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Abstract
Recent studies of the nuclear envelope (NE) have emphasized its role in linking the nuclear and
cytoplasmic compartments of mammalian cells. The inner face of the NE is bound to chromatin
and this interaction is involved in regulating DNA replication and transcription. The outer face of
the NE binds to different components of the cytoskeleton, and these interactions are involved in
nuclear positioning. Many disease causing mutations in genes encoding NE proteins cause
significant changes in nuclear architecture and cytoskeletal interactions with the NE. These
mutations are also providing important new insights into nuclear-cytoplasmic interactions.

Introduction
During interphase of mammalian cells, the nuclear envelope (NE) establishes and maintains
the overall shape, size and mechanical integrity of the nucleus. At the nuclear periphery,
chromatin is anchored to the inner aspect of the NE, which provides a mechanism for the
spatial control of DNA replication and transcription [1]. Recent studies have shown that the
cytoskeletal systems are attached to the cytoplasmic face of the NE which appears to
mediate interactions between the nucleus and the cytoplasm [2]. These interactions facilitate
cellular processes including nuclear positioning and centrosome orientation during cell
migration [3••].

Other insights into the functions of the NE have been derived from studies of disease
mutations in genes encoding NE proteins, particularly the nuclear lamins. Some mutations
frequently cause significant changes in nuclear shape, chromatin organization and gene
expression [4], and they also modulate nuclear positioning and centrosome orientation [5•].
These changes reflect nuclear-cytoplasmic interactions.

This review focuses on the functions of the NE in mediating the molecular crosstalk
between the nucleus and the cytoplasm.
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The Nuclear Envelope Links the Nuclear and Cytoplasmic Compartments of
Mammalian Cells

The NE is comprised of inner and outer nuclear membranes (INM and ONM), nuclear pore
complexes (NPCs) and the nuclear lamina. Approximately 80 INM and ONM proteins and ~
50 NPC proteins (nucleoporins) have been identified in mammalian cells [6•,7]. The major
proteins of the lamina are the type V intermediate filament proteins, the A-type lamins (LA
and LC) and the B-type lamins (LB1 and LB2). LA and LC are derived from a single gene
(LMNA) by alternative splicing and are expressed only in differentiated cells. LB1 and LB2
are encoded by LMNB1 and LMNB2, respectively, and at least one of them is expressed in
all cells throughout development [8]. Lamins within the lamina form filamentous structures
[9,10] composed of separate but interacting A- and B-type lamin meshworks [11•]. The
lamins also bind to other NE proteins, including some NPC and INM proteins (Fig. 1).
These protein-protein interactions are critically important in regulating the proper assembly
of the NE. For example, LB1 silencing induces changes in the LA/C meshworks creating
LA/C rich microdomains devoid of LB1, LB2 and NPCs [11]. LA/C is also required for the
proper localization of INM proteins such as emerin [12–14].

All of the lamins, as well as some nucleoporins and INM proteins, interact with chromatin
and play a role in the regulation of transcription and DNA replication [1]. For example,
some transcriptionally active genes are associated with nucleoporins at the nucleoplasmic
face of NPCs [15], while silenced genes are tethered to the lamina [16–18]. However, these
gene silencing effects associated with the lamina may be gene specific [19,20]. In addition,
both the A- and B-type lamins and the lamina-associated polypeptide 2β (LAP2β) are
involved in the initiation and elongation phases of DNA replication [21–23].

There is also evidence that some ONM proteins interact with specific proteins of the
cytoskeletal systems (Fig. 1). These include the nesprins which span the ONM and
components of the LINC (Linker of Nucleoskeleton and Cytoskeleton) complex. The
nesprin C-terminus located in the luminal region separating the ONM and INM contains a
KASH (Klarsicht/ANC-1/Syne Homology) domain which binds to the SUN (Sad1p and
UNC-84) domain proteins which span the INM [2]. At the cytoplasmic face of the ONM, the
nesprins appear to bind directly to actin, associate with microtubules through interactions
with dynein and kinesin, and interact with intermediate filaments via plectin (Fig. 1–2)
[2,24]. At the nucleoplasmic face of the INM, there is evidence that SUN1 binds directly to
LA [2]. It has also been shown that the LINC complex in association with LA is required for
controlling nuclear positioning and centrosome reorientation during cell migration [3,5,25].
LB1 is also involved in anchoring the nucleus to the cytoskeleton through nesprin-1 and -2
[26].

