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Abstract
Electronic medical record (EMR) systems afford researchers with opportunities to investigate a
broad range of scientific questions. In contrast to purposeful study designs, however, EMR data
acquisition procedures typically do not align with any specific hypothesis. Subsequent
investigations therefore require detailed characterization of clinical procedures and protocols that
underlie EMR data, as well as careful consideration of model choice. For example, many intensive
care units currently implement insulin infusion protocols to better control patients’ blood glucose
levels. The protocols use prior glucose levels to determine, in part, how to adjust the infusion rate.
Such feedback loops introduce time-dependent confounding into longitudinal analyses even
though they may not always be evident to the analyst. In this paper, we review commonly used
longitudinal model specifications and interpretations and show how these are particularly
important in the presence of hospital-based clinical protocols. We show that parameter
relationships among various models can be used to identify and characterize the impact of time-
dependent confounding and therefore help explain seemingly incongruous conclusions. We also
review important estimation challenges in the presence of time-dependent confounding and show
how certain model specifications may be more or less susceptible to bias. To illustrate these
points, we present a detailed analysis of the relationship between blood glucose levels and insulin
doses on the basis of data from an intensive care unit.
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1. Introduction
Electronic medical records (EMR) systems conveniently capture vast amounts of clinical
data, including laboratory results and medication dosages. Increasingly, clinicians and
researchers are looking to EMR for data that can address specific scientific questions.

Copyright © 2011 John Wiley & Sons, Ltd.
*Correspondence to: Jonathan S. Schildcrout, Department of Biostatistics, Vanderbilt University School of Medicine, 1161 21st Ave
South, S-2323 Medical Center North, Nashville, TN 37232-2158, USA.
†jonathan.schildcrout@vanderbilt.edu

NIH Public Access
Author Manuscript
Stat Med. Author manuscript; available in PMC 2012 April 30.

Published in final edited form as:
Stat Med. 2011 November 30; 30(27): 3208–3220. doi:10.1002/sim.4352.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



However, a major challenge with associated analyses is that the ascertainment mechanisms
and treatment courses for hospitalized patients usually differ in complex ways from those for
participants in clinical trials, controlled experiments, or even cohort studies. One example,
presented in detail here, regards the attempt to examine the relationship between insulin
infusion rates and blood glucose levels in patients in an intensive care unit (ICU).

Modern critical care medicine is based on the principle of restoring aberrant respiratory,
cardiovascular, and other functions to normal or even supranormal physiologic levels [1–4].
For patients in an ICU, the biomedical literature suggests that tight blood glucose control
may prevent life-threatening adverse events [1,2,4,5]. Towards optimizing ICU patients
glucose control, hospitals may employ locally developed computerized decision support
(CDS) systems to guide dosing of intravenous insulin infusions [6]. Such systems often use
protocol-scheduled blood glucose measurements, together with past ICU data, to determine
subsequent adjustments to the patient insulin infusion rates. That insulin infusion rates and
blood glucose concentrations are determinants of one another presents important analytical
challenges because of time-dependent confounding. A thorough understanding of data
acquisition procedures is therefore crucial for subsequent analyses. Unfortunately, the
existence of the protocol is typically not evident from the EMR data. Further, in such
settings, analysts have a number of longitudinal model choices including cross-sectional,
Markov or transition, and distributed lag models. Across these models, parameters measure
distinct quantities and, in the absence of a prespecified hypothesis, study conclusions can be
impacted dramatically by model choice. When large differences in study conclusions do
arise, it is useful to understand potential explanations.

The goal of this paper is to discuss challenges with and to provide insights into analyses of
longitudinal clinical laboratory data collected on hospitalized patients. The work here is
motivated by an analysis of blood-glucose insulin-dose-rate (BG–IDR) data from Vanderbilt
University Hospital. Importantly, we do not seek to evaluate the effectiveness of the CDS
protocol for controlling glucose but instead to examine the IDR–BG association in the
presence of time-dependent confounding. The CDS protocol that led to the confounding is
‘convenient’ for our research purposes because it allowed us to know the functional form of
the confounding mechanism. We can therefore compare and contrast the impact that
treatment or propensity model misspecification can have on inferences for the target model
parameters. Considerations regarding model choice and time-dependent confounding are
central, and the interplay between the two is considered in depth. We find the BG–IDR data
to be particularly insightful in that it illustrates the dramatic impact model choice can have
on study conclusions. Motivated by this, we discuss approaches to better understand
apparent discrepancies. Specifically, we demonstrate how parameters from distinct
longitudinal models are closely related and, by appealing to a series of intermediate models,
show how they can be calculated from one another. Such calculations provide important
insights for analysts attempting to discern biological from data ascertainment mechanisms.

