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Introduction

The recombinant monoclonal IgG antibodies comprise a rap-
idly growing group of protein therapeutics. The disulfide bond 
structure of IgG is highly conserved through evolution and was 
once considered a uniform and homogeneous structural feature. 
However, detailed characterization of a large number of IgG mol-
ecules has revealed several new structural features in both recom-
binant and natural human IgG antibodies. These new findings 
and their effects on IgG structure, stability and biological func-
tion are reviewed here.

Classical Disulfide Bond Structures

Disulfide bond structures of the four subclasses of IgG were 
established in the 1960s.1-8 These disulfide bond structures are 
referred to as the classical disulfide bond structures because they 
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The disulfide bond structures established decades ago for 
immunoglobulins have been challenged by findings from 
extensive characterization of recombinant and human 
monoclonal IgG antibodies. Non-classical disulfide bond 
structure was first identified in IgG4 and later in IgG2 antibodies. 
Although, cysteine residues should be in the disulfide bonded 
states, free sulfhydryls have been detected in all subclasses of 
IgG antibodies. In addition, disulfide bonds are susceptible to 
chemical modifications, which can further generate structural 
variants such as IgG antibodies with trisulfide bond or thioether 
linkages. Trisulfide bond formation has also been observed 
for IgG of all subclasses. Degradation of disulfide bond 
through β-elimination generates free sulfhydryls disulfide 
and dehydroalanine. Further reaction between free sulfhydryl 
and dehydroalanine leads to the formation of a non-reducible 
cross-linked species. Hydrolysis of the dehydroalanine 
residue contributes substantially to antibody hinge region 
fragmentation. The effect of these disulfide bond variations 
on antibody structure, stability and biological function are 
discussed in this review.
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are widely accepted. As shown in Figure 1, there are many simi-
larities and some differences with regard to the disulfide bond 
structures in the four subclasses of IgG antibodies, IgG

1
, IgG

2
, 

IgG
3
 and IgG

4
. Each IgG contains a total of 12 intra-chain disul-

fide bonds; each disulfide bond is associated with an individual 
IgG domain. The two heavy chains are connected in the hinge 
region by a variable number of disulfide bonds: 2 for IgG

1
 and 

IgG
4
, 4 for IgG

2
 and 11 for IgG

3
. The light chain of the IgG

1
 is 

connected to the heavy chain by a disulfide bond between the last 
cysteine residue of the light chain and the fifth cysteine residue 
of the heavy chain. However, for IgG

2
, IgG

3
 and IgG

4
, the light 

chain is linked to the heavy chain by a disulfide bond between 
the last cysteine residue of the light chain and the third cysteine 
residue of the heavy chain.

The level of solvent exposure is different between intra-chain 
and inter-chain disulfide bonds. Cysteine residues that form 
inter-chain disulfide bonds are located in the hinge region with 
the exception of the third cysteine residue of the heavy chain in 
IgG

2
, IgG

3
 and IgG

4
, which is located between the interface of 

VH and CH1 domains.9 Therefore, inter-chain disulfide bonds 
are highly solvent exposed.9-12 On the other hand, intra-chain 
disulfide bonds are buried between the two layers of anti-par-
allel β-sheet structures within each domain and are not solvent 
exposed.9-12 The solvent exposure difference has important impli-
cations because exposed cysteine residues are considered more 
reactive than non-exposed cysteine residues.

Non-Classical Linkage

Disulfide bond structures other than the classical structures 
shown in Figure 1 have been observed mainly for IgG

2
 and IgG

4
, 

but not for IgG
1
 and IgG

3
. Only a trace amount of a disulfide 

bond variant with the two inter heavy chain disulfide bonds 
in the intra-chain form for IgG

1
 has been observed.13 IgG

3
 has 

repeated amino acid sequence in the hinge region and a total of 
11 disulfide bonds in close proximity, which does not allow much 
flexibility for formation of disulfide bond variants.

Non-classical disulfide bond structures of IgG
2
 were first iden-

tified in recombinant monoclonal antibodies (mAbs) and then 
confirmed in human IgG

2
 molecules.14-16 In these publications, 

the classical disulfide bond structure was referred to as IgG
2
A, 
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than by covalent linkage. Second, polyclonal IgG
4
 is unable to 

cross-link antigen and behaves like a monovalent antibody,25 
while monoclonal IgG

4
 can cross-link antigens.26 Third, IgG

4
 

as a covalent-linked monomer demonstrates bispecificity in 
plasma.26 These observations were explained by the fact that the 
two inter heavy chain disulfide bonds of IgG

4
 are in equilibrium 

with intra-chain disulfide bond forms.13,23,24 IgG
1
 and IgG

4
 differ 

by one amino acid in the middle hinge region, i.e., there are two 
proline residues in IgG

1
 and a serine and a proline residue in IgG

4
. 

