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Summary

Scaffold proteins play pivotal roles in the regulation of signal transduction pathways by
connecting upstream receptors to downstream effector molecules. During last decade, many
scaffold proteins that contain caspase-recruitment domain (CARD) have been identified.
Investigating the roles of CARD proteins has revealed that many play crucial roles in signaling
cascades that lead to activation of nuclear factor-xB (NF-xB). In this review, we discuss the
contributions of CARD proteins to NF-xB activation in various signaling cascades. In particular,
we share some of our personal experiences during the initial investigation of the functions of the
CARMA family of CARD proteins and then summarize the roles of these proteins in signaling
pathways induced by antigen receptors, G protein-coupled receptors, receptor tyrosine kinase, and
C-type lectin receptors in the context of recent progress in the field.
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Introduction: overview of CARD proteins

Intracellular signal transduction pathways contain many scaffold/adapter and effector
proteins, which ensure the transmission of extracellular stimulation signals to specific multi-
protein complexes or subcellular compartments in a timely manner. Scaffold proteins are
defined as molecules that do not have any enzymatic activity but have ability to bind to at
least two other signaling proteins and assemble various multi-protein complexes that are
necessary for integrating and or transmitting signals from cell surface receptors (1). In most
cases, scaffold proteins help to localize signaling molecules to specific subcellular
compartments and serve as platforms for co-localizing enzymes and their substrates,
preventing the non-specific access of enzymes to unwanted substrates, and protecting from
undesirable cellular effects.

CARD(caspase-recruitment domain)-containing scaffold/adapter proteins, also known as
CARD proteins, play very important roles in the regulation of signaling cascades, the best
characterized being the activation of apoptosis. The name ‘CARD’ is based on the alignment
of a structural domain originally found in many proteins such as caspase-1, -2, -8, -9,
clAP-1, clAP-2, EHV-E10, Ced-3, and Ced-4, which were found to be involved in apoptotic
signaling (2). The CARD domain consists of six a-helices in the predicted secondary

Address for correspondence: Xin Lin, Department of Molecular and Cellular Oncology, University of Texas, M.D. Anderson Cancer
Center, 1515 Holcombe Blvd, Unit 108, Houston, TX 77030, Tel.: +1 713 792 8969, Fax: +1 713 794 3270, xllin@mdanderson.org.

The authors declare no conflicts of interest.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Jiang and Lin

Page 2

structure, which is evolutionally conserved among different species and is involved in
protein-protein interaction through homo- or hetero-dimerization, thereby transmitting or
amplifying intracellular signals to the downstream effector molecules.

Many CARD proteins were initially identified through bioinformatics approaches (3-13). As
more and more CARD proteins were identified, however, it was found that CARD proteins
are not only involved in apoptotic signaling but also function as scaffold molecules in other
signaling pathways, including pathways that activate nuclear factor-xB (NF-xB) and induce
inflammatory responses (3—13). Based on the year identified, tissue distribution, binding
partners, and functions, a list of CARD proteins that regulate NF-xB signaling is
summarized in Table 1, and the schematic structure of these CARD proteins is presented in
Fig. 1.

CARMAL, CARMA2, and CARMAZ3 were initially identified based on their CARD domain
by bioinformatics approaches and named CARD11 (known as CARMA1), CARD14 (known
as CARMA2 or Bimp2), and CARD10 (known as CARMAS or Bimpl) (12-14). They all
contain an N-terminal CARD domain, following with a coiled-coil (CC) domain, a linker, a
PDZ domain, a SH3 domain, and a C-terminal guanylate kinase-like (GUK) domain (Fig. 1).
The structural module of PDZ-SH3-GUK is also known as membrane-associated GUK
(MAGUK) domain. CARMAL, CARMAZ2, and CARMAZ3 share a high degree of sequence
and structural homology but are expressed in different tissues: CARMAL is primarily
expressed in the hematopoietic system, CARMAZ is expressed in placenta and mucosal
tissues, and CARMAS is expressed in a broad range of tissues but not in hematopoietic cells
(15). The distinct tissue distribution indicates that CARMA family members mediate
different signaling pathways but use a similar mechanism to activate downstream effector
molecules. Consistent with this hypothesis, CARMA proteins, through their CARD domain,
form a complex with two downstream signaling molecules, B-cell lymphoma 10 (Bcl10)(16,
17), another CARD-containing scaffold protein, and caspase-like protein MALT1 (mucosa-
associated lymphoid tissue lymphoma translocation protein 1)(18-20), and the formation of
CARMA-Bcl10-MALT1 complex (commonly known as CBM complex) recruits the
downstream IKK complex, leading to activation of NF-xB (21-24).

CARD?9, another CARD protein, is structurally similar to CARMA family members (9). It
has a N-terminal CARD and a CC domain like CARMA family proteins but lacks the C-
terminal MAGUK domain (Fig. 1). Its CARD domain is involved in the association with
Bcl10 (9), but the role of CC domain remains to be determined. Unlike CARMA family
proteins, CARD?9 is mainly expressed in myeloid cells such as dendritic cells (DCs) and
macrophages. Recent studies suggest that, in response to fungal stimulation, CARD?9 also
inducibly forms a complex with Bcl10 and MALT1 in C-type lectin receptor (CLR)-induced
signaling pathways (25, 26) and activates the IKK complex, leading to activation of NF-xB
(25, 26). More recent studies further suggest that CARD9 also functions downstream of
RIG-I and mediates viral infection-induced NF-xB activation (27).

Some CARD proteins play critical roles as pattern recognition receptors (PRRs). RIG-1 and
MDA-5 are novel PRRs. They are structurally related RNA helicases, critical for host innate
antiviral responses. RIG-I and MDA-5 contain two N-terminal CARD domains and a C-
terminal DEX(D/H)-box helicase domain, which recognizes single-stranded RNA (ssSRNA),
double-stranded RNA (dsRNA), or replication intermediates of RNA viruses, leading to
activation of NF-xB and IRF family of transcription factors (28-31). MAVS (also known as
IPS-1, VISA, or CARDIF), another CARD-containing protein, is recruited by RIG-1/MDAS5
through their CARD-CARD interaction, leading to activation of NF-xB and IRF3 (32-35).
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NOD1 and NOD2 also contain CARD domains in their N-terminus, and they belong to the
nucleotide-binding domain and leucine-rich repeat containing gene (NLR) family (7, 11, 36)
(Fig. 1). They also function as PRR for bacterial peptides. Their C-terminal leucine-rich
repeat (LRR) is required for specific recognition of muramyl peptides from both Gram-
positive and Gram-negative bacteria, whereas CARD domain(s) mediate association with
the downstream signaling intermediate RIP2 leading to activation of NF-xB. RIP2 contains
a N-terminal Ser/Thr kinase catalytic domain and a C-terminal CARD domain (37, 38). The
CARD domain mediates the association of RIP2 with other CARD-containing proteins,
including NODs and clAPs (7, 39, 40).

clAP1 and clAP2 contains three characteristic baculovirus IAP repeat (BIR) domains at N-
terminus, followed by an ubiquitin-binding domain, a CARD domain, and a C-terminal
RING domain (41, 42) (Fig. 1). The BIR domains mediate their interaction with tumor
necrosis factor receptor (TNFR)-associated factor 2 (TRAF2) (42, 43). The CARD domain
may mediate its association with TNFR2 (44, 45). The RNG domain designates them as E3
ubiquitin ligases, important for promoting ubiquitination of RIP1 and RIP2 (40, 46). clAP1
and clAP2 are important players in TNFR and NLRs-induced NF-xB activity(43, 44).

The functional roles for RIG-1/MAD5, NOD1/NOD2, and clAP1/clAP2 have been
extensively described in various review articles (47-51). Therefore, we do not summarize
the roles of these CARD proteins in this review. Instead, we discuss the roles of CARMA
family members and their related proteins in signaling pathways that lead to activation of
NF-xB.

Personal and historical narrative

Our group has a long-standing interest in revealing the functional role of CARD proteins.
This interest stems from our interest in the characterization of T-cell receptor (TCR)-
induced signaling. Stimulation of T cells by antigen-presenting cells (APCs) induces the
formation of a large multi-component complex at the contact area between the T cell and the
APC, termed the supramolecular activation complex (SMAC) or immunological synapse
(1S) (52). The SMACIIS of T cells is highly enriched in cholesterol and glycosphingolipids,
also termed lipid rafts or microdomains (53). Some signaling molecules are constitutively
associated with lipid rafts, while others are recruited into lipid rafts following the
stimulation of the TCR/CD3 complex and CD28 costimulatory receptor (also known as
CD3/CD28 costimulation) (54). CD3/CD28 costimulation induces a potent NF-xB
activation, which contributes to T-cell activation, survival, and proliferation.

Through our efforts to delineate the signaling pathway mediating TCR-induced NF-xB
activation, we found that CD3/CD28 costimulation induced a potent NF-xB activation
through the inhibitor of NF-xB (IxB) kinase (IKK) complex, and this activation is sensitive
to protein kinase C (PKC) inhibitors (55). Since earlier studies indicate that PKC6, a novel
PKC isoform (56, reviewed in Diaz-Meco & Moscat, this volume), is selectively recruited
into the SMAC/IS following the stimulation by APCs (57), we had hypothesized that PKC6O
might be the key enzyme regulating TCR-induced NF-xB activation. By expressing
dominant-negative mutants of PKC8, we and others showed that PKC® is involved in TCR-
induced NF-xB activation (55, 58). Indeed, gene knockout studies provided the genetic
evidence that PKCB8 is required for TCR-induced NF-xB activation (59).

One of important questions at the time was how PKCB regulates the IKK complex in the
TCR signaling pathway. To address this question, we decided to take a somatic genetics
approach to identify signaling molecules that connect PKC6 to IKK. We generated a Jurkat
T-cell line (JGFP1), in which green-fluorescent protein (GFP) is under the control of a NF-
xB-dependent promoter, thereby expressing GFP in response to various NF-xB stimuli. The
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JGFP1 cells were then subjected to multiple rounds of treatment with acridine mutagen
ICR-191 that generates random frame-shift mutations in genome. The resulting cells were
subjected to the selection for GFP-negative cells following the stimulation of phorbol
myristate acetate (PMA), which can effectively activate PKCO. We hypothesized that this
selecting procedure would be able to obtain the cells that are defective in the signaling
components that regulate NF-xB activation downstream of PKCO. This pool of GFP-
negative cells was then subjected to the selection for GFP-positive cells following TNF
stimulation. The resulting cells were subjected to additional rounds of the selection for GFP-
negative but GFP-positive following PMA or TNF stimulation, respectively. Since previous
studies had suggested that both TCR and TNFR signaling pathways could lead to activation
of IKK, we predicted that the above ping-pong-selecting procedure would be able to isolate
cells containing mutations in signaling components downstream of PKC6 but upstream of
IKK in the TCR pathway. Using this selection procedure, we cloned a mutant cell line,
JPM50.6, which is defective in PMA/CD28 costimulation- but not TNF-induced NF-xB
activation (22), suggesting that JPM50.6 cells contain a mutation in the signaling
component(s) downstream of PKC6 but upstream of IKK in TCR signaling pathway.

To identify the signaling molecule(s) that are defective in JPM50.6 cells, we initially tried to
use cDNA expression libraries to perform a genetic complementation experiment with the
hypothesis that the reconstitution of JPM50.6 cells with the wildtype version of the mutated
gene(s) would rescue the defect in PKCB-mediated IKK activation. However, we
encountered a series of difficulties and realized that most of cDNA expression libraries at
the time did not encode full-length coding sequences for all genes, especially coding
sequences over 3 kb. Therefore, it would be very difficult to rescue the defect in JPM50.6
cells through cDNA complementation, if the mutated gene encodes a large protein.

Our effort to identify the mutation in JPM50.6 cells was significantly accelerated with the
finding by Ruland et a/. (60) that the CARD protein Bcl10 is required for antigen receptor-
induced NF-xB activation. Bcl10 was originally identified from MALT B-cell lymphomas
with t(1;14)(p22;932) (16, 17) and from data mining using bioinformatics approaches (4-6,
8). Since lymphocytes from Bcl10 knockout mice were defective in PMA/ionomycin-
induced NF-xB but not affect TNF signaling (60), we hypothesized that JPM50.6 cells
might have a mutation in either Bcl10 or its related signaling components. After we found
out that JPM50.6 cells did not have a mutation in Bcl10, we investigated whether Bcl10-
associated proteins were mutated in JPM50.6 cells. Because Bcl10 contains a CARD
domain that can associate with other CARD proteins in signaling pathways, we obtained
expression vectors encoding several CARD proteins and expressed them in JPM50.6 cells.
Using this approach, we found that JPM50.6 cells are defective in the expression of the
CARMAL protein, and expression of CARMAL could effectively rescue the defect of CD3/
CD28-induced NF-xB activation (22). Together, our studies provided the genetic evidence
that CARMAL is required for TCR-mediated NF-xB activation.

Consistent with our findings, two laboratories independently found that CARMAL plays a
critical role in TCR-induced NF-xB activation by expressing dominant-negative mutants of
CARMAL (21) or using CARMA1 RNA interference approach (61). Subsequently, the
mouse gene knockout studies (62—64) and mouse ENU mutagenesis studies (65) further
demonstrated that CARMAL is required for both B-cell receptor (BCR)- and TCR-induced
NF-xB activation. Consistent with the defect of antigen receptor-induced NF-xB activation,
antigen-induced proliferation of T and B cells from carmaZ-null mice is defective (62—64).
In addition, CARMAL deficiency also selectively impairs the development of a subset of B
cells, which results in reduced marginal-zone B cells and absence of the peritoneal B1
subpopulation (63, 66). Altogether, these studies demonstrate that CARMAL is an essential
component mediating antigen receptor-induced NF-xB activation (Fig. 2).
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CARD proteins in antigen receptor signaling

Antigen receptors, including TCR and BCR, play essential roles for regulation of
lymphocyte activation, proliferation, and survival, leading to proper immune responses.
CARD proteins are best characterized for their involvement in antigen receptor signaling
(67-70). The first genetic evidence that CARD proteins are involved in antigen receptor
signaling was provided by Ruland et a/ (60), in which they demonstrate that Bcl10 plays an
essential role for antigen receptor-induced NF-xB activation. Bcl10 was originally identified
by functional cloning from MALT lymphoma cells (16, 17) and by bioinformatics
approaches as a CARD-containing protein (4, 5, 7, 71). Studies on Bcl10-deficient mice
revealed that Bcl10 is required for lymphocyte activation and proliferation (60) as well as
the development of certain subset of B cells (72).

Bcl10 contains a N-terminal CARD domain and a C-terminal Ser/Thr-rich domain (Fig. 1).
The CARD domain of Bcl10 is responsible for its association with CARMAL, a CARD
protein functioned upstream of Bcl10 in antigen receptor signaling cascades. CARMAL
contains an N-terminal CARD domain, followed by a C-C domain and a linker region, and
its C-terminal half encodes a structural module of PDZ-SH3-GUK domain, which is also
known as the MAGUK domain (Fig. 1). As described above, studies from our laboratory
and others demonstrated that CARMAL is required for antigen receptor-induced NF-xB
activation, leading to lymphocyte activation and proliferation (Fig. 2). During the last
several years, the mechanism by which antigen receptor signaling leads to activation of
CARMAL and Bcl10 has been intensively studied (15).

CARMAL recruits Bcl10 and MALT1 following the stimulation of antigen receptor. Genetic
inactivation of the Malt gene in mice impairs TCR-induced NF-xB activation (73, 74).
However, there are some discrepancies regarding the role of MALT1 in BCR-induced NF-
kB in the existing two mouse models. One study suggested that total NF-xB activity is
significantly reduced in MALT1-deficient B cells (73). Although another gene-targeting
study showed that NF-xB activation is minimally affected by MALT1 deficiency upon BCR
stimulation (74). More recent studies using the latter strain of MALT1-deficient mice
revealed that the activation of the c-Rel isoform of NF-xB was more severely impaired than
was activation of the other isoforms of NF-xB (75). Thus, these studies indicate that
MALT1 is a key component of the antigen receptor signaling pathway. However, it remains
to be determined why MALT1 deficiency has a more significant impact for the activation of
c-Rel than other isoforms of NF-xB in B cells.

Several laboratories including our own showed that the signal-induced phosphorylation of
CARMAL by PKCs (76-78) and other kinases (79, 80) is required for activation of
CARMAL. The linker region in CARMAL contains multiple phosphorylation sites (Fig. 3),
which control a conformational switch from an inactive to an active state (76, 77) (Fig. 3).
Therefore, phosphorylation on the linker region of CARMAL may expose the binding site
for recruiting Bcl10 and MALT1 (Fig. 3), leading to activation of NF-xB (77, 81-83). The
CC domain of CARMAL likely mediates oligomerization (84, 85), which may amplify
signaling from CARMAU1 to downstream components. Consistent with this model, mutations
that result in the constitutive oligomerization of CARMAL induce NF-xB activation and
contribute to lymphomagenesis (85).

The CARD domain of Bcl10 is also involved in its oligomerized form following the
stimulation of antigen receptors (86, 87), and the oligomerization of Bcl10 was found to be
polyubiquitinated through a Lys63 (K63) linkage. The K63-linked polyubiquitin chain on
Bcl10 serves as the docking site for binding NEMO, a subunit in the IKK complex, thereby
recruiting the IKK complex to the CARMAL1-Bcl10-MALT1 (CBM) complex (88).
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Interestingly, another study argued that MALT1 was polyubiquitinated through K63 linkage
and served as a docking site for recruiting IKK (89). The relative contribution of MALT1
and Bcl10 polyubiquitination to IKK recruitment is unclear. One mechanism that could
explain this seemingly redundant function of MALT1 and Bcl10 is that K63-linked
polyubiquitination of both proteins may increase the specificity and affinity with which the
CBM complex recruits IKK. In addition to the recruitment of IKK, Bcl10 also binds to
TRAF6 and recruits TAK1 to the CBM complex (90). Therefore, the formation of this
multiprotein complex brings TAK1 into proximity with IKK and then phosphorylates and
activates IKK, leading to activation of NF-xB (90, 91). Interestingly, although CARMA1
deficiency does not affect TCR-induced phosphorylation of IKK, IKK kinase activity is
completely defective (91), suggesting that CARMAL may control other TCR-induced
modifications on the IKK complex, which are required for activation of IKK. An earlier
study (92) suggested that Bcl10 may contribute to a K63-linked polyubiquitination of
NEMO. Consistent with this study, the signal-induced polyubiquitination of IKK is
defective in CARMAZ1-deficient T cells (91). However, it remains to be determined whether
the CBM complex recruits an additional E3 ubiquitin ligase to ubiquitinate the IKK
complex, since TCR-induced NF-xB activation is still intact in TRAF6-deficient T cells(93).

Activated Bcl10 also functions as a scaffold molecule to recruit c-Jun N-terminal kinase
(JNK) leading to activation of JNK (94). In this case, oligomerized Bcl10 specifically
associates with the C-terminal tail of JNK2 and its upstream kinases, MKK7 and TAK1, in
TCR-stimulated T cells, leading to the specific activation of INK2 (94). Interestingly, the
high molecular weight complex of oligomerized Bcl10 was also found to regulate TCR-
induced actin polymerization (87). However, it remains to be determined whether the Bcl10-
dependent actin polymerization has a significant impact on TCR-induced IKK and JNK
activation. Interestingly, Bcl10-dependent actin polymerization has a significant impact on
phagocytosis in monocytes, but CARMAL and MALT1 are not involved in this process (95).

It has been shown that PKCB8 is inducibly recruited into the IS (57, 96). Consistent with the
findings that PKC® associates with and phosphorylates CARMAL(76, 83), it has been found
that the CBM complex is also recruited into the IS (81, 83). Therefore, an important
question is how antigen receptor recruits CBM complex. CARMAL contains a MAGUK
domain, which is typically anchored to the cytoplasmic face of the membranes by various
membrane proteins (71). Therefore, the C-terminal MAGUK domain of CARMAL is likely
involved in membrane localization. Consistent with this hypothesis, we have found that a
point mutation in the MAGUK domain of CARMA1 (Leu808 replaced with Pro) impairs its
membrane localization and recruitment to the IS (83).. Currently, the protein that links
CARMAL to cytoplasmic membrane remains unknown. Although it remains to be
determined how CARMAL1 is linked to the cytoplasmic membrane, TCR-induced
recruitment of CARMAL into the IS is dependent on its inducible interaction with an adapter
protein ADAP (adhesion- and degranulation-promoting adapter protein)(97). Upon TCR
engagement, ADAP is inducibly associated with CARMAL and recruited into the IS, and
ADAP deficiency results in impaired CARMAL translocation to the IS and consequently
reduced NF-xB activation (97). However, ADAP is not a membrane protein, and it is
unlikely that ADAP anchors the MAGUK domain of CARMAL to the cytoplasmic
membrane. Therefore, another unknown protein is required for anchoring CARMAL to the
cytoplasmic membrane.

CARD proteins are also subjected to negative regulation in antigen receptor signaling.
Besides the CARD domain, Bcl10 has a C-terminal Ser/Thr-rich domain. Although the
function of the C-terminal Ser/Thr-rich domain of Bcl10 is not fully understood, several
studies suggest that signal-dependent phosphorylation of these Ser and Thr residues may
mediate degradation of Bcl10 (98-101), thereby terminating NF-xB activation (99). Indeed,

Immunol Rev. Author manuscript; available in PMC 2013 March 01.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Jiang and Lin

Page 7

Bcl10-deficient T cells reconstituted with Bcl10-S138A mutant have prolonged NF-xB
activation and enhanced IL-2 production (100). However, the mechanism by which signal-
induced phosphorylation of Bcl10 contributes to its stability remains to be defined.

Posttranslational modifications also contribute to the expression level of CARMAL. Recent
studies suggest that phosphorylation of certain residues in CARMAL may also suppress
CARMAL function (102, 103). One study suggests that the phosphorylation of CARMAL by
casein kinase la (CK1a) leads to the attenuation of CBM-mediated NF-xB activation
(103). Ser608 in the CARMAL1 linker region has been identified as a CK1a phosphorylation
site (103); however, the mechanism by which Ser608 phosphorylation suppresses CARMAL
activity remains to be determined. Another study indicates that Ser637 is phosphorylated by
undefined PKC isoforms, and mutation of Ser637 to Ala significantly enhances CARMA1-
mediated NF-xB activation(102), suggesting that Ser637 phosphorylation may negatively
regulate CARMAL function. Together, these studies indicate that phosphorylation of
CARMAL not only activates CARMAL but also suppresses its function.

Recent studies indicate that ubiquitination may also regulate the function of CBM complex.
It has been shown that the formation of CBM complex appears to be negatively regulated by
Cbl-b, an ubiquitin E3 ligase (104). Consistent with this finding, Cbl-b induces mono-
ubiquitination of CARMAL, and this mono-ubiquitination disrupts the interaction between
CARMAL and Bcl10 but does not induce CARMAL degradation (105). Another study
suggests that CARMAL undergoes Lys48 (K48)-linked polyubiquitination following TCR
stimulation, which leads to the proteasome-mediated degradation of CARMAL (106).
Mutagenesis studies indicate that the C-terminal MAGUK domain of CARMAL1 is involved
in this regulation (106). /n vitro experiments suggest that clAP, a CARD-containing E3
ligase, may be involved in the K48-linked polyubiquitination of CARMAL (106). Finally,
recent studies show that CARMAZL and MALT1 recruit CSN5, a component of the COP9
signalosome following TCR stimulation (107), and this recruitment of CSN to CBM
complex may be required for maintaining Bcl10 stability in response to T-cell activation,
which suggests that COP9 regulates IKK activity through protecting Bcl10 from degradation
and stabilizing CBM complex (107).

Somatic mutations in the components of antigen receptor signaling pathways are often
associated with hematopoietic malignancy (Reviewed in Lim et al., this volume). Consistent
with this notion, previous studies indicate that chromosome translocation of Bcl10 and
MALT1 contribute to lymphomagenesis (16-18). Although CARMA1 gene is not
commonly rearranged in B- or T-cell lymphomas, mutations and elevated expression of
CARMAL1 gene was found in adult T-cell leukemia (108), primary gastric B-cell lymphoma
(109), and diffuse large B-cell lymphoma (DLBCL) (110). CARMAL is also mutated in
about 10% of systemic ABC-DLBCL and 16% of primary central nervous system DLBCL
(85, 111, 112). The oncogenic mutants of CARMAL constitutively recruit downstream
signaling components (113), leading to activation of NF-xB (85). The activation of NF-xB
through the alternation of these oncogenic proteins is believed to be one of the hallmarks of
lymphoma. Previous studies have shown that NF-xB activity is critical for the survival of
malignant cells in ABC-DLBCL (114), and IKK inhibitors (115) or CARMAL shRNA (110)
are toxic for these cells. Therefore, the CBM complex could be a potential therapeutic target
for some types of lymphoma.

CARD proteins and NF-kB activation induced by GPCRs and RTKs

CARMAL is only expressed in the hematopoietic system, whereas Bcl10 and MALT1 are
expressed in all tissues. This expression suggests that other CARMA family members may
function upstream of Bcl10 and MALT1 to induce NF-xB activation in certain receptor
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signaling pathways in different cells. Although the role of CARMAL in antigen receptor
signaling had been intensively investigated (67-69, 116), the role of other CARMA proteins
was neglected for many years. One exception was CARMA3, which was shown to bind to
NEMO and activate NF-xB when overexpressed in mammalian cells (12, 13, 117). To
determine the functional role of CARMAZ in signaling pathways, we generated CARMAS3-
deficient mice. About half of CARMA3™~ mice showed defects in the neural tube closure
(NTD), resulting in perinatal mortality (24). Similarly, this phenotpe was found in about
40% of Bcl10/~ mice (60). The similar phenotype of CARMAS3- and Bcl10-deficient mice
suggests that CARMAS3 and Bcl10 function in the same signaling pathway and control the
development of neural tube cells. Since CARMA1 and Bcl10 function downstream of PKC
in TCR-induced NF-xB acitivation, we predicted that CARMA3 might play a similar role
downstream of PKC in undefined signaling pathways.

Earlier studies suggest that G protein-coupled receptors (GPCRs) (118-120), integrins
(120), and receptor tyrosine kinases (RTKSs) (121) can activate NF-xB through PKC. We
decided to test GPCRs, since GPCR is the largest family of cell surface receptors. Indeed,
we found that CARMA3 deficiency in mouse embryonic fibroblasts (MEFs) resulted in
impaired IKK activation and NF-xB activation upon stimulation of lysophosphatidic acid
(LPA) and endothelin-1 (ET-1), which are ligands for two different GPCRs (24).
Importantly, CARMAZ is specifically required for GPCR-induced IKK and NF-xB
activation, because CARMAS3 deficiency does not affect this activation by other stimuli such
as TNF and lipopolysaccharide (LPS) (24). Similar to the function of CARMAL in antigen
receptor signaling, CARMA3 deficiency does not affect signal-induced IKK
phosphorylation but alters the polyubiquitination of the IKK complex (24). The signal-
induced phosphorylation is likely dependent on MEKK3 in GPCR signaling pathways (122)
(Fig. 2). Consistent with the similar NTD phenotype found in CARMAS3-deficient and
Bcl10-deficient mice (24, 60), we and others found that GPCR-induced NF-xB activation is
also defective in Bcl10-deficient cells (123-125). More recent studies have further
confirmed that the CARMA3-Bcl10-MALT1 complex is required for other GPCRs-induced
NF-xB activation in distinct cellular context (23, 124, 126-129). Together, these studies
demonstrate that GPCRs-induced NF-xB is dependent on the CARMA3-Bcl10-MALT1
complex (Fig. 2).

RTKs are a family of cell surface receptors that recognize growth factors, cytokines, and
polypeptide hormones. They are the key players in mediating multiple cellular responses.
Mutations and aberrant expression of these receptors or their downstream signaling
components contribute to the development of many cancers. Several growth factors,
including epidermal growth factor (EGF) (121, 130, 131), insulin-like growth factor (IGF)
(132-134), platelet-derived growth factor (PDGF) (135, 136), and fibroblast growth factor
(bFGF) (137, 138), can induce weak but notable NF-xB activation through their cognate
RTKs. Although RTK signaling pathways have been intensively studied, the mechanism by
which RTKs activate NF-xB is not fully defined, and the functional significance of RTK-
induced NF-xB activation in cell proliferation and survival has not been fully appreciated.
Since EGFR-induced NF-xB is likely requires the activation of PKC (121), we predicted
that EGFR-induced NF-xB activation involves the CBM complex. Consistent with this
hypothesis, we found that CARMAS3 and Bcl10 are required for EGFR-induced NF-xB
activation in cancer cell lines and mouse embryonic fibroblasts, and this NF-xB activation
significantly impacts on tumor progression (139). Altogether, these lines of investigation
reveal a new aspect to signaling pathways induced by GPCRs and RTKSs (Fig. 2). However,
it remains to be determined how the CBM complex is linked to GPCRs and RTK receptors.
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CARD proteins and NF-kB activation by C-type lectin receptor

CARD?9 is another CARD-containing protein with some similarity to CARMA family
members. CARD9 was identified through a bioinformatics approach (9). It contains an N-
terminal CARD domain and a C-terminal CC domain but lacks the C-terminal MAGUK
domain (Fig. 1). Overexpressed CARD9 can associate with Bcl10 and weakly activate NF-
xB in mammalian cells (9). Based on these structural features and function, we originally
speculated that CARD9 might function as a negative regulator by competing with CARMA
family proteins for binding to Bcl10. However, gene-targeting experiments by other
investigators and us indicate that CARD9 deficiency does not affect antigen receptor-
induced NF-xB activation and lymphocyte activation and proliferation (25, 140, 141).
Instead, CARD9 deficiency has significant impacts on innate immunity (25, 140, 141).

Initial characterization of CARD9-deficient mice indicates that CARD9 is required for anti-
fungal immune responses (25). This study showed that CARDS9 is required for NF-xB
activation induced by zymosan, a B-glucan component from yeast cell wall. CARD9-
deficient mice are highly susceptible to fungal infections (25). Since p-glucan can activate
Dectin-1, a C-type lectin receptor, it has been proposed that CARD9 mediates Dectin-1-
induced NF-xB activation in response to fungal infection (25) (Fig. 2). When we
characterized another CARD9-deficient mouse strain (141), we surprisingly found that
zymosan could still effectively activate NF-xB in macrophages from independently
generated CARD9-deficient mouse strain (26), although this strain of CARD9-deficient
mice is also highly susceptible to fungal infection(26). These results suggesting that
zymosan may activate NF-xB through a CARD9-independent pathway (26). Therefore, the
requirement of CARD9 in Dectin-1-induced NF-xB needs to be further confirmed using
more specific Dectin-1 ligands such as pure p-Glucan.

Besides the Dectin-1 pathway, it has been demonstrated that CARDS9 also mediates the
signaling induced by other C-type lectin receptors (Fig. 2), including Dectin-2 (26, 142) and
Mincle (143). These receptors have been implicated as the PRRs for different types of
fungus (144, 145) or damage-associated molecular pattern (DAMP) signals from necrotic
cells (143). In the case of fungal infection, Mannan from the hyphal form of C. albicans may
function as the direct ligand for Dectin-2 (146). Recently, a human family with a
homozygous germline CARD9 mutation has been identified. Consistent with the role of
CARD?S in mouse, human patients with CARD9 mutation have persistent or recurrent
infections of the mucosa or the skin with Candida species (147).

The characterization of the third CARD9-deficient mouse strain has revealed that CARD9
also mediates NF-xB activation induced by several ITAM-associated receptors, including
FcRy and DAP12 signaling pathway in myeloid cells (140). Interestingly, it was found that
the CARD9-containing complex mediates NF-xB activation induced by the ITAM-
associated receptors in myeloid cells, whereas the CARMAL-containing complex mediates
NF-xB activation induced by ITAM-associated receptors in lymphoid lineage cells (148,
149). However, because CARMAL1 is also expressed in myeloid cells, it remains to be
determined why ITAM-associated receptors utilize the CARD9-dependent, but not
CARMAL1-dependent, pathway to activate NF-xB in myeloid cells.

It has been suggested that CARD? functions downstream of Syk and recruits Bcl10/MALT1
to activate NF-xB (26, 140, 142, 150, 151). Similar to the defect of CARMAL deficiency in
lymphocytes, our data showed that CARD?9 deficiency did not affect the signal-induced
phosphorylation of IKK, instead, it caused a defect on the signal-induced polyubiquitination
of IKK, which results in a defect in IKK activation (26). Therefore, CARD9-deficient
macrophages and dendritic cells are impaired in the expression of TNF, IL-6, and IL-12 in
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response to the stimulation of fungal particles (25, 26, 142, 151), and CARD9-deficient mice
are more susceptible to infection with fungus C. albicans (25, 26, 142, 146, 150).

In addition to the effect on anti-fungal immunity, CARD9 deficiency also affects the innate
immune response to intracellular bacteria such as Listeria monocytogenes (140, 141, 152)
and Mycobacteruