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Abstract

Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is a cytoprotective agent in 

several organ systems but its roles in liver fibrosis are unclear. We studied the roles of HB-EGF in 

experimental liver fibrosis in mice and during hepatic stellate cell (HSC) activation. 

Thioacetamide (TAA; 100mg/kg) was administered by intra-peritoneal injection three times a 

week for 4 weeks to wild-type HB-EGF+/+ or HB-EGF-null (HB-EGF−/−) male mice. Livers were 

examined for histology and expression of key fibrotic markers. Primary cultured HSC isolated 

from untreated HB-EGF+/+ or HB-EGF−/− mice were examined for fibrotic markers and/or cell 

migration either during culture-induced activation or after exogenous HB-EGF (100 ng/ml) 

treatment. TAA induced liver fibrosis in both HB-EGF+/+ and HB-EGF−/− mice. Hepatic HB-EGF 

expression was decreased in TAA-treated HB-EGF+/+ mice by 37.6% (p < 0.05) as compared to 

animals receiving saline alone. HB-EGF−/− mice treated with TAA showed increased hepatic α-

smooth muscle actin-positive cells and collagen deposition, and, as compared to HB-EGF+/+ mice, 

TAA-stimulated hepatic mRNA levels in HB-EGF−/− mice were, respectively, 2.1-, 1.7-, 1.8-, 

2.2-, 1.2-, or 3.3-fold greater for α-smooth muscle actin, α1 chain of collagen I or III (COL1A1 or 

COL3A1), transforming growth factor-β1, connective tissue growth factor, or tissue inhibitor of 

metalloproteinase-1 (p < 0.05). HB-EGF expression was detectable in primary cultured HSC from 

HB-EGF+/+ mice. Both endogenous and exogenous HB-EGF inhibited HSC activation in primary 

culture, and HB-EGF enhanced HSC migration. These findings suggest that HB-EGF gene 
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knockout in mice increases susceptibility to chronic TAA-induced hepatic fibrosis and that HB-

EGF expression or action is associated with suppression of fibrogenic pathways in HSC.
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Heparin-binding epidermal growth factor (EGF)-like growth factor (HB-EGF), a member of 

the EGF superfamily, is expressed by many cell types and is produced in multiple tissues 

such as lung, skeletal muscle, brain and heart (1, 2). HB-EGF participates in a variety of 

physiological and pathological processes including development, wound healing, blastocyst 

implantation, atherosclerosis, and tumor formation (2). Two recently established strains of 

HB-EGF knockout (HB-EGF−/−) mice (3, 4) have a relatively severe phenotype with a high 

incidence of neonatal death (5). Surviving HB-EGF−/− mice, however, grow normally and 

are fertile, but have a significantly shorter life span and exhibit defects that include enlarged 

and dysfunctional hearts, heart valve malformation including enlarged semilunar and 

atrioventricular valves, and thickened mesenchymal tissue and alveolar immaturity in the 

lungs (6). Impaired remodeling of HB-EGF−/− valves was not due to decreased apoptosis but 

rather to excessive proliferation of mesenchymal cells (3). In another conditional HB-EGF 

knockout mice, skin wound healing was retarded due to impaired keratinocyte migration (7, 

8). On the other hand, over-expression of HB-EGF in pancreatic islets is associated with 

intra-islet fibrosis (9, 10).

Transgenic overexpression of HB-EGF in hepatocytes did not change liver/body weight 

ratios or the ratio of proliferating hepatocytes in adult mice but these parameters were both 

greater in transgenic mice after partial hepatectomy compared to wild type mice, supporting 

a role for HB-EGF in liver regeneration (11). In addition, hepatic expression of HB-EGF or 

transforming growth factor α (TGF-α) were increased after acute carbon tetrachloride 

(CCl4) injury in rats (12, 13), with Kupffer cells and sinusoidal endothelial cells being the 

prominent producers of HB-EGF. Kiso et al demonstrated that some hepatocytes in cirrhotic 

rat liver were positive for HB-EGF expression leading to the suggestions that ectopic 

expression of HB-EGF is associated with hepatocyte transformation during 

hepatocarcinogenesis (14).