Stable inter heavy chain disulfide bonds of IgG
4
 were obtained by 

replacing the serine residue with a proline residue.13,23,24 Because 
of the instability of the inter heavy chain disulfide bonds, bispe-
cific antibody can be formed in vitro in the presence of reducing 
reagents and in vivo by injection of equal amounts of two recom-
binant IgG

4
 antibodies specific for two different antigens into 

immunodeficient mice.27

Free Sulfhydryls

Presumably, all cysteine residues in IgG are in the disulfide bonded 
state. However, free sulfhydryls has been routinely detected in 
IgG molecules, including IgG from serum and recombinant 
mAbs (Table 1).28-35 It is worthwhile to discuss two important 
observations in Table 1. First, higher level of free sulfhydryls was 
detected under denaturing conditions compared with native con-

while the two major non-classical structures were referred to as 
IgG

2
B and IgG

2
-A/B, the latter being considered a structural 

intermediate between IgG
2
A and IgG

2
B (Fig. 2). Distribution 

of different disulfide bond isoforms is dependent on the type of 
light chain, IgG

2
A is the major form in molecules with λ light 

chain; IgG
2
B is the major form in molecules with κ light chain.15 

A conversion from the IgG
2
A form to IgG

2
B was observed dur-

ing cell culture, in vitro incubation with serum and in patient 
serum.17 Molecular dynamic simulation study revealed that the 
sulfur atoms of inter-chain disulfide bonds are highly mobile 
and can be in close proximity.18 Therefore, it is not a surprise 
to observe the coexistence of multiple disulfide bond isoforms 
for IgG

2
 antibodies. In addition to isoforms from different intra-

molecule disulfide bond linkages, disulfide bond linked IgG
2
 

dimer was also found in recombinant IgG
2
 from cell culture and 

in human serum.19

By far, IgG
4
 is the best known subclass of IgG molecule 

having non-classical disulfide bond structures (Fig. 3). Several 
interesting observations led to the ultimate finding of the non-
classical disulfide bond structures. First, significant amounts of 
IgG

4
 were observed as half-molecules when analyzed by non-

reducing sodium dodecyl sulfate-poly acrylamide gel electropho-
resis (SDS-PAGE),20-24 but not by size-exclusion chromatography 
(SEC) run under native conditions,23 indicating that the two 
half-molecules are associated by non-covalent interactions rather 

Figure 1. Classical IgG disulfide bond structures.
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The variable domain has a higher level of free sulfhydryls than 
that in the constant domain in the light chain. The CH3 domain 
has the highest level of free sulfhydryls followed by CH1, CH2 
and the variable domain in the heavy chain. The lowest level of 
free sulfhydryls is associated with inter-chain disulfide bonds, 
suggesting that low level of free sulfhydryls is most likely due 
to incomplete formation of disulfide bonds. Because inter-chain 
disulfide bonds with higher solvent exposure level are more prone 
to degradation than intra-chain disulfide bonds, higher level of 
free sulfhydryls associated with inter-chain disulfide bonds is 
expected if free sulfhydryl is generated due to disulfide bond deg-
radation. Distribution other than described above may indicate 
special cases where particular disulfide bonds are not efficiently 
formed.

Two special cases have been reported in the literature so far. 
In both cases, the intra-chain disulfide bond in the heavy chain 
variable domain is not completely formed at such a level that 
antibodies with this incomplete disulfide bond were detected by 
hydrophobic interaction or weak cation exchange chromatogra-
phy.38,39 Complete formation of this particular disulfide bond can 
be achieved by the addition of copper sulfate to cell culture,40 
suggesting that cell culture conditions can affect disulfide bond 
formation. Antibodies after in vitro incubation in serum or 
recovered from rat serum after administration showed significant 
reduction in incomplete disulfide bond formation.39

β-Elimination

Under basic conditions, disulfide bonds can decompose through 
the β-elimination mechanism with the formation of dehydroala-
nine and persulfide, which can further revert back to a cysteine 
residue.41-43 Degradation of the inter light chain and heavy chain 
disulfide bond of IgG through the β-elimination mechanism 
followed by cross-linking of the resulting cysteine and dehy-
droalanine has led to the formation of a non-reducible thioether 
linkage,44 which was found at ~0.4% for a recombinant mono-
clonal IgG