The Nuclear Envelopathies/Laminopathies Shed New Light on Nuclear-
Cytoplasmic Interactions: Nuclear Shape, Chromatin Organization and
Cytoskeleton-NE Interactions

Nuclear envelopathies/laminopathies are a large group of human diseases caused by
mutations in genes encoding NE proteins such as the nucleoporins, INM and ONM proteins
and the lamins (Table 1). Frequently cells from patients with these diseases exhibit abnormal
nuclear shapes, alterations in chromatin organization and changes in the cytoskeletal
systems [4,8]. For example, mutations in the gene encoding the INM protein emerin cause
X-linked Emery-Dreifuss muscular dystrophy (XL-EDMD). Nuclei in XL-EDMD patients’
muscle cells are misshapen due to the formation of nuclear blebs or lobulations [41]. In
contrast, nuclei in mature neutrophils are normally hyperlobulated [56]. Interestingly,
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mutations in another INM protein lamin B receptor (LBR) cause Pelger-Huët disease which
inhibits hyperlobulation of nuclei and the proper maturation of neutrophils [44,57]. In the
case of ONM proteins, there is a mutation resulting in a deletion of the KASH domain in
nesprin-1, which causes arthrogryposis multiplex a disease resulting in abnormal joint
contractures [45]. A model of cardiomyopathy has been described in mice expressing a
nesprin-1 mutant missing the KASH domain, and the cardiocytes of these mice have
abnormally elongated nuclei [46, 47•]. Furthermore, the knockout and silencing of nesprin-2
giant, another ONM protein which interacts with SUN domain proteins, induce nuclear
blebbing in both mouse and human cells [58]. Since nesprins interact with cytoskeletal
filaments such as actin and intermediate filaments, these findings suggest that the
determination of nuclear shape is complex and to a great extent dependent on the
interactions between the NE and the cytoskeletal systems.

Most information regarding the relationships between the NE, chromatin and the
cytoskeletal systems comes from studies of the laminopathies, which represent the largest
group of nuclear envelopathies. These are caused by hundreds of different mutations, mainly
in human LMNA [59]. These mutations cause a remarkable number of different diseases
including autosomal EDMD and Limb Girdle muscular dystrophy, dilated cardiomyopathy,
lipodystrophy, Charcot-Marie Tooth disease, and premature aging diseases such as
Hutchinson-Gilford Progeria Syndrome (HGPS, progeria) [59]. The structure of the lamina
is altered by some mutations causing autosomal dominant EDMD (AD-EDMD). Nuclei of
these patients’ cells have an enlarged lamin meshwork within the lamina known as
honeycomb structures [27]. Other AD-EDMD mutations induce the formation of LA/C foci
in the nucleoplasm [27] and block nuclear positioning and centrosome orientation [5•],
suggesting that the interactions between the NE and the cytoskeletal systems are disrupted.
The effects of these mutations on nuclear shape and chromatin organization vary depending
on the locations of point mutations or deletions. For example, the HGPS mutation G608G
(progerin/LAΔ50) located in the non-α-helical C-terminal domain of LA, causes an
abnormal thickening of the lamina, nuclear blebbing, and abnormal distributions of B-type
lamins and NPCs in skin fibroblasts (Fig. 3) [34••]. In addition, there is a dramatic loss of
peripheral heterochromatin, accompanied by a decrease in histone methylation and
acetylation of lysine residues in histones H3 and H4 and in gene expression [60, 61•, 62].
The atypical progeria mutation, E145K, located in the α-helical central rod domain of LA/C
causes abnormal polymerization of LA/C, nuclear lobulations resulting in flower-shape
nuclei, alterations in pericentric heterochromatin, abnormally clustered centromeres, and
mislocalized telomeres [36]. Another atypical progeria mutation in LMNA, S143F, causes
numerous blebs and lobulations of the NE as well as an enlarged lamin meshwork within the
lamina [35]. Interestingly this phenotype appears to be rescued by the expression of
nesprin-2 giant [35]. LA/C knockout mouse embrionic fibrobrasts (MEFs) and myocytes
derived from LA/C knockout mice also display blebbed nuclei with displaced and
fragmented heterochromatin [12,63].

Nuclear blebs can also be induced by silencing LB1 expression or by expression of a
deletion mutation of LB1 in mice [11,64,65]. These nuclear blebs contain gene-rich
euchromatin and the activated form of RNA polymerase II (pol II) but are transcriptionally
defective, suggesting that pol II is stalled [11]. MEFs expressing a deletion mutant of LB1
contain nuclear blebs and exhibit changes in gene expression [66]. Further support for a role
of NE proteins in transcription comes from the finding that they bind to transcriptional
factors. For example, LA binds to MOK2, SREBP1 and c-Fos, and emerin binds to GCL and
Lmo7 [67–71].
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Taken together, this wide range of investigations provides a framework to describe in more
detail the structural and functional linkages between the NE and chromatin on the one hand
and with the NE and the cytoskeletal systems on the other (Fig. 1).