As stated above, previous studies were designed to determine the role of HB-EGF in driving 

hepatocyte proliferation after acute injury or during tumorigenesis rather than to elucidate its 

potential contribution to pathways of hepatic fibrosis, especially in non-parenchymal liver 

cells. For example, there have been no published studies regarding the role of HB-EGF in 

liver fibrogenesis or activation of hepatic stellate cells (HSC), the latter of which play a key 

role in the development of liver fibrosis through their overt deposition of extracellular 

matrix components in response to the combined actions of transforming growth factor β1 

(TGF-β1) and its downstream mediator, connective tissue growth factor (CTGF, also known 

as CCN2) (15–21). In the present studies, we have investigated the role of HB-EGF in HSC 

activation and liver fibrosis, including its modulation of TGF-β1 or CCN2 expression. We 

show that HB-EGF gene knockout in mice increases susceptibility to hepatic fibrosis in 
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response to chronic liver injury induced by TAA or CCl4, and that HB-EGF expression or 

action is associated with suppression of fibrogenic pathways in HSC. These findings reveal 

a novel role of HB-EGF in HSC activation and liver fibrosis, and suggest that HB-EGF has 

potential therapeutic value for treating liver fibrosis.

MATERIALS AND METHODS

Mice

HB-EGF−/− and HB-EGF+/+ mice on a mixed C57BL/6J X 129/Sv background (B6;129-

Hbegftm1Dcl/Mmnc) were a kind gift from Dr. David Lee (Chapel Hill, NC, USA). HB-

EGF−/− mice were created by replacement of HB-EGF exons 1 and 2 with PGK-Neo, thus 

deleting the signal peptide and propeptide domains (4). The desired targeting events were 

verified by Southern blots of genomic DNA and exon-specific PCR, with Northern blots 

confirming absence of the respective transcripts. All animal procedures were approved by 

the Institutional Animal Care and Use Committee of The Research Institute at Nationwide 

Children’s Hospital (Columbus, OH, USA).

TAA administration

HB-EGF−/− or HB-EGF+/+ male mice, 6–8 weeks of age, received intra-peritoneal injection 

of either 100 mg/kg TAA (Sigma-Aldrich Co., St. Louis, MO, USA) in saline or saline alone 

three times per week for 4 weeks, and were sacrificed 72 hours after the last injection. Upon 

sacrifice, liver tissues were harvested either immediately and snap-frozen in liquid nitrogen 

for subsequent hepatic RNA extraction, or fixed with 4% paraformaldehyde (Sigma-Aldrich 

Co.) for histological analysis.

CCl4 administration

HB-EGF−/− or HB-EGF+/+ male mice received intra-peritoneal injection of 0.5 µl CCl4 

(Sigma-Aldrich Co.) in 29.5 µl vegetable oil or 30 µl vegetable oil alone three times per 

week for 5 weeks. Seventy-two hours after the last injection, mice were sacrificed and livers 

were processed for histological evaluation.

Histology

Liver tissues were fixed with 4% paraformaldehyde in phosphate-buffered saline for 18 

hours and then embedded in paraffin. Sections of 5 µm thickness were cut and stained with 

hematoxylin-eosin. For immunohistochemical detection of alpha-smooth muscle actin (α-

SMA), slides were incubated with monoclonal mouse anti-α-SMA IgG (Dako, Glostrup, 

Denmark) followed by development with UltraTek reagents and AEC Chromogenic 

Substrates (all from ScyTek Laboratories, Logan, UT, USA) and hemotoxylin counterstain. 

Collagen was detected by staining sections with 0.1% Sirius Red (Sigma-Aldrich Co.). 

Photomicrographs were recorded with a Zeiss AxioCam HR Camera attached to a Zeiss 

Axioskop microscope (Carl Zeiss Vision GmbH, Germany). Protein staining for α-SMA, or 

collagen was analyzed with NIH image software ImageJ (version 1.34, US National Institute 

of Health).

Huang et al. Page 3

Lab Invest. Author manuscript; available in PMC 2012 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Isolation and culture of mouse primary HSC or hepatocytes

HSC were isolated from livers of untreated HB-EGF−/− or HB-EGF+/+ male mice, 6–8 

weeks of age, as previously described by us (17). HSC were harvested by gradient 

centrifugation using OptiPrep™ (Invitrogen, Carlsbad, CA, USA), resuspended in 

Dulbecco’s minimum essential medium (DMEM)/F-12 (Mediatech, Inc., Manassas, VA, 

USA) containing 20% fetal bovine serum, 100 U/ml penicillin and 100 mg/ml streptomycin 

(all from Mediatech, Inc.), plated into plastic tissue culture dishes or tissue culture plates 

(Corning Incorporated, Corning, NY, USA), and maintained at 37°C in a humidified 

atmosphere of 5% CO2/95% air. The next day, cells were replaced with fresh DMEM/F-12 

containing 10% fetal bovine serum, and medium replacement was then repeated every other 

day if applicable. Cells were analyzed by RT-PCR for expression of fibrosis markers after 

24-hour treatment with 0–100ng/ml recombinant HB-EGF (22) in the presence or absence of 

10 µg/ml Diphtheria toxin mutant CRM197 (BioAcademia, Inc., Ibaraki, Osaka, Japan), 

which blocks HB-EGF receptor binding and inhibits HB-EGF activity.