1
 stored at 4°C and up to 13.6% for a heat-stressed 

sample. Subsequent hydrolysis of the dehydroalanine is another 
important mechanism in addition to peptide bond hydrolysis 
that leads to antibody fragmentation in the hinge region.45

Trisulfide Bond Formation

Trisulfide bonding formation is a rare post-translational modi-
fication of proteins. The presence of trisulfide bonding was first 
reported for a recombinant monoclonal IgG

2
, where one or two 

of the four inter heavy chain disulfide bonds may exist as a trisul-
fide bond.46 Trisulfide bonds were later detected in all subclasses 
of recombinant IgG antibodies, as well as in human IgG from 
patients with myeloma.47 In all cases, higher levels of trisulfide 
bonds were observed between the cysteine residues that normally 
form the inter light chain and heavy chain disulfide bonds.47 
Trisulfide bonds in recombinant mAbs are believed to be formed 
during fermentation as a result of the reaction of an intact disul-
fide bond with dissolved hydrogen sulfide (H

2
S).46,47 This conclu-

sion is supported by the observation that incubation of IgG with 

ditions. This indicates that free sulfhydryl is associated with 
cysteine residues involved in both inter and intra chain disul-
fide bonds. Second, there is a large variation in the levels of free 
sulfhydryl under denaturing conditions among different studies. 
This large variation is likely due to a combination of multiple 
factors, including different IgG types (human or recombinant), 
different IgG subclasses and experimental variations, e.g., dena-
turing reagents and denaturing times, which may vary for differ-
ent IgGs to be fully denatured. Degradation of disulfide bonds 
that produces free sulfhydryls may occur, as will be discussed 
later.

While IgG molecules may have different levels of free sulfhy-
dryl, studies suggested a similar distribution of free sulfhydryl 
among the domain structures, at least for recombinant IgG

1
.36,37 

Figure 2. IgG2 disulfide bond isoforms.
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from mutagenesis studies. Two mutants, one replacing the 
first middle hinge cysteine with a serine and the other replac-
ing the serine in the middle hinge with a proline, resulted in 
more stable IgG

4
 molecules without affecting antigen binding 

activity.24 In a separate study, replacing the middle hinge ser-
ine with proline resulted in a more stable inter-chain disulfide 
bond and increased half-life, again without affecting antigen 
binding activity.23

The effect of free sulfhydryl on the structure, stability and 
biological functions of IgG has been studied using individual 
domains, as well as intact IgG molecules. Individual domains 
of C

L
 domain,12 CH3 domain49,50 and single-chain variable frag-

ment51 without the complete intra-chain disulfide bond showed 
lower stability, but no substantial structural changes. It is expected 
that the lack of intra-chain disulfide bond in other domains will 
have similar destabilizing effect because all IgG domain share 
similar folding.52 Incomplete formation of the disulfide bond in 
the heavy chain variable domain of a recombinant monoclonal 
antibody resulted in a significant decrease in potency.38,39 A natu-
ral antibody derived from the ABPC48 mouse plasmacytoma, 
in which the second cysteine residue in the heavy chain variable 
domain was replaced by a tyrosine residue, is capable of binding 
antigen,53 suggesting further that a complete disulfide bond is not 
a prerequisite for antigen binding. Higher amounts of free sulfhy-
dryl resulted in lower thermal stability of both recombinant and 
human IgG antibodies.31 In addition, the higher aggregation pro-
pensity of IgG

2
 compared with IgG

1
 is also attributed to higher 

level of free sulfhydryl of IgG
2
.35

Partial reduction has been one of the commonly used methods 
to study the effect of inter-chain disulfide bond on the structure, 
stability and biological functions of IgG. Although a global con-
formational change was not observed,12,52,54-59 partial reduction 
increased the flexibility of the hinge region, probably as a result of 
reduction of inter-chain disulfide bonds, resulting in further sep-
aration of the two CH2 domains.52,55,56,60 An apparent increase 
in the hydrodynamic sizes of human IgG

1
, IgG

2
 and IgG

4
, but 

decreased size for IgG
3
 were also observed upon partial reduction 

and alkylation, which is again attributed to the structural change 
in the hinge region and CH2 domain.61 Highly dependent on 
the experimental conditions,62 partial reduction either has no 

H
2
S resulted in higher levels of trisulfide bonding.47 Substantial 

conversion of trisulfide bonds to disulfide bonds was observed 
when a recombinant IgG

2
 antibody was incubated with various 

reducing reagents at pH 7.5.46 In another study, it was found that 
trisulfide bonds were stable in buffers at pH 6.5 and in rat serum 
in vitro. However, complete conversion of the trisulfide bond 
to a disulfide bond was achieved when a recombinant IgG