Mechanotransduction between the Nucleus and the Cytoplasm
Emerging evidence suggests the interesting possibility that nuclear shape may be regulated
in part by the mechanical properties of the NE and the cytoskeletal systems attached to it. In
support of this it has been found that mechanical stress exerted at the outer cell surface
causes changes in nuclear shape possibly through the LINC complex [72•, 73••]. The
intrinsic mechanical properties of the NE or the entire nucleus may also affect nuclear shape.
For example, LA/C knockout MEFs have blebbed nuclei, which are “softer” relative to those
of WT MEFs when assayed by mechanical strain [12, 74•]. In the case of HGPS, skin
fibroblasts from the patients have “stiffer” nuclei with a thicker lamina compared to normal
skin fibroblasts [34,75,76]. On the other hand, emerin knockout MEFs have normal nuclear
mechanics but there are significant changes in nuclear shape [77], suggesting that changes in
nuclear mechanics are not always coupled to changes in nuclear shape.

It has been proposed that the interactions between the plasma membrane and the cytoskeletal
systems regulate gene expression in response to mechanical stress initiated at cell surfaces
[78]. Such a mechanism for mechanotransduction is particularly interesting because
mechanically-based signal propagation is faster than chemically based-diffusion [78].
Mechanotransduction appears to involve integrins in the plasma membrane interacting with
cytoskeletal filaments such as actin and/or intermediate filaments. In turn these cytoskeletal
components can transduce mechanical forces to the nucleus [79–81]. In support of this,
endothelial cells subjected to shear stress exhibit rapid changes in gene expression and the
organization of cytoskeletal intermediate filaments [82•,83]. There is also evidence that
some NE proteins are involved in gene regulation in response to mechanical stress. For
example, LA/C or emerin knockout MEFs subjected to mechanical strain are defective in
expressing mechano-sensitive genes [74,77]. On the other hand, recent studies have shown
that when the LINC complex is disrupted by the expression of a dominant negative KASH
domain, the regulation of mechano-sensitive genes is normal in response to mechanical
stress [73]. Although this result is not conclusive, it also suggests that interactions between
the NE and the cytoskeletal systems may not be required for all aspects of
mechanotransduction. One possibility to explain such findings is that other signaling
pathways such as the propagation of chemical signals may act synergistically with
mechanotransduction to facilitate interactions between the nucleus and the cytoplasm. Such
synergistic interactions could provide compensatory mechanisms to explain the response of
mechano-sensitive genes in the absence of the known complexes that link the nuclear lamina
with the cytoskeleton. It should be noted, however, that this area of research is in its early
phases and there are likely to be numerous linkages between the lamina, the NE and the
cytoskeleton that have yet to be discovered.

Outlook
Knowledge is accumulating to show that during interphase the NE mediating the
interactions between the nucleus and cytoplasm are involved in regulating nuclear shape,
chromatin organization, gene expression and nuclear positioning.

Over the next few years we should see an explosion of interests in the structural synergy and
molecular cross talk regulating the interactions between the nuclear and cytoplasmic
compartments of mammalian cells. The NE is a critically important hub facilitating these
interactions as it demarcates and provides a molecular interface between these two major
cellular compartments. In addition to nuclear transport mechanisms for exchanging large
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molecules between the nucleus and the cytoplasm, the results to date provide compelling
evidence for the presence of multiple chains of protein-protein interactions which pervade
the entire cell. The following scenario can be pieced together from data derived from
disparate sources. The outer surface of the plasma membrane/ECM connects with different
but interacting cytoskeletal networks comprised of microtubules, intermediate filaments,
microfilaments and their associated proteins. These cytoskeletal components are connected
to the ONM via the LINC complex which forms transmembrane linkages to the lamina. In
turn the lamina forms a complex interface between the INM and peripheral elements of
interphase chromosomes. The latter are typically tethered to the lamina and the regulation of
this tethering is involved in the regulation of gene expression. It is becoming more apparent
that these interacting networks provide a structural framework for further defining
mechanisms involved in the bidirectional propagation of signals and molecules between the
nucleus and the cell surface. Sufficient components of the network are now in place to begin
to speculate about what these structural pathways might be doing and how they might
function. Most likely these pathways provide the cell with a complex of superhighways
composed of interconnecting molecules capable of transmitting both mechanical and
chemical signals from the external environment of cells to the nucleus, ultimately regulating
gene expression. Of course the devil is in the detailed identification and analysis of the many
molecules which undoubtedly are required for the functions of these proposed
superhighways. Such knowledge is required to define functions and determining. In other
words, it will be many years before we reach the same level of sophisticated structure/
function relationships now in hand for some components of the NE, such as the NPCs as
described.
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Figure 1.
An overview of nuclear envelope (NE) connections with chromatin,and the cytoskeletal
systems. The NE consists of the inner and outer nuclear membrane (INM, ONM), nuclear
pore complexes (NPCs) and the lamina. The ONM is continuous with the endoplasmic
reticulum (ER). NPCs cross the INM, ONM, the lamina and are associated with chromatin.
A-type lamins (LA, LC) and B-type lamins (LB1, LB2) in the lamina bind to INM proteins
such as emerin, lamina-associated polypeptide 2β (LAP2β), lamin B receptor (LBR) and
SUN domain proteins (SUN1, SUN2) in the INM. All of the lamins and some of the INM
proteins interact with chromatin. SUN1 and SUN2 bind to the KASH domain of nesprins in
the luminal region between the INM and ONM to form the LINC complex. Nesprins in the
ONM bind to cytoskeletal filaments such as actin, microtubules and intermediate filaments
(IFs) directly or indirectly through plectin or kinesin. Actin and IFs are associated with the
plasma membrane through integrin complexes.
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Figure 2.
Keratin-containing tonofibrils are distributed throughout the cytoplasm and surround, and
are perhaps attached to the NE of a PtK2 rat kangaroo epithelial cell. This cell, expressing
GFP-Keratin 18 (green), was fixed and immunostained with lamin A/C (red) antibody.
Figure represents a projection of z-stack images obtained by confocal microscopy.
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Figure 3.
The localization of lamins A/C and B1 in skin fibroblasts taken from a normal individual
(left) and a patient with the HGPS mutation (G608G) in LMNA (right). These cells were
fixed and immunostained with antibodies against lamin A/C (red) and lamin B1 (green).
Note the separation of the A and B-type lamins in the blebbed regions.
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Table 1

Mutations in genes encoding NE proteins known to cause diseases collectively known as the nuclear
envelopathies/laminopathies.

Protein with mutations Disease Nuclear Shape Reference

Lamins

Lamin A/C Autosomal dominant and recessive Emery-Dreifuss muscular
dystrophy (AD-EDMD, AR- EDMD)

Honeycomb lamina [27]

Lamin A/C Limb-girdle muscular dystrophy type 1B (LGMD1B) Blebbed [28,29]

Lamin A/C Dilated cardiomyopathy with conduction defect disease
(DCM-CD)

Blebbed [27]

Lamin A/C Familial partial lipodystrophy of the Dunnigan type (FPLD) Honeycomb lamina, Blebbed [27,30]

Lamin A/C Lipoatrophy with diabetes, hepatic steatosis, hypertrophic
cardiomyopathy, and leukomelanodermic papules (LDHCP)

Blebbed [31]

Lamin A/C Mandibuloacral dysplasia with type A lipodystrophy
(MADA)

Honeycomb lamina, Blebbed [32]

Lamin A/C Charcot-Marie-Tooth disease type 2B1 (CMT2B1) N/A [33]

Lamin A/C Hutchinson-Gilford progeria syndrome (HGPS) and atypical
progeria syndrome

Blebbed, lobulated [34••, 35,36]

Lamin A/C Atypical Werner syndrome blebbed [37]

Lamin B1 (tandem gene
duplication)

Autosomal dominant leukodystrophy (AD-LD) Normal, distorted NE [38]

Lamin B2 Barraquer-Simons syndrome (BSS) N/A [39]

LNM proteins

Emerin X-linked Emery-Dreifuss muscular dystrophy (XL-EDMD) Honeycomb lamina, Blebbed,
distorted NE

[40,41]

MAN1 Buschke-Ollendorff syndrome (BOS), melorheostosis N/A [42]

Lamin B receptor (LBR) Greenberg dysplasia Hypolobulated [43]

Lamin B receptor (LBR) Pelger-Huet anomaly (PHA) Ovoid (lobulated for normal
nuclei)

[44]

ONM proteins and the associated protein

Nesprin-1 Arthrogryposis multiplex congenita (AMC) Normal in human, elongated in
mice

[45–47]

Nesprin-1 Dilated cardiomyopathy (DCM) Normal [47]

TorsinA Torsion dystonia Normal, distorted NE [48]

Nucleoporins and the associated protein.

Nup155 Atrial fibrillation and early sudden cardiac death N/A [49]

Nup62 Autosomal recessive infantile bilateral striatal necrosis
(IBSN)

N/A [50]

Ran binding protein 2
(RanBP2)

Acute necrotizing encephalopathy (ANE) N/A [51]

ALADIN Achalasia-Addisonianism-Alacrimia syndrome (AAA) Normal [52]

Others

Zinc metalloprotease
STE24 homolog
(Zmpste24)

HGPS, mandibuloacral dysplasia (MAD) and restrictive
dermopathy (RD)

Blebbed [53]

Zinc metalloprotease
STE24 homolog
(Zmpste24)

Autosomal recessive restrictive dermopathy (AR-RD) Blebbed [54]
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Protein with mutations Disease Nuclear Shape Reference

Lamina-associated
polypeptide 2α (LAP2α)

Dilated cardiomyopathy (DCM) Normal [55]
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