microbial species [16]. In this study clone T-

RFLP, instead of in silico digestion, was performed to correlate

representative species with particular T-RFs. Clone T-RFLP

Figure 1. Functional performance in the pilot-scale wastewater treatment system over 345 days. (a) Influent and effluent BOD
concentrations. (b) Influent and effluent ammonia concentrations. (c) Effluent nitrate concentrations.
doi:10.1371/journal.pone.0036272.g001

Figure 2. Histograms of T-RF relative abundances in the system for TaqI T-RFLP profiles. The relative abundance is the ratio of the peak
area of a given T-RF in a given sample to the sum of all T-RFs in that sample expressed as a percentage. Arrows indicate the sizes of the restriction
fragments for the abundant T-RFs in base pairs.
doi:10.1371/journal.pone.0036272.g002
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results revealed that, in the present study, the 219, 354, and

491 bp T-RFs indicated members of the Nitrosomonas europaea

cluster, Nitrosomonas oligotropha cluster and Nitrosomonas communis

cluster respectively, which are all related to Nitrosomonas spp., not to

Nitrosospira spp. This result is consistent with most previous studies

[8,15,17,18], but is in contrast to a few studies which found

Nitrosospira spp. to be the dominant AOB [19]. In pure-culture

studies, fast-growing Nitrosomonas, such as N. europaea, can have a

maximum specific growth rate (mmax) as high as 0.088/h whereas

Nitrosospira sp. has a mmax ranging from 0.033 to 0.035/h [1]. This

growth advantage may favor Nitrosomonas over Nitrosospira as the

prevailing species in activated sludge.

AOB community dynamics
Analysis of the AOB T-RFLP profiles revealed that, during a

period of stable nitrification, AOB communities were not stable,

with an average change rate (every 15 days) of 10%68%.

Generally, the average change value Dt (7 days) below 10% was

Figure 3. Moving-window analysis based on AOB T-RFLP
profiles. Each data point is the change percentage between the
bacterial communities of 2 consecutive dates. The time span between
two consecutive dates is 15 days.
doi:10.1371/journal.pone.0036272.g003

Figure 4. Phylogenetic tree showing the relationships of partial amoA gene sequences to reference sequences from the GenBank
database. The tree was constructed with the neighbor-joining method using 450 nucleotide positions. Clone sequences are named beginning with
‘‘P’’, and T-RF sizes are given in parentheses beginning with ‘‘T’’.
doi:10.1371/journal.pone.0036272.g004

Figure 5. Canonical correspondence analysis (CCA) biplot
based on T-RFLP data and measurable variables (operational
and environmental) in the pilot-scale wastewater treatment
plant. Arrows indicate the direction and magnitude of measurable
variables associated with AOB community structures. Each Circle and
associate number represents a different AOB community structure from
a specific sampling date. Environmental variables were chosen based
on significance (P,0.05) calculated from individual CCA results and
variation inflation factors calculated during CCA.
doi:10.1371/journal.pone.0036272.g005
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regarded as a low level dynamics (stable) and 10–30% was

medium level dynamics [15]. Wittebolle et al. [12] found that in a

sequential batch reactor (SBR) and a membrane bioreactor (MBR)

with functional stability, the Dt (7 days) values based on DGGE

profiles were 13%65% and 25614% for their respective AOB

subgroups, which is higher than values observed in this study. A

more stable AOB community structure in this study could be

explained by the difference in scale between the 72 m3 pilot-scale

plant used in this study and the 25-liter lab-scale reactor used by

Wittebolle et al in 2008. An equilibrium model based on island

biogeography predicts a more stable community structure in the

larger dimensional systems [13]. Also, the different methodologies

employed (DGGE versus T-RFLP) and the different genes (16S

rRNA versus amoA genes) that were targeted by the two studies

probably contribute to the difference of AOB change rates in the

two reactors. In the previous study using the identical pilot-scale

system to this study, it was found that the average change value Dt

(15 days) of bacteria was 20%611% during the period of stable

function [20], which is higher than that of AOB in this research.

The reason may be explained as that AOB have lower growth rate

than the general bacteria in WWTPs.

In this study, our results demonstrate that the functional stability

was not necessary accompanied by a stable microbial community.