1
 was 

recovered from rat serum 24 h after intraperitoneal injection.47 
It is hypothesized that trisulfide bond is formed through several 
reaction intermediates produced by the initial nucleophilic attack 
of disulfide bond by HS- under an appropriate redox condition.48

Structure, Stability and Functions

Information about the structure, stability and functional 
impacts of non-classical linkage and trisulfide bond is limited. 
The non-classical structure of the IgG

2
B is more compact than 

that of IgG
2
A, as determined by SEC and analytical ultra-

centrifugation.15 IgG
2
A was shown to have either similar or 

higher binding affinity and biological activity than IgG
2
B.15,16 

Studies determined that the presence of trisulfide bonds does 
not appear to affect the thermal stability or antigen bind-
ing.46,47 Limited information on IgG

4
 isoforms mainly comes 

Figure 3. IgG4 disulfide bond isoforms.

Table 1. Level of free sulfhydryl in IgG

Mole of free SH/Mole of IgG

Type of IgG Reference

Native Denatured

Human IgG2 0.24 ND* 28, 29

Human IgG1 0.1–1.1 0.6–4.0 30

Human IgG1, IgG4 and 
recombinant IgG4

ND* 0.9–2.2 31

Recombinant IgG1, IgG2 
and IgG4

0.02–0.08 0.08–0.09 32

Recombinant IgG1 ND* 0.64 33

Recombinant IgG2 0.06 0.59 34

Recombinant IgG2 0.158 0.379 35

ND*, not determined.
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specifically to disulfide bond structures is a potential major con-
tributor to heterogeneity. It has been clearly demonstrated that 
intra-chain disulfide bonds are in general more stable after anti-
body assembly. Therefore, the low levels of free sulfhydryl asso-
ciated with these intra-chain disulfide bonds are probably due 
to incomplete formation of disulfide bonds. On the other hand, 
inter-chain disulfide bonds are exposed and less stable, which 
explains why increased heterogeneity is associated with these 
bonds. It is thus reasonable to hypothesize that non-classical 
disulfide bond structures, trisulfide bonding and thioether link-
ages formation may occur after antibody assembly.

Close attention should be paid to these new disulfide bond-
related structures during the development of recombinant mAbs 
because changes in structures and stability have been observed. 
Theoretically, administration of non-native disulfide bonded 
structures to humans has the potential to trigger immune 
response. Lowering stability can also ultimately lead to non-
native structures because of the higher propensity to unfold 
and form aggregates. More experiments are thus warranted to 
improve understanding of the effects of disulfide bond related 
structural variants on the stability, structure and biological func-
tions of IgG molecules.

Acknowledgments

We thank Larry Dick, Huijuan Li and Yi Du for their critical 
review of this manuscript.

impact59,63 or reduces complement activation efficiency.64-66 The 
effect of partial reduction on binding to Fc receptors and, conse-
quently, antibody-dependent cell-mediated cytotoxicity (ADCC) 
is also not consistent, e.g., no effect67,68 and significantly reduced 
activity59,69,70 were observed for different antibodies. One of the 
critical issues is the degree of reduction of the intra-chain disul-
fide bonds in different studies. It has been reported that only 
inter-chain disulfide bonds of human IgG

1
 are susceptible to 

reduction under native conditions.71 However, reduction of intra-
chain disulfide bonds of rabbit IgG under native conditions may 
be possible.62,64

Although levels of free sulfhydryls appear to be low, their 
presence poses some challenges for recombinant monoclonal 
antibody formulation. It was found that the majority of the IgG

1
 

dimer is formed due to formation of intermolecular disulfide 
bonds,72 which could result from free sulfhydryls. Dimerization 
through disulfide bond formation is the major aggregation path-
way for a recombinant monoclonal IgG

2
 antibody at pH 6.0 after 

heat stress.73 A substantial amount of covalently linked aggre-
gates formed via disulfide bonds of an IgG

2
 was also found in 

the aggregates caused by agitation.34 It is possible that antibodies 
with incomplete disulfide bonds are more susceptible to unfold-
ing under various stress conditions and, therefore, have a higher 
propensity for covalent aggregation through disulfide bond for-
mation. IgG antibodies with higher levels of free sulfhydryls also 
have a greater tendency to expose hydrophobic regions, which 
can drive the formation of non-covalent aggregates through inter-
molecule hydrophobic interactions.

Conclusion

Heterogeneity is a common feature of recombinant mAbs as a 
result of post-translational modifications and variation related 
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