Hepatocytes were isolated from untreated HB-EGF WT male mice, 6–8 weeks of age, by a 

modification of previously described methodology (23). Hepatocytes were resuspended in 

DMEM containing 10% fetal bovine serum, 100 U/ml penicillin and 100 mg/ml 

streptomycin, plated on 60-mm BD Biocoat Collagen I Culture Dishes (BD Biosciences, 

Bedford, MA, USA), and maintained at 37°C in a humidified atmosphere of 5% CO2/95% 

air. Four hours later, the medium was replaced with serum-free DMEM supplemented with 

7.5 µg/ml of hydrocortisone (Sigma-Aldrich Co.), 1X insulin-transferrin sodium selenite 

(ITS) solution (Mediatech, Inc.), 100 U/ml penicillin and 100 mg/ml streptomycin, and 

medium replacement was then repeated every other day if applicable.

Immunofluorescence

Cells grown on coverslips in 6-well tissue culture plates were fixed with ice-cold 100% 

methanol for 20 min at 4°C. After blocking with 5% BSA in phosphate-buffered saline 

(PBS), cells were incubated with primary antibody against HB-EGF (Santa Cruz 

Biotechnology, Inc., Santa Cruz, CA, USA) in blocking solution for 1 hour at 37°C, 

followed by secondary Alex Fluor 488 goat anti-mouse IgG (Invitrogen) for 45 min at room 

temperature. The coverslips were mounted in 10% glycerol and photomicrographs were 

recorded with a Zeiss AxioCam Camera attached to a Zeiss Axiovert 25 microscope (Carl 

Zeiss MicroImaging GmbH, München, Germany).

Cell migration

Primary cultured HSC were plated into 6-well tissue culture plates in DMEM/F-12 

containing 10% fetal bovine serum and grown to confluence. After pre-incubation in 

DMEM/F-12 containing 0.5% fetal bovine serum for 24 hours, the cultures were scratch-

wounded with a 10-µl pipette tip, washed twice with phosphate buffer saline, and then 

incubated for 24 hours with 100 ng/ml recombinant HB-EGF in the presence or absence of 

10 µg/ml CRM197. Photographs of the scraped area in each well were recorded using a 

Zeiss AxionCam Camera. Cell migration was quantified by the number of cells migrated to 

the scratched area after 24 hours.
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RNA extraction and reverse transcription

Total cellular RNA was extracted using Trizol® Reagent (Invitrogen), and reverse 

transcribed to produce cDNA using Superscript® II Reverse Transcriptase (Invitrogen) and 

Oligo(dT)12–16 primers (Applied Biosystems, Foster City, CA, USA) according to the 

manufactures' directions.

Polymerase chain reaction (PCR) and quantitative real-time PCR

The primer sequences were as follows: α-SMA: 5’-TTC GTT ACT ACT GCT GAG CGT 

GAG A-3' (sense) and 5’-AAA GAT GGC TGG AAG AGG GTC-3' (antisense) (200 bp); β-

actin: 5’-TGT TAC CAA CTG GGA CGA CA-3' (sense) and 5’-CTT TTC ACG GTT GGC 

CTT AG-3' (antisense) (130 bp); CCN2: 5’-CCA GGA AGT AAG GGA CAC GA-3' 

(sense) and 5’-GGT TCT CAC TTT GGT GGG AT-3' (antisense) (148 bp); α1 chain of 

collagen I (COL1A1): 5’-CCA AGG GTA ACA GCG GTG AA-3' (sense) and 5’-CCT 

CGT TTT CCT TCT TCT CCG-3' (antisense) (124 bp); α1 chain of collagen III (COL3A1): 

5’-AAC GGA GCT CCT GGC CCC AT-3' (sense) and 5’-CCA TCA CTG CCC CGA GCA 

CC-3' (antisense) (113 bp); TGF-β1: 5’-GGT TCA TGT CAT GGA TGG TGC-3' (sense) 

and 5’-TGA CGT CAC TGG AGT TGT ACG-3' (antisense) (130 bp); and TIMP-1: 5’-GCA 

TCT CTG GCA TCT GGC ATC-3' (sense) and 5’-GCG GTT CTG GGA CTT GTG 

GGC-3' (antisense) (294 bp). Primers were validated by PCR and products were confirmed 

by 1.5 % agrose gel electrophoresis using ethidium bromide staining. To measure gene 

expression, first strand cDNA products mixed with primers and SYBR® Green PCR Master 

Mix reagent (Applied Biosystems) were subjected to quantitative real-time PCR on an 

Applied Biosystems 7500 Real-Time PCR System, and the cycling parameters were: 50°C 

for 2 min, 95°C for 10 min, followed by 40 cycles of 95°C for 15 sec and 60°C for 1min. 