However, this does not mean that microbial community dynamics

are irrelevant to functional stability. The dramatic changes of

microbial community structure related to functional instability can

and do occur. Gentile et al. [21] monitored the bacterial

community dynamics in two dispersed-growth denitrifying reac-

tors for about half a year, and found that during the period of

functional instability, with high effluent nitrate concentrations, the

community structure changed considerably, and the dynamics

correlated significantly with effluent chemistry. Overall, the

moderate dynamics of the microbial community, rather than

dramatic or abrupt change, to adapt to changes in environments

are important for the stable performance of the wastewater

treatment systems [22]. Brionesa et al. [13] asserted that functional

stability is not determined by microbial community structure, but

of functional redundancy, which is ensured by the presence of a

reservoir of species that can perform the same ecological function.

Correlations of operational data and AOB community
dynamics

Of the 10 operational and environmental variables tested in this

study, DO emerged in CCA ordination and Mantel test as the

important explanatory variable affecting the dynamics of AOB

community. This agrees with the findings of Wells et al. [2], who

suggested, based on T-RFLP surveys of AOB community

dynamics of a municipal WWTP, that DO is one of the most

influential variables on AOB community dynamics. Park et al. [14]

compared the AOB community structures in two lab-scale

bioreactors operated with high-DO (8.5 mg/L) and low-DO

(0.24 and 0.12 mg/L) concentrations for a period of 300 days. The

results showed that the AOB members present in the low-DO and

high-DO bioreactors were both from N. europaea lineage, but

phylogenetically different, indicating that DO exerts a significant

selective pressure on AOB communities. However Park et al. [23]

demonstrated that DO concentration did not influence the AOB

community, but rather the activity of AOB. Similar results have

also been obtained in several full-scale WWTPs in Tokyo by

Limpiyakorn et al. [17]. Furthermore, Lydmark et al. [24]

concluded that there was not yet enough data to allow correlations

between AOB clusters and oxygen levels. Further research is

needed to explain the effect of DO on the AOB community

structure.

As with DO, effluent ammonia concentrations were strongly

and significantly linked to AOB community dynamics. Ammonia

concentration within bioreactor has previously been shown to be

the important factor to shape the community structure of AOB.

Lydmark et al. [24] found that ammonia concentration was an

important structuring factor based on the DGGE analysis of the

AOB community dynamics in four pilot-scale wastewater

treatment systems with different ammonia concentration. In

addition ammonia concentration, the ammonia load in the

wastewater treatment system has also been demonstrated the

significant influential factors on AOB communities by Limpiya-

korn et al. [8].

In addition to DO, effluent ammonia, AOB community

dynamics were also significantly linked to effluent BOD concen-

trations. The treatment process in this study is A2O, in which the

heterotrophic bacteria and autotrophic AOB coexisted together.

Although autotrophic AOB cannot use BOD as carbon source and

electron donors, BOD is critical during the competition between

heterotrophic bacteria and autotrophic AOB [25]. The competi-

tion may have effects on the AOB community structures with the

bioreactor. In a compact suspended carrier biofilm reactor used to

simultaneous nitrification and denitrification, Xia et al. [25] found

that AOB and heterotrophic bacteria communities were influ-

enced by the organic matter concentrations.

In addition to DO, effluent ammonia and BOD, AOB

community dynamics were also significantly linked to the water

temperature in the pilot-scale plant. Some previous studies have

also demonstrated the importance of temperature. In a full-scale

bioreactor treating saline wastewater, Park et al. [26] demonstrated

that temperature was the most significant factor affecting the AOB

community structure, rather than sodium, chloride and other

environmental variables. In an aerobic biofilm reactor, Park et al.

[27] found that low temperature could not only decrease the

attached biomass and activity of AOB, but also produced a change

in the composition of the AOB species, which resulted in the

failure of nitrification. In contrast, Limpiyakorn et al. [17] used

denaturing gradient gel electrophoresis (DGGE) to evaluate the

effects of seasonal change on the AOB communities in 12

WWTPs, and the results showed that AOB communities of most

systems were nearly identical regardless of the season change,

Table 1. Relationship of whole AOB community structure to
individual environmental variables revealed by Mantel test.