We organize the manuscript as follows. In Section 2, we describe the sample and the blood
glucose control protocol utilized during the observation period. In Section 3, we discuss six
models that may reasonably be applied to the BG–IDR data and show how parameters in
these models can be calculated from one another. We discuss estimation challenges in
Section 4, and in Section 5, we present the BG–IDR data analysis. We show the enormous
impact that time-dependent confounding can have on inferences from analyses of data
collected under a CDS system and further that the parameter relationships described in
Section 3 are not approximations but are exact. In Section 6, we provide a summary.
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2. Blood-glucose insulin-dose-rate data
2.1. Study sample

The BG–IDR data consist of a subset of patients admitted to the Trauma ICU at Vanderbilt
University Hospital from May 31, 2004 through December 31, 2005 [7]. For the sake of this
illustrative example, we restricted our examination of the BG–IDR relationship to the first
24 h following admission. Further, we restricted the analyses to patients who were well-
controlled during the course of the study period; we excluded patients who experienced
severe hyperglycemia, requiring an infusion rate that exceeded 5 U/h. See Section 6 for
discussion of the potential selection bias induced by this exclusion.

Table I summarizes demographic characteristics and experiences of the sample. Of the 345
patients, 35% were female, approximately 11% were African American, and approximately
8% were designated an ethnicity other than Caucasian or African American. The median age
and body mass index were 52 years and 25 kg/m2, respectively, and the median follow-up
time was 22 h with 75% of all patients observed for at least 18 h. We checked blood glucose
approximately every 2 h with 50% of time separations between successive glucose checks
falling between 1.7 and 2.4 h. We administered dextrose to prevent hypoglycemia following
8% of all glucose checks.

2.2. Notation
The BG–IDR data consist of longitudinal, repeated measures on N = 345 ICU patients. Let
ni denote the number of observations for the i th patient and Yij their observed blood glucose
concentration at the j th time since admission into the ICU, tj, j ∈ {0, 1, 2, …, ni }. Further,
let Xij denote insulin dose rate at the j th time and W ij a vector of one or more potential
confounders. For the analyses of Section 5, W ij includes time invariant and baseline
covariates, age, gender, race, body mass index, admitting unit (surgical ICU or trauma unit),
and baseline glucose level, and time-varying covariates dextrose administered since last
glucose check, time since admission into the ICU, tj, and time since the last glucose check (tj
−tj−1). Finally, let Zij = Yij − Yij−1 denote the blood glucose change between times tj−1 and
tj, with Yi 0 the baseline or admission glucose value for the i th subject. For notational
convenience, let Y i = (Yi1, Yi2, … Yini), Z i = (Zi1, Zi2, … Zini) and X i = (Xi1, Xi 2, … Xini)
denote the vectors and W i = (W i1, W i 2, … W ini) denote the matrix of subject-specific
observed quantities.

The primary scientific goal of the BG–IDR data analysis is to characterize the relationship
between insulin dose rates and both blood glucose levels and blood glucose changes.
Broadly, using our notation, interest lies in understanding how X i influences the mean of Y i
or Z i while adjusting for W i. However, a serious challenge to the analysis arises because
the patients under examination are those whose glucose levels were controlled, in part, by a
specific computer-based protocol, which we now describe. Recall and as discussed in
Section 1, we are not interested in evaluating the CDS but instead interested in estimating
the BG–IDR relationships in the presence of time-dependent confounding induced by the
CDS.

2.3. Glucose control protocol
At the time a patient is brought into the ICU, hospital staff choose, among other parameters,
a target range within which blood glucose concentrations should remain. Lower limits for
this range can vary between 65 and 100 mg/dl, in 5 mg/dl increments; upper limits between
105 and 140 mg/dl, in 5 mg/dl increments. Once the patient is initiated into the the glucose
control protocol, the protocol-specified insulin dose rate depends on the most recently
measured blood glucose level, the patient history, and the target blood glucose range.
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Specifically, the protocol specifies that the insulin dose rate to be administered to the i th
patient during the interval (tj−1, tj] is given by: Xij = Mij−1 · (Yij−1 − 60), where Mij−1 is a
multiplicative constant at time tj−1. The multiplier Mij−1 is a function of possibly (i) past M
values up to time tj−1; (ii) the lower and the upper limits of the target blood glucose range;
and (iii) the baseline blood glucose concentration. Dortch et al. in [7] provided more details
including the timing of blood glucose testing and the administration of dextrose to raise low
blood glucose concentrations.

A key feature of the protocol is the dependence of Xij on Yij−1; the exposure level at time tj
is determined, in part, by the outcome observed at time tj−1. Hence, there is strong potential
for time-dependent confounding that must be considered when specifying models of interest
as well as estimating their parameters. Note that in the BG–IDR data, the insulin dose rate
for the i th patient at time tj is the dose that was determined in response to the prior blood
glucose concentration. Consequently, when formulating and interpreting models, it is
important to remember that, in our notation, Xij precedes Yij in time.