Samples were run in triplicate, and expression values were normalized to housekeeping gene 

β-actin primers using the ΔΔCt method.

Statistical Analysis

Data are presented as mean ± S.D. Statistical analysis was performed using ANOVA one-

way test, with p < .05 considered to be statistically significant.

RESULTS

Enhanced susceptibility of HB-EGF−/− mice to liver fibrosis induced by chronic injury

No differences in liver histology were evident between HB-EGF−/− and HB-EGF+/+ mice 

treated with saline alone (Fig. 1A). Compared to these controls, chronic administration of 

TAA induced liver fibrosis in either HB-EGF+/+ or HB-EGF−/− mice (Fig. 1), as shown by a 

1.7- or 3.6-fold increase respectively in collagen deposition (p < 0.05) (Fig. 1D and Table 

S1) and a 3.3- or 10.6-fold increase respectively in TIMP-1 gene expression (p < 0.05) (Fig. 

2). After chronic TAA administration in HB-EGF+/+ mice, hepatic HB-EGF gene expression 

decreased by 37.6% (p < 0.05) (Fig. 2), showing that suppression of HB-EGF expression 

was associated with onset and/or progression of liver fibrosis.

Chronic TAA administration resulted in a 1.9- or 1.7-fold higher level of, respectively, α-

SMA immunoreactivity (p < 0.05; Fig. 1D) or collagen staining (p < 0.05; Fig. 1D) in HB-
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EGF−/− mice versus HB-EGF+/+ mice. As compared to HB-EGF+/+ mice, TAA-stimulated 

hepatic mRNA levels in HB-EGF−/− mice were, respectively, 2.1-, 1.7-, 1.8-, 2.2-, 1.2-, or 

3.3-fold greater for α-SMA, COL1A1, COL3A1, TGF-β1, CCN2 or TIMP-1 (Fig. 2). 

Collectively these data show that absence of HB-EGF gene expression in murine 

experimental fibrosis resulted in enhanced production of α-SMA-positive cells, collagen 

deposition and expression of pro-fibrotic genes.

To verify that the inhibitory effect of HB-EGF was not restricted to TAA-induced liver 

fibrosis, HB-EGF WT and KO mice alternatively received CCl4 for 5 weeks and livers were 

processed for histological evaluation. HB-EGF KO mice demonstrated more collagen 

deposition as shown by Sirius Red staining (Fig. S1), suggesting enhanced susceptibility of 

HB-EGF KO mice to CCl4-induced fibrosis.

Gene expression of HB-EGF in primary cultures of hepatocytes or HSC

Previous data have shown that HB-EGF is produced by Kupffer cells, sinusoidal endothelial 

cells, and under-stimulated or abnormal hepatocytes (24, 25). We extended these studies to 

show that HB-EGF was expressed by normal cultured mouse primary hepatocytes but that 

the level of HB-EGF mRNA was decreased by 35% after treatment of the cells with 2 ng/ml 

TGF-β1 (eBioscience, Inc., San Diego, CA, USA) (p < 0.05; Fig. 3). Since hepatocytes are 

the principal hepatic cell type, this phenomenon was consistent with the overall decreased 

tissue expression of HB-EGF in fibrotic liver (Fig. 2). On the other hand, since HSC play a 

pivot role in fibrogenesis even though they are present in the liver at much lower frequency 

than hepatocytes, we also examined the role of HB-EGF in HSC function. To do this, HSC 

were isolated from untreated HB-EGF+/+ male mice at 6–8 weeks of age and allowed to 

grow in culture for up to 5 days. HSC cultures demonstrated typical characteristics as we 

have previously reported (17) and also stained positively for glial fibrillary acidic protein 

(GFAP), a well-characterized HSC marker (Fig. S2). As shown in Fig. 4A, HB-EGF mRNA 

expression increased significantly during the first 5 days of culture, corresponding to the 

period during which the cells autonomously self-activated and acquired an α-SMA-positive 

myofibroblastic phenotype (data not shown). HB-EGF mRNA expression levels were 

correlated with those of CCN2 mRNA, including a transient decrease in expression on Day 

4 (Fig. 4A, D). By Day 5 of culture, the presence of low levels of HB-EGF protein in the 

cells was demonstrable by immunofluorescence (Fig. 4E). Expression of mRNA for α-SMA 

or COL1A1 increased on successive days over the same time period (Fig. 4B, C and Table 

S2).