Environmental variable rM
a P

Influent BOD 0.16 0.08

Effluent BOD 0.40 0.01b

Influent ammonia 0.12 0.08

Effluent ammonia 0.34 0.01

Effluent nitrite 20.02 0.52

Effluent nitrate 0.14 0.06

Removal efficiency of ammonia 0.32 0.13

DO 0.13 0.03

Temperature 0.30 0.01

SVI 0.38 0.10

MLSS 20.07 0.74

SRT 20.01 0.49

arM, Mantel’s correlation coefficient.
bBoldface values indicate significant P values (,0.05).
doi:10.1371/journal.pone.0036272.t001
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indicating that temperature has no detectable effects on the AOB

communities. Tourna et al. [28] also found that temperature had

almost no effect on the AOB communities in agricultural soil

based on the analysis of DGGE profiles of AOB across different

incubation temperatures. Further research is needed to explain

this discrepancy.

It should be noted that the correlation between ammonia

removal efficiency and AOB community structure dynamics was

not statistically significant (P.0.1). Part of the reason could be that

ammonia removal efficiency is not only determined by microbial

community structure, but also the quantity of AOB in WWTP.

Further research is needed to relate the quantity of AOB to the

ammonia removal efficiency in WWTP.

In CCA analysis of this study, the deterministic environmental

and operational factors explained as much as 51% of the variance

for the AOB community, thus 49% of the variance was

determined by unknown factors. It is reasonable to expect that

some additional factors, such as stochastic dispersal and immigra-

tion, predation and some unmonitored inhibitory chemicals may

play an influential role in mediating AOB community dynamics in

wastewater treatment systems.

Conclusions
The AOB community dynamics in a pilot-scale WWTP were

monitored by T-RFLP combined with clone library. The results

showed that the AOB community change rate was 10%68%,

despite the stable nitrification. CCA and Mantel test was used to

reveal relationships between the AOB community dynamics and

operational and environmental parameters. The results revealed

that AOB community dynamics correlated most strongly with

DO, effluent ammonia, effluent BOD and temperature. The

findings enrich the theory involving the relation between AOB

community dynamics and stable nitrification, and offer insight into

parameters controlling the AOB community dynamics in

WWTPs.

Methods

The pilot-scale WWTP and sampling
The pilot-scale WWTP treating sewage wastewater in this

research was operated with an anaerobic/anoxic/aerobic (A2O)

process. The treatment capacity was 144 m3/d. The working

volumes of the three compartments (anaerobic, anoxic and aerobic

zones) in the system are 6, 12, and 54 m3 respectively. The

influent rate was 6 m3/h, which gave a Hydraulic Retention Time

(HRT) of 1, 2, and 9 h respectively in the three zones. In the study

period, DO and pH were maintained at a relatively steady state,

ranging from 1.8 to 2.0 mg/L and 7.0 to 7.2 respectively in the

aerobic zone. The Mixed Liquor Suspended Solids (MLSS) were

controlled at 4.5–6.0 g/L and the Solid Residence Time (SRT)

was 7–10 d. The temperature range in summer and winter was

23–26uC, and 17–20uC respectively, and the average temperature

in fall and spring was around 21uC.

MLSS samples were collected from the end part of the aeration

tank every 15 days from April 2007 to March 2008. For archiving,

each sample of 1.5 mL was dispensed into a 2 mL sterile

Eppendorf tube and centrifuged at 14,000 g for 10 min. The

supernatant was decanted, and the pellet was stored at 220uC
prior to analysis.

DNA extraction
The pellets of activated sludge samples were washed three times

by centrifuging using sterile high-purify water for 5 min at

15,000 g. DNA extraction was then performed using a FastDNAH

SPIN Kit for Soil Kit (MP Biotechnology, USA) according to the

manufacturer’s protocol.

PCR amplification and purification
For clone library construction and sequencing, the amoA genes

were amplified from the community DNA using the primers amoA-

1F (59-GGGGTTTCTACTGGTGGT-39) and amoA-2R (59-

CCCCTCKGSAAAGCCTTCTTC-39) [29]. For the T-RFLP

analysis the same primer sequences were used, but amoA-1F was

fluorescently labeled with the dye 5-carboxyfluorescein (FAM).

PCR was performed according to the protocol of Wang et al. [4].