3. Models specification and relationships between model parameters
Although the BG–IDR data provide an important research opportunity, the data collection
procedures were neither developed as part of a specific study design nor was there a
prespecified hypothesis or model of interest. As a consequence, analysts may be faced with
a rather vague yet typical question of ‘What is the effect of insulin dose rates on blood
glucose?’. Without a precise formulation of the study question, the analysis could proceed in
a number of directions, although differences in model choice could result in important
differences in terms of study conclusions. Here, we present and discuss six reasonable
models that might be used to analyze the BG–IDR data.

3.1. Potential model choices
Following the notation of Section 2.2, the six models are the following:

(Model 1a)

(Model 1b)

(Model 1c)

(Model 2a)

(Model 2b)

(Model 2c)

Models 1a–1c (indexed by parameters β) describe the relationship between blood glucose
levels and covariate values. Models 2a–2c (indexed by parameters γ) use blood glucose
changes as the response. Models 1a and 2a are cross-sectional mean models; hence the
superscript C. Models 1b and 2b (superscript T) add the lagged blood glucose value, Yij−1,
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into the regression model. Model 1b is a transition or a first-order Markov model, though
Model 2b is not because it does not include, as an independent variable, its lagged response
value (i.e., Zij−1). Models 1c and 2c are second-order distributed lag models (superscript D)
in that they include the present and first-order lagged insulin dose rates as predictors. The
multivariate distribution of the errors (denoted by ε) and specifically the within-patient
covariance structure among responses will differ according to the model specification. Our
only assumption is that the error distributions have means equal to 0 and finite variances.
Recall from Section 2.2 that in our notation, Xij is the insulin dose rate that the patient was
on at the time Yij was measured, and it is the dose that the patient had been on since just
after the time Yij−1 was measured. That is, Xij precedes Yij in time. We discussed the
covariates included in Wij in Section 2.2.

3.2. Model interpretation
Towards addressing the question ‘What is the effect of insulin dose rates on blood glucose?’,

the key parameters of interest are , and . The parameters from
models 1a–1c correspond to the differences in covariate adjusted mean glucose levels, and
parameters from models 2a–2c correspond to the differences in covariate adjusted mean
glucose changes. Other terms in the linear predictor define the adjustment that is made to the
mean and therefore are crucial in the interpretation of the parameters. Although each of
models 1a–1c and 2a–2c may be a reasonable choice for the BG–IDR analysis, precisely
characterizing differences in the interpretations of the key parameters reveals that each
captures a different aspect of the ‘effect’ of interest. Because of this, analysts may find
themselves in situations where estimates across the various models yield seemingly
discrepant study conclusions. By introducing a series of intermediate models, we show that
the parameters across the six models are related and can be derived from one another.
Understanding these relationships can provide crucial insight into model specification and
choice and the impact both can have on study conclusions.

3.3. Intermediate models
Consider the following three ‘intermediate’ models:

(IM-I)

(IM-II)

(IM-III)

IM-I describes the relationship between the lagged blood glucose levels and present the
insulin dose; IM-II captures the relationship between successive insulin doses; and IM-III
describes the relationship between the lagged blood glucose level and both the present and
lagged insulin dose rates. Note that each of these models is ‘backwards’ in that dependent
variables precede, in time, independent ones. As such, one cannot reasonably interpret the
models in terms of ‘causal associations.’ Mathematically, these relationships exist and their
parameters can be estimated using the data. However, we emphasize that the purpose of
their development was to act as helpful constructs in explaining the relationships between
models 1a–1c and 2a–2c.

Using IM-I, IM-II, and IM-III, and simple conditional expectation arguments, it is
straightforward to calculate the relationships among the parameters in the six models of
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Section 3.1. Figure 1 summarizes these relationships. Two sets of relationships appear; those
across parameters within a response class (i.e., focusing either on blood glucose levels, Y, or
on blood glucose changes, Z) and those within a model class (e.g., comparing the cross-
sectional models for Y and Z).

3.4. Relationships within a response class
Within a response class, the parameter corresponding to the insulin effect for a given model
is a simple weighted sum of the parameters in each of the other models, with the weights
being terms in one of the intermediate models. For example, the parameter in the cross-

sectional model for Yij (i.e.,  in model 1a) is a weighted sum of the parameters in the

transition model (i.e., model 1b): . Similarly, the parameters across the blood
glucose change models are weighted sums of the terms in the other models. For example, the

parameter in the cross-sectional model for Zij (i.e.,  in model 2a) can be seen to be a

weighted sum of the parameters in the distributed lag model (i.e., model 2c): .
Note that δX will often fall between 0 and 1 (because it captures the partial correlation
between successive insulin doses within a patient). Consequently, the cross-sectional insulin
effect can be intuitively interpreted as a combination of the two insulin effects in the
distributed lag model with less weight associated with parameter for the lagged insulin dose.
We refer the reader to the Introduction of Reference [8] for further discussions. In most
settings, particularly if the time period between successive doses is not long, an effect of the

lagged dose might reasonably persist (i.e., ). As such, cross-sectional and distributed
lag models will likely differ.