HB-EGF inhibits α-SMA or COL1A1 expression in primary cultured HSC

When HSC were cultured for 5 days, the cells from untreated HB-EGF−/− mice expressed 

higher mRNA levels for α-SMA (Fig. 4B), COL1A1 (Fig. 4C) or CCN2 (Fig. 4D) than 

those from untreated HB-EGF+/+ mice, showing that endogenous HB-EGF expression 

suppresses HSC activation and fibrogenesis (p < 0.05). Additionally, expression of α-SMA 

or COL1A1 was significantly decreased by treatment of Day 3 HSC from either untreated 

B6;129-Hbegftm1Dcl/Mmnc HB-EGF+/+ mice (Fig. 5B) or healthy male wild type Balb/c 

mice (Fig. 5A) with recombinant HB-EGF (p < 0.05), although this treatment did not 

significantly alter CCN2 gene expression in the same cells. Importantly, the inhibitory effect 
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of HB-EGF on α-SMA or COL1A1 gene expression was reversed by 10 µg/ml CRM197, a 

specific HB-EGF inhibitor (Fig. 5C). Incubation of HB-EGF+/+ HSC with exogenous 

recombinant HB-EGF inhibited endogenous HB-EGF gene expression by 60.4% (p < 0.05; 

Fig. 6).

HB-EGF enhances HSC migration

Scratch wounding of confluent HSC resulted in a reproducibly exposed area into which the 

remaining cells could migrate. While a few cells migrated into this zone over the next 24 

hours, the rate of HSC migration was significantly stimulated by addition of 100 ng/ml 

recombinant HB-EGF and this effect was blocked in the presence of 10 µg/ml CRM197 

(Fig. 7).

DISCUSSION

The EGF family comprises EGF, TGF-α, HB-EGF, amphiregulin (AR) and betacellulin, the 

latter three of which contain unique structural components that allows the proteins to bind to 

heparin-like molecules on cell surfaces in addition to the classic avian erythroblastosis 

oncogene B (ErbB)-type EGF receptors. Collectively, these proteins play fundamental roles 

in development, cell proliferation, differentiation, and tumor formation. HB-EGF was first 

identified in the conditioned medium of cultured human macrophages and is synthesized as 

a 208-residue bioactive transmembrane precursor protein (proHB-EGF) which undergoes 

extracellular proteolytic cleavage to yield a 14–20 kDa soluble growth factor (sHB-EGF) 

(26–28). HB-EGF is produced in multiple cell types in response to hypoxia or tissue damage 

and it acts as a potent mitogen and chemoattractant (29).

HB-EGF expression is increased in hepatic endothelial cells or Kupffer cells following acute 

exposure to hepatotoxins (11–13) while its production by hepatocytes is increased after 

partial hepatectomy or in biopsies of human hepatocellular carcinoma (2, 30) and its 

enhanced expression has been associated with the development or progression of human and 

rat hepatocarcinoma (14). Whereas these previous reports linked increased hepatic HB-EGF 

expression to either wound healing or tumorigenesis, studies of the role of HB-EGF in 

hepatic fibrosis have not previously been reported. In addressing this question in these 

studies, we found that the well-documented model of TAA-induced liver fibrosis was 

actually associated with a 35% decrease in hepatic HB-EGF gene expression in wild type 

mice and that, further, expression of HB-EGF by primary cultured hepatocytes was inhibited 

by TGF-β1, the latter of which is a well-characterized inhibitor of epithelial function in 

addition to acting as a stimulator of fibrogenic pathways in mesenchymal cells. While 

hepatic HB-EGF expression was readily detected by RT-PCR of isolated RNA, both HB-

EGF mRNA and protein levels were present at low levels in wild type mice (and even less 

so in fibrotic animals) and were beyond our technical abilities to detect by, respectively, in 

situ hybridization or immunohistochemistry (data not shown). Nonetheless, the knockout 

model provided important confirmatory data in as much that, as assessed by collagen 

deposition, the presence of α-SMA-positive cells, and mRNA expression of fibrogenic 

markers (TGF-β1, CCN2, α-SMA, COL1A1, COL3A1, TIMP-1), chronic TAA 

administration caused more severe liver fibrosis in HB-EGF knockout mice than their wild-
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type counterparts. Taken together, these data showed that total hepatic HB-EGF mRNA 

expression was reduced during experimental fibrosis and that the fibrotic response was 

exacerbated in the absence of HB-EGF. These findings are consistent with one another and 

indicate that hepatic HB-EGF expression is associated with a suppression of liver fibrosis.

The association between HB-EGF and fibrosis is novel and was thus investigated further in 

HSC since this cell type plays a key role in fibrogenic pathways. During chronic injury, 

HSC differentiate into α-SMA-positive cells that are perpetually activated and unrelentingly 

deposit fibrillar collagens and other extracellular matrix components in the interstitial 

spaces, resulting in accumulation of scar tissue and loss of hepatic function (15, 20). Our 

studies showed that HSC are a bone fide source of HB-EGF and that during culture-induced 

activation, HSC expression of HB-EGF mRNA increases as does that of fibrosis-related 

markers such as α-SMA, COL1A1 and CCN2 (17). Whereas this pattern of increased HB-

EGF expression during HSC activation might appear to contradict the finding of decreased 

HB-EGF expression in fibrotic liver in vivo, we further showed that culture-induced mRNA 

expression of α-SMA, COL1A1 or CCN2 was higher in HB-EGF−/− HSC as compared to 

HB-EGF+/+ HSC. These results suggest that under normal circumstances, HB-EGF acts to 

dampen activation of fibrogenic pathways in HSC. Indeed, this possibility was supported by 

the finding that addition of recombinant HB-EGF to Day 3 HSC from wild type mice 

resulted in an inhibition of α-SMA or COL1A1 mRNA production. Thus even though total 

hepatic HB-EGF expression decreases after fibrosing injury in vivo and activation of HSC in 

vitro is associated with increased HB-EGF expression, the results of gene knockout 

unequivocally establish hepatic HB-EGF as a natural suppressor of the fibrotic response in 

as much as (i) the severity of fibrosis was greater in HB-EGF−/− mice; (ii) activated HSC 

from HB-EGF−/− mice demonstrated enhanced α-SMA or collagen mRNA production; and 

(iii) HSC activation and collagen production were inhibited by exposure of the cells to 

exogenous HB-EGF. Finally, CRM197, a specific inhibitor of HB-EGF, can reverse the 

effect of HB-EGF on HSC activation.

While HB-EGF was inhibitory for HSC α-SMA or collagen mRNA production, we 

demonstrated that exogenous HB-EGF stimulated HSC migration. Thus it is plausible that 

the increased hepatic HB-EGF production and release by hepatocytes or Kupfer cells 

reported in previous tissue injury studies (11–13, 25, 26) serves not only as a direct stimulus 

for parenchymal cell proliferation but also as chemotactic stimulus for HSC which allows 

them to migrate to sites of injury and participate in the wound healing process. We propose 

that as a fibrotic environment subsequently develops, HB-EGF may then serve to limit the 

extent or degree of fibrosis through its ability to attenuate activation and fibrogenesis in 

HSC, a possibility that is supported by the finding that HB-EGF reduced basal or TGF-β1-

stimulated α-SMA expression in the human MRC-5 fibroblast cell line (31). Thus, 

spatiotemporal HB-EGF gene regulation and protein production may be very critical to 

restoration of normal liver structure and function after liver injury, as shown in other organ 

systems (31, 32).

Of interest were the findings that basal or TAA-induced CCN2 expression was higher in 

livers from HB-EGF−/− mice as compared to those from HB-EGF+/+ mice, and that CCN2 

expression was significantly greater in HB-EGF−/− HSC as compared to HB-EGF+/+ HSC 
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during culture-induced activation of the cells. These data show that endogenous HB-EGF 

production is coupled to CCN2 production in HSC. This is further supported by the 

correlation in expression between HB-EGF and CCN2 during culture-induced activation 

including a reproducible but as yet unexplained decrease in expression for both molecules 

on Day 4 (see Fig 4A, B). Over this same time-frame, α- SMA or collagen expression 

continued to rise (Fig 4C, D) suggesting that certain time-points during HSC activation or 

fibrogenesis may be less dependent on CCN2 than others. This notion is consistent with 

previous studies in human fibroblasts which documented both CCN2-dependent and –

independent mechanisms of collagen expression (33, 34) as well as the recognition that 

CCN2 functions in a highly complex and contextual manner to drive fibrogenic pathways 

(35, 36).