Cloning and sequencing
Prior to cloning, the amplified unlabeled amoA gene fragments

were purified using the QIAquick PCR Purification Kit (Qiagen,

Germany). Purified PCR products were ligated into pGEM-T

Easy cloning vectors (Promega, USA), and used to transform

competent Escherichia coli DH5a cells (Tiangen, China) as

described in the manufacturer’s protocol. Transformants were

selected by ampicillin resistance, and blue-white screening was

performed to identify clones with inserts. Primers T7 and SP6

were used to perform colony PCR and to verify that the insert size

was correct. Following PCR confirmation of the insert size, the

amplified inserts were run on 2% (wt/vol) agarose gels. The

samples containing inserts of the estimated size were used for

subsequent sequencing. Sequencing was done by a commercial

company (Nuosai gene, China).

Cloned amoA gene sequences and sequences of the closest

BLAST matches were aligned with the software ClustalX 1.81,

and a phylogenetic tree generated by the neighbor joining method

using software Mega 4.0 (University College Dublin, Ireland) [30].

T-RFLP analysis
Purified PCR products were digested with Taq I restriction

endonuclease (TaKaRa, Japan) and then were used for capillary

electrophoresis on an ABI PRISM 3130-Avant Genetic Analyzer

(Applied Biosystems, USA) in GeneScan mode. The detailed

procedures were presented in a previous paper [4]. To avoid

detection of primers and uncertainties of size determination,

terminal fragments smaller than 50 bp and larger than 500 bp

were excluded from further analysis. The relative abundance of T-

RFs within the sections was determined by calculating the ratio

between the area of each peak and the total area of all peaks within

one sample. The T-RFs with relative abundance below 2% were

regarded as background noise and excluded from the analysis.

To identify which species the T-RF peaks represented, T-RFLP

was performed using each amoA gene clone as a template DNA.

The T-RFLP protocol was the same as that detailed above for

community DNA. Because each clone contained one unique amoA

gene fragment, each T-RFLP profile had only one peak (T-RF).

By comparing the results of amoA gene sequencing and the T-

RFLP profiles of clones, the species each T-RF represented could

be determined.

Statistical analyses
Moving-window analysis was used to characterize the change

rate of AOB community in this study. Firstly, a matrix of

similarities for each activated sludge T-RFLP profile was

calculated based on Pearson product-moment correlation coeffi-

cients. Then, each similarity percentage value was subtracted from

the 100% similarity value to get the change values. Finally,

moving-window analysis was performed by plotting the change

values between day x and day x-15 [31,32]. The average change

AOB Dynamics in Wastewater Treatment Plant
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value Dt (15 days) was calculated as the average and standard

deviation for the respective change values [33]. All statistical

analyses were performed using SPSS 13.0 software (SPSS Inc.,

USA).

Canonical Correspondence Analysis (CCA) was used to reveal

relationships between AOB community dynamics and operational

and environmental parameters. The CCA method uses two

datasets: in this study, the first set consisted of the T-RFLP

patterns for each sample, and the second set consisted of the same

day operational variables (temperature, DO, biomass, sludge

retention time, influent and effluent BOD, influent and effluent

ammonia, ammonia removal efficiency and effluent nitrate). CCA

generates an ordination plot showing similarities of T-RFLP

patterns among samples. In ordination plots, the gradients of

explanatory variables are indicated by arrows. The length of an

arrow indicates the relative importance of that parameter to the

ordination. CCA analyses were performed focusing on interspecies

distances using the software Canoco for Windows 4.5 (Biometris,

The Netherlands). Statistically important explanatory variables

were identified by the forward selection method using a Monte

Carlo permutation test (499 permutations under the full model).

Operational variables that failed to contribute significant im-

provement (P,0.05) to a model’s explanatory power were

excluded from final CCA analyses.

Mantel test was further performed to determine the most key

individual environmental factors affecting the AOB community

structure. Mantel test were performed using R 2.13.1(http://www.

r-project.org). The Mantel test is a statistical test of the correlation

between two matrixes and is commonly used in ecology [34].

Supporting Information

Figure S1 Operational parameters in the pilot-scale
wastewater treatment system over 345 days. (a) Water

temperature and MLSS concentrations. (b) Dissolved oxygen and

sludge volume index. (c) Sludge retention time.
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