3.5. Relationships within a model class
Within a model class, parameters differ by (at most) a single additive, constant term, with
the constant given by one of the terms in IM-I, IM-II, or IM-III. For example, the insulin

effects in models 1a and 2a differ by . Similarly for each of the other within-
model class comparisons. In terms of the insulin effects, models 1b and 2b are equivalent to

one another. Specifically,  and  are equal, and  and  differ by one. Note that if the
protocol succeeds in controlling glucose well, the distribution of the response values does

not change drastically with time and  will usually fall between 0 and 1. Consequently, the
lagged blood glucose value parameter for blood glucose level and blood glucose change

models (  and , respectively) are likely to have opposite signs.

3.6. Equivalence conditions
In addition to presenting numerical relationships between the insulin effect parameters,
Figure 1 helps highlight conditions under which the target parameters across the models are
equivalent. For example, if ωX = 0, then the target parameters in models 1a, 1b, 2a, and 2b

all have the same numerical value (i.e., ). In addition, if δX = 0, then the
target parameters in all the models have the same numerical value (i.e.,

). For the BG–IDR data, the first condition corresponds to lagged
response being unrelated to the present insulin dose; the second condition that the lagged
insulin dose is unrelated to the present dose. From the description of the protocol in Section
2.3, it is clear that neither of these will be likely to hold in the BG–IDR data.
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4. Time-dependent confounding
From the description of the glucose protocol in Section 2.3, there is a feedback loop between
insulin dose and blood glucose in the BG–IDR data; the longitudinal insulin dose process is
said to be ‘endogenous’ with respect to the blood glucose concentration process [9,10].
Endogeneity presents a particularly important challenge for the analysis of the BG–IDR
data. To see this, consider model 1a and note that lagged blood glucose (Yij−1) is both (i) an
intermediary variable along the causal pathway between lagged insulin dose (Xij−1) and
present blood glucose (Yij) and (ii) a confounder of the relationship between the present
insulin dose (Xij) and present blood glucose (Yij) [11]. Estimation is complicated because
including the lagged glucose in the regression removes the effect past insulin doses have on
present glucose levels and analyses that do not include it ignore the effect of a significant
confounder.

4.1. Model susceptibility
Clearly, because the protocol leads to the lagged response being a strong predictor of insulin
dose, model 1a is highly susceptible to time-dependent confounding for the BG–IDR
analysis. The same argument can be applied to model 1c. By inspecting IM-I and IM-III,
time-dependent confounding is likely to lead to relatively large values of ωX and αX, and
from Figure 1, this could lead to large differences in parameter estimates from the various
models. Model 1b explicitly adjusts for the lagged response Yij−1 in the regression model,
thereby removing the confounding. However, such an adjustment blocks the potentially
important pathway between insulin history Xij−1 and the present blood glucose
concentration Yij. Models 2a–2c are less likely to be susceptible to the impact of time-
dependent confounding because the protocol does not directly involve lagged glucose
changes Zij−1 in determining insulin dose rates Xij. However, because the lagged glucose
concentration is implicit in Zij, the impact of insulin history, Xij−1, on glucose is not
captured by parameters from these models. That is, models 2a–2c necessarily focus on short-
term exposure effects. In contrast, models 1a and 1c can capture the longer term effects
insulin dose history.

4.2. Parameter estimation
In the presence of time-dependent confounding, inverse probability of treatment weighted
estimation can yield unbiased estimates of causal effects [9, 11]. The approach works by
reweighting contributions to the estimating equation in such a way that removes the
relationship between the lagged response (Yij−1 or Zij−1) and present exposure (Xij);
intuitively, the weighting corresponds to the construction of a pseudo-population in which
lagged responses and present exposures are unrelated. Removal of this relationship means
that the lagged response is no longer a confounder. From a scientific perspective, once the
confounding is successfully removed, marginal models such as models 1a and 1c may be
most appropriate because in addition to capturing the immediate effect of the Xij on Yij, they
both also implicitly or explicitly capture the impact of covariate history, Xij, on responses.

The applicability and ultimate success of inverse probability of treatment weighting as a
means to overcome time-dependent confounding relies on the adequacy of the model for the
exposure process (Xi). For the BG–IDR data, this amounts to appropriate modeling of the
insulin dose rates. Although the protocol specified insulin dose rate leads to excellent
predictions of actual insulin dose rates, it is not ideal for the inverse probability of treatment
modeling approach because it leads to violations of the implicit assumption of positivity [12,
13]. For example, when the protocol dictates that the insulin dose should be, say 5 IU/L, the
probability of receiving a dose of 4 IU/L or less is effectively 0. In Section 5, we perhaps
counterintuitively do not use the protocol directly for constructing the insulin dose models
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because not all inputs that determine the protocol specified dose confound the relationships
of interest in the BG–IDR analysis. For example, the target glucose range is chosen by
hospital staff at the time the patient entered the ICU. Although it is important in the
calculation of the recommended insulin dose at all timepoints, it is not independently related
to the responses in these models, and therefore it is not a confounder. In cases where the
positivity assumption is violated, removal of time-dependent confounding via inverse
probability weighting is tenuous [14, 15] and G-computation is a recommended estimation
strategy [16,17]. Though most discussions and implementations of inverse probability
weighting to correct for time-dependent confounding involve discrete exposures, Reference
[18] discussed the approach in generality including for continuous variables and Reference
[19, 20] implemented the approach for continuous exposures, which is what we do here.

Although it is well known that covariance weighting can lead to improved estimation
efficiency in longitudinal data settings, in the presence of time-dependent confounding, it
can lead to bias. Specifically, for the BG–IDR analysis consider the cross-sectional mean
model for Yij, model 1a. Pepe and Anderson [21] showed that a sufficient condition to
ensure unbiased estimation of a parameter corresponding to a time-varying covariate (i.e.,
Xij in the BG–IDR analysis) is that the cross-sectional mean model be equal to the full-
covariate conditional mean model:

When this condition is violated, unbiased estimates of time-dependent covariate parameters
are only guaranteed if independence working covariance weighting is used. Consequently,
working covariance weighted generalized estimation equations [22] and likelihood-based
mixed models [23] will likely yield biased parameter estimates. Reference [8] provided
analytical solutions for the biases incurred from covariance weighting for longitudinal data
models with exchangeable and autoregressive correlation structures.

Although Pepe and Anderson specifically discussed this issue in the context of the cross-
sectional mean model, their prerequisite condition for sufficiency is violated for all BG–IDR
analyses of glucose levels. Specifically, because future insulin doses Xij + 1 are not
conditionally independent of present glucose values Yij, it is straightforward to see that
E(Yij | Xij, Wij) ≠ E(Yij | Xi, Wi), E(Yij | Xij, Yij−1, Wij) ≠ E(Yij | Xi, Yij−1, Wi), and E(Yij |
Xij, Xij−1, Wij) ≠ E(Yij | Xi, Wi). Hence, estimation of parameters in models 1a–1c may be
susceptible to the bias described in Pepe and Anderson, and independence covariance
weighting may be preferable. In contrast, models 2a–2c may exhibit some robustness to this
source of bias because the insulin dose rates are only indirectly affected by glucose changes.
That is, Zij may not have a strong, independent relationship with future insulin dose rates
(Xij + 1).

5. Data analysis
We now analyze the BG–IDR data and discuss parameter estimates corresponding to the
effect of changes in insulin dose rates on outcomes in models 1a–1c and 2a–2c. Following
the discussion presented in Section 4.2, we used an independence working covariance
matrix for parameter estimation. Further, we obtained standard error estimates that
acknowledge additional uncertainty associated with estimating the stabilized inverse-
probability weights via a cluster bootstrap approach [24].

Schildcrout et al. Page 8

Stat Med. Author manuscript; available in PMC 2012 April 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



5.1. Estimation strategies
The BG–IDR data provide an insightful example for explaining the impact of time-
dependent confounding because the glucose control protocol of Section 2.3 was well
documented and was closely followed in the ICU. Consequently, for these data, the
mechanism underlying the time-dependent confounding is known. This will generally not be
the case, and it provides an opportunity to explore estimation in the presence of time-
dependent confounding as well as to characterize the impact it has on results and study
conclusions. Towards this, we considered three estimation strategies for each of models 1a–
1c and 2a–2c. The first, termed the naïve strategy (NS), ignores the potential for time-
dependent confounding and estimates model parameters via unweighted working
independence generalized estimation equations. The second strategy is to use inverse
probability of treatment weighting where the treatment or propensity model is a linear
regression of the observed insulin dose rate as a function of the lagged blood glucose
concentration and potential confounders at the previous time: Xij ~ Yij−1 + Wij−1. This
strategy is termed the lagged glucose value strategy (LVS). The final strategy, termed the
lagged glucose change strategy (LCS), is to construct a propensity model as a function of
lagged glucose change and potential confounders at the previous time: Xij ~ Zij−1 + Wij−1.
Recall that Section 2.2 describes the variables that we included in Wi for the analysis.

It is worth noting that inverse probability of treatment weighted estimation to correct for the
impact of time-dependent confounding is almost exclusively applied and rightfully so, in
settings where marginal structural models such as models 1a and 1c are of interest because
of reasons discussed in Section 4.2. However, we also use them with the conditional models
such as model 1b primarily to demonstrate the parameter relationships described in Section
3. As we will show, these relationships hold as long as a single inverse probability weighting
scheme for the two models being compared and for the intermediate model is used. Said
another way, because weighting schemes can be thought of as a means of applying study
results to target populations, the relationships hold as long as the target population for the
models being compared is consistent. The use of inverse probability of treatment weighting
for conditional models also shows that these models are less susceptible to the impact of
time-dependent confounding because they include the confounding variable explicitly as an
independent variable (model 1b) or implicitly as part of the response (models 2a–2c).

5.2. Stabilized inverse probability of treatment weighted estimation
Assuming the propensity model is specified appropriately, inverse probability of treatment
weighting yields unbiased estimation in the presence of time-dependent confounding. In
some settings, particularly when the probability of treatment is low within certain
subpopulations, the weights can be extremely large, leading to highly inefficient estimation.
One approach to improving efficiency is to ‘stabilize’ the weights via a propensity model
that uses Wij−1 only to predict the observed insulin dose rates [9]. The stabilized weights for
the LVS and LCS are

respectively. For the BG–IDR analysis, we calculated the numerators and denominators of

 and  using the density of predictive distribution (assuming normality) from the
insulin dose rate regression models. Even with the stabilization, weights can take on
extremely large values. Though we may have incurred some bias, we followed the
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recommendations of Cole and Hernan [12] and truncated the weights (at 50) to avoid highly
inefficient parameter estimates.

The top two panels of Figure 2 show the marginal relationship between Yij−1 and Xij (left)
and between Zij−1 and Xij (right). As expected, Yij−1 is highly related to Xij and although
Zij−1 is also related to Xij, the relationship appears much weaker. Thus, the potential impact
of time-dependent confounding is much greater in models for glucose level than for glucose
change. The bottom two panels of Figure 2 show the kernel densities of the observed
residual distribution for the (insulin dose rate) treatment or propensity models. Also included
are normal approximations that have the same variance as that observed in the residuals;
these normal distributions are used for determining the values of the stabilized weights in
LVS and LCS estimation. The normality assumption for the LVS seems quite reasonable.
For LCS, the propensity model residual distribution has somewhat heavier tails than the
normal distribution; however, truncating stabilized weights at 50 should help to avoid giving
extraordinarily high weights to those in the tails of the distribution.

5.3. Results
Table II displays parameter estimates and 95%CI corresponding to 3.0-unit insulin dose
changes using the six models (1a–1c and 2a–2c) and the three estimation strategies (NS,
LVS, and LCS) described earlier. Within-model comparisons among estimation strategies
(across rows) show that time-dependent confounding induced by the glucose control
protocol had a substantial impact on all analyses, most noticeably on parameters in models
1a and 1c. Parameter estimates for the insulin dose effects based on the ‘gold standard’ LVS
were statistically significant and negative [−24.0, 95%CI: −32.5 to −14.2 for model 1a;
−23.3, 95%CI: −32.6 to −14.9 for model 1c], as one would expect physiologically because
insulin is used for the purpose of reducing blood glucose levels. In contrast, estimates based
on NS were highly statistically significant and positive [6.0, 95%CI: 2.7 to 9.5 for model 1a;
9.5, 95%CI: 5.5 to 13.7 for model 1c]. Hence, conclusions based on models 1a or 1c for
which estimation ignored time-dependent confounding would be in the opposite direction
from what would be considered physiologically plausible. As should be expected, LCS
strategy does not effectively remove the impact of time-dependent confounding on glucose
level analyses; parameter estimates for models 1a and 1c indicate no evidence of a
relationship between insulin rates and blood glucose levels.

As noted in Section 4.1, because model 1b includes the lagged response as an independent
variable in the regression model, it is expected to be resistant to the impact of time-
dependent confounding. The estimates in Table II are consistent with this. In particular, the
results across the differing estimation strategies did not have a large impact on parameter
estimates or conclusions. Although the estimation strategy for analyses of glucose changes
(models 2a–2c) had an impact on the quantitative results, all estimates of insulin dose rate
effects were negative and highly statistically significant. This is consistent with previous
discussions that glucose change analyses should be less susceptible to confounding than
glucose level analyses.

5.4. Parameter relationships
Table III describes the relationships among parameters estimates of the six models,
summarized in Figure 1, using the NS and LVS. To capture the relationships, we also fit IM-
I, IM-II, and IM-III with the same weighting scheme as was used to fit the six models. For
example, when comparing models using the LVS, we fit the intermediate models with the
same stabilized LVS weighting scheme. As discussed earlier, the intermediate model
estimates are useful for understanding relationships and explaining apparent discrepancies
among parameters in the various models. Consider the relationship between the insulin-
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dose-rate effect estimates in models 1a and 1b. Using the NS, ; using the LVS, it

was . In contrast,  was −17.88 and −23.22 for the NS and LVS, respectively.