Whereas CCN2 was dependent on endogenous HB-EGF, exogenously added HB-EGF on 

the other hand did not regulate CCN2 production even though it was effective in inhibiting 

α-SMA or collagen expression. These results suggest either that HB-EGF-mediated CCN2 

suppression in HSC changes in accordance with, but does not cause, concomitant 

suppression in α-SMA or collagen expression, or that the distinct actions of exogenous 

versus endogenous HB-EGF in suppression of CCN2 expression point to fundamentally 

discrete signaling pathways for each form of HB-EGF. Indeed the ability of endogenous 

membrane bound proHB-EGF to bind and activate signal-transducing receptors on adjacent 

cells in a juxtracrine fashion has been well documented and is distinct from the actions of 

the soluble form of HB-EGF. Since, in our studies, exogenous sHB-EGF inhibited 

endogenous HB-EGF gene expression in HB-EGF+/+ HSC, CCN2 production may be more 

directly regulated by endogenous HB-EGF than exogenous HB-EGF. Hence, while the 

precise mechanisms underlying HB-EGF action and CCN2 production have yet to be 

elucidated, our data are supportive of differential signaling and functions of sHB-EGF and 

proHB-EGF in HSC, as is apparent in other cell types (7, 37–40). A similar explanation may 

underlie the relatively small (but significant) difference in α-SMA expression between HB-

EGF+/+ HSC versus HB-EGF−/− HSC over the first 5 days of culture as compared to the 

pronounced effects of exogenous HB-EGF on α-SMA expression in HB-EGF+/+ HSC. Thus, 

the role of HB-EGF in fibrosis is multi-faceted and involves complex mechanisms that 

require further investigation.

We have previously shown that CCN2 production in HSC is stimulated by endogenous 

TGF-β (41, 42). While this stimulatory role has largely been attributed to direct effects of 

TGF-β on the CCN2 promoter (42), it is also possible that TGF-β in part exerts a suppressive 

effect on HB-EGF expression causing a similar enhancement in CCN2 levels as seen in HB-

EGF−/− mice. Indeed, evidence for TGF-β -mediated suppression of HB-EGF expression 

was obtained in this study (albeit in hepatocytes) and future studies will need to address the 

HB-EGF-TGF-β axis in HSC in detail. Also, in HB-EGF−/− mice or HSC, the lack of 

activation or stimulation of downstream targets of HB-EGF rather than HB-EGF itself may 

account for all or some of the differential responses as compared to HB-EGF+/+ mice or 

HSC, a possibility to be addressed in follow-up studies.

Recent reports showed that over-expression of HB-EGF in pancreatic islets led to intra-islet 

fibrosis (9, 10). Further studies are needed to explain the pro-fibrotic role of HB-EGF in the 
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pancreas versus its anti-fibrotic action in the liver but this difference may reflect the use of 

distinct genetic models (transgenic versus knockout), the presence (liver) or absence 

(pancreas) of a noxious insult (e.g. CCl4), and/or distinct modes of injury or repair in the 

liver versus the pancreas, including functional differences between the stellate cells in each 

organ systems (43–45).

Like HB-EGF, AR contains an N-terminal heparin-binding domain which functionally 

engages heparan sulfate proteoglycans on the cell surface or in extracellular matrix. Chronic 

administration of CCl4 induced less liver fibrosis in AR-knockout mice than in wild type 

mice (46). Additionally, AR-knockout mice showed impaired proliferative responses after 

partial liver hepatectomy (5), exhibited signs of chronic liver damage in the absence of any 

noxious treatment, and died faster than wild type mice in response to lethal doses of Fas-

agonist antibody (4347). Collectively, these data show that HB-EGF and AR are 

functionally distinct despite their structural similarity and that the actions of these EGF 

family members after liver injury are complex, multi-faceted, and non-redundant.

In summary, the present studies indicate that HB-EGF gene knockout in mice increases 

susceptibility to hepatic fibrosis in response to chronic TAA-induced liver injury and that 

HB-EGF expression or action is associated with suppression of fibrogenic pathways in HSC. 

The present studies reveal a novel role of HB-EGF in HSC function and liver fibrosis, and 

suggest that manipulation of HB-EGF production or action may have therapeutic value for 

limiting hepatic fibrosis.
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Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

α-SMA alpha-smooth muscle actin

AR amphiregulin

CCl4 carbon tetrachloride

CCN2 connective tissue growth factor, also known as CTGF

COL1A1 α1 chain of collagen I

COL3A1 α1 chain of collagen III

DMEM Dulbecco’s minimum essential medium

EGF epidermal growth factor
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HB-EGF Heparin-binding epidermal growth factor (EGF)-like growth factor

HSC hepatic stellate cells

ITS insulin-transferrin sodium selenite solution

PBS phosphate-buffered saline

PCR Polymerase chain reaction

pro-HB-EGF HB-EGF precursor protein

sHB-EGF soluble HB-EGF

TGF-α transforming growth factor alpha

TGF-β1 transforming growth factor beta1
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Fig. 1. Histology
HB-EGF+/+ (WT) or HB-EGF−/− (KO) mice were injected with TAA three times per week 

for 4 weeks. Liver tissues were removed, fixed, and sections of 5 µm were stained with H&E 

(A), Sirius Red (B), or with an α-SMA antibody (C). Sirius Red or α-SMA staining was 

analyzed with NIH image software ImageJ (D). Data are the mean ± S.D. of each group 

(n=3, 4 or 5) with triplicate determinations. *p < 0.05 vs WT, **p < 0.05 vs KO, ***p < 0.05 

vs WT/TAA.
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Fig. 2. Fibrogenic gene expression in liver
HB-EGF WT or KO mice were injected with TAA for 4 weeks and hepatic total RNA was 

extracted. Samples were subjected to quantitative real-time PCR for determination of 

hepatic expression of TIMP-1, HB-EGF, α-SMA,COL1A1, COL3A1, TGF-β1, or CCN2 

mRNA. Data are the means ± S.D. of each group (n=3, 4 or 5) with triplicate 

determinations. *p < 0.05 vs WT, **p < 0.05 vs KO, ***p < 0.05 vs WT/TAA.
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Fig. 3. Effect of exogenous recombinant TGF-β1 on HB-EGF gene expression in primary 
cultured hepatocytes
Hepatocytes isolated from untreated HB-EGF WT mice were cultured for 2 days. Cells were 

pre-incubated in DMEM containing 0.5% fetal bovine serum for 24 hours, followed by 

treatment of the cells with 2 ng/ml recombinant human TGF-β1 for an additional 24 hours. 

RNA was isolated and analyzed by quantitative real-time PCR to determine HB-EGF 

expression. Data are the mean ± S.D. of three experiments with triplicate determinations. *p 

< 0.05 vs control.
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Fig. 4. Fibrogenic gene expression in primary cultured HSC
Stellate cells isolated from untreated HB-EGF WT or KO mice were cultured for 5 days. 

Total cellular RNA extracted from each day of culture was subjected to quantitative real-

time PCR to determine expression of HB-EGF (A), α-SMA (B), COL1A1 (C) or CCN2 (D). 
Wild type cells grown on coverslips for 5 days were fixed and processed to detect HB-EGF 

protein by immunofluorescence (E). Data are the mean ± S.D. of three experiments with 

triplicate determinations. # p < 0.05 vs Day 0; **p < 0.05 vs Day 1 or Day 2; ***p < 0.05 vs 
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Day 1, 2, 3 or Day 4; *P < 0.05 vs WT. N.C., negative control or without anti-HB-EGF 

antibody.
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Fig. 5. Effect of HB-EGF on fibrogenic gene expression in HSC primary culture
Stellate cells isolated from untreated healthy Balb/c wild type mice (A) or B6;129-

Hbegftm1Dcl/Mmnc HB-EGF WT mice (B, C) were cultured for 3 days. Cells were pre-

incubated in DMEM/F-12 containing 0.5% fetal bovine serum for 24 hours, followed by 

treatment with recombinant human HB-EGF for an additional 24 hours with (C) or without 

(A, B) 10 µg/ml CRM197 prior to analysis of mRNA expression of α-SMA, COL1A1 or 

CCN2 by quantitative real-time PCR. Data are the mean ± S.D. of three experiments with 

triplicate determinations. *p < 0.05 vs control (Ctrl); **p < 0.05 vs HB-EGF.
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Fig. 6. Effect of exogenous recombinant HB-EGF on endogenous HB-EGF gene expression in 
primary cultured HSC
Stellate cells isolated from untreated HB-EGF WT mice were cultured for 3 days. Cells were 

pre-incubated in DMEM/F-12 containing 0.5% fetal bovine serum for 24 hours, followed by 

treatment with 100ng/ml recombinant human HB-EGF for an additional 24 hours. HB-EGF 

mRNA expression was analyzed by quantitative real-time PCR. Data are the mean ± S.D. of 

three experiments with triplicate determinations. *p < 0.05 vs control (Ctrl).
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Fig. 7. Effect of exogenous recombinant HB-EGF on HSC migration
Primary cultured HSC isolated from HB-EGF WT mice were cultured for 5 days, detached 

by digestion with trypsin, and plated into 6-well tissue culture plates. After pre-incubation in 

DMEM/F-12 containing 0.5% fetal bovine serum for 24 hours, the cultures were scratch-

wounded with a 10-µl pipette tip, and incubated with 100 ng/ml recombinant HB-EGF with 

or without 10 µg/ml CRM197 for an additional 24 hours. The bar chart shows the number of 

cells in the scratched area (% versus control). Each bar represents mean ± S.D. from three 
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experiments. Photomicrographs are representative of three experiments. Dotted line 

indicates wound margin. *p < 0.05 vs Ctrl; **P < 0.05 vs HB-EGF. Ctrl, control.
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