The reason for the apparent discrepancy both between  in the two estimation strategies

and between  and  using the NS involves estimates of ωX. Recall that ωX describes the
relationships between Yij−1 and Xij and so it can be used to identify the potential for time-
dependent confounding. With the NS, the value was ω̂X = 39.06 indicating a very strong
relationship between Yij−1 and Xij; however, by reweighting the observations so as to
remove this relationship using the LVS, ω̂X = −1.21. This points towards the successful
removal of the confounding effect of Yij−1. Likewise, comparing model 1c and 2c estimates
(last line of the table), under the NS, the estimated value of αX was 52.65, thus leading to

large differences between estimates of  and . After reweighting the observations using

the LVS, the estimate of αX was only −2.90 and estimates of  and  agreed closely.

6. Discussion
We have discussed modeling considerations and approaches to longitudinal data arising
from EMR systems. Although careful consideration and prespecification of models is
crucial, when analyzing data from EMR systems, one has to keep in mind that the data
collection procedures are not tied to any specific hypothesis. Because treatment in hospital-
based settings often require adjustment in response to patient outcomes over time, a key
challenge for longitudinal data analysis in this setting is the potential for time-dependent
confounding. This has important implications for both model specification and estimation.
Via a series of intermediate models, we showed how parameters in several longitudinal
models can be calculated from one another. Understanding these relationships can provide
important insight into underlying data acquisition mechanisms that may induce time-
dependent confounding. Because these mechanisms are well documented and understood for
the BG–IDR example, we were also able to explore the impact that time-dependent
confounding can have on study results and conclusions in a real-worked analysis. As with
the BG–IDR analysis, if the data acquisition mechanism is reasonably well known, model
choice can actually be a means of protecting oneself from the impact of time-dependent
confounding. For example, with some understanding of the confounding mechanism, and if
interest is in short-term exposure effects, one might chose to model response change rather
than response level.

The focus of this paper has been on understanding relationships between commonly used
longitudinal models and the use of such relationships in gaining insight into potential time-
dependent confounding, with application to a subset of patients from the Vanderbilt
University Trauma ICU. More broadly, modeling an unstable patient sample, such as those
who are in an ICU, is very challenging and the BG–IDR dataset is extremely rich in
interesting statistical problems. Several key simplifications of our analyses deserve further
work. Firstly, as mentioned in Section 2.1, we removed those subjects whose glucose was
not well controlled during the 24 h observation period. From a validity perspective, it is easy
to justify the removal of patients with uncontrolled glucose at baseline. However, removing
those who became hyperglycemic at some later point likely introduced a selection bias. That
is, the population to whom results generalize may no longer correspond to the population of
patients who enter the ICU (at Vanderbilt University). Secondly, we did not address the
potential for bias because of differential intensity of follow-up or dropout. Many care
protocols direct that ICU patients with abnormal laboratory values be tested more frequently
than patients who have achieved normal values, whereas discharge from an ICU usually
occurs only after patients are clinically stabilized. Given these mechanisms, if the target
population is represented by the admission sample, the observed data would likely contain a
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disproportionate number of subjects whose laboratory values are abnormal. In the BG–IDR
data, we observed the vast majority of the subjects for at least 18 of the 24 h of follow-up,
and more than 50% of all time separations between successive glucose checks were between
1.7 and 2.4 h. Given the regular glucose checks and relatively consistent discharge times, we
felt these challenges were less pressing than those addressed in the manuscript. If, however,
the follow-up period had been longer than 24 h, then closer scrutiny would likely be
unavoidable. There is an extensive literature on longitudinal data analysis in the presence of
irregular follow-up and dropout and on how one should adjust for the nonrepresentativeness
of the observed data [25–30]. Finally, an additional variable in the glucose control protocol
was the intensity with which participants were examined. Hospital staff chose the intensity
of follow-up at the time the patient entered the ICU. Although our goal was to examine the
impact of insulin rates on glucose levels and changes, staff choices of both the target blood
glucose range and the intensity with which patients were observed could be evaluated with
dynamic treatment regime methods such as those that have been described in References
[31–34].

The question ‘What is the effect of the insulin dose rate on glucose?’ or more broadly ‘What
is the effect of an exposure on a response?’ that was mentioned earlier is extremely vague.
We have discussed six models that could theoretically be used to evaluate this question, and
in the scenario we studied, results describing the ‘effect’ of Xij on Yij were shown to range
from highly statistically significant and negative to highly statistically significant and
positive. This points to the importance of precisely defined scientific questions and
considerations of data acquisition processes. In the BG–IDR data, time-dependent
confounding is a crucial consideration; however, in many other EMR data scenarios,
intensity of follow-up, dropout, nonmonotone missingness, and many other challenges will
be central. Other authors have discussed the importance of precise-defined scientific
questions, including [35] that specifically addressed challenges related to addressing another
vague scientific question ‘What is the effect of obesity on mortality?’

To summarize, we note that it is generally very difficult to envision how study conclusions
might change had different model choices been made unless alternative analyses are
conducted. We believe it is instructive for analysts to consider examining how broad study
conclusions could possibly shift based on seemingly minor changes to regression models.
We believe the framework presented here to be complementary to common data description
and analysis methods, providing researchers with a means of reconciling what could
otherwise appear to be conflicting study results.
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Figure 1.
Relationship among key parameters in the models of Section 3.1.
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Figure 2.
Scatterplots of lagged response values (Yij−1 and Zij−1) and insulin dose rates (Xij) and
kernel density plots of the residual distributions of the insulin dose rate treatment models.
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Table I

Demographics and characteristics of patients in the Vanderbilt Hospital intensive care unit between May 31,
2004 and December 31, 2005. We summarized categorical variables with percents and continuous variables
with the 5th, 25th, 50th, 75th, and 95th percentiles.

Variable Summary

Number of subjects 345

Female 35.7

Ethnicity

 Caucasian 80.9

 African american 11.3

 Other 7.8

Admitting Unit

 Trauma 48.3

 Surgical intensive care unit 51.7

Age (years) 19, 31, 52, 66, 83

Body mass index (kg/m2) 19, 22, 25, 29, 39

Final observation time (hours since admission) 9.6, 18.4, 22.4, 23.3, 23.9

Time separation between successive glucose checks (hours) 1, 1.7, 2, 2.4, 3.7

Insulin rate (U/h) 0.1, 1, 1.6, 2.4, 3.5

Dextrose given 8.9

Glucose values (mg/dl) 74, 91, 102, 115, 139

Difference in successive glucose values (mg/dl) −38, −14, −1, 12, 38
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Table II

Blood-glucose insulin-dose-rate data analysis for patients in the Vanderbilt University Hospital Intensive Care
Unit between May 31, 2004 and December 31, 2005. We display adjusteda point estimates and 95%CI
corresponding to 3.0 U/h changes in insulin dose rate, 1.0 mg/dl change in the lagged response value, and 3.0
U/h changes in lagged insulin dose rate.

Outcome/model Covariate

Estimation strategy

NS LVS LCS

Blood glucose, Yij

 1a Insulin rate 6.0 (2.7, 9.5) −24.0 (−32.5, −14.2) −1.1 (−12.1, 11.5)

 1b Insulin rate −17.9 (−22.3, −13.6) −23.2 (−30.6, −16.2) −20.5 (−35.5, −6.6)

Glucose lag 0.6 (0.5, 0.7) 0.7 (0.5, 0.9) 0.6 (0.4, 0.8)

 1c Insulin rate 9.5 (5.5, 13.7) −23.3 (−32.6, −14.9) 1.2 (−11.4, 18.3)

Insulin rate lag −5.4 (−8.7, −2.2) −1.1 (−10.3, 8.1) −4.4 (−15.5, 6.0)

Blood glucose change, Zij

 2a Insulin rate −33.1 (−37.2, −29.3) −22.8 (−30.8, −15.7) −31.5 (−45.3, −17.0)

 2b Insulin rate −17.9 (−22.3, −13.6) −23.2 (−30.6, −16.2) −20.5 (−35.5, −6.6)

Glucose lag −0.4 (−0.5, −0.3) −0.3 (−0.5, −0.1) −0.4 (−0.6, −0.2)

 2c Insulin rate −43.2 (−47.2, −39.1) −20.4 (−35.6, −7.5) −32.7 (−53.8, −14.9)

Insulin rate lag 15.8 (12.1, 19.3) −4.1 (−18.9, 11.2) 2.8 (−11.8, 20.4)

NS, naïve strategy; LVS, lagged glucose value strategy; LCS, lagged glucose change strategy.

a
Section 2.2 of the text provides a list of adjustment variables included in all regression models.
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Table III

Numerical relationships among parameters estimatesa shown in Figure 1 using the naïve and lagged glucose
value strategies based on the blood-glucose insulin-dose-rate analysis.

Model Relationship NS LVS

1a and 1b 6.02 = −17.88 + 0.61 · 39.06 −24.02 = −23.22 + 0.72 · −1.21

1a and 1c 6.02 = 9.48 + −5.40 · 0.64 −24.02 = −23.34 + −1.05 · 0.64

2a and 2b −33.05 = −17.88 + −0.39 · 39.06 −22.81 = −23.22 + −0.282 · −1.21

2a and 2c −33.05 = −43.17 + 15.83 · 0.64 −22.81 = −20.44 + −4.05 · 0.64

1a and 2a 6.02 = −33.05 + 39.06 −24.02 = −22.81 + −1.21

1b and 2b −17.88 = −17.88 −23.22 = −23.22

1c and 2c 9.48 = −43.17 + 52.65 −23.34 = −20.44 + −2.90

NS, naïve strategy; LVS, lagged glucose value strategy.

a
Estimates are presented to two decimal places, although calculations are exact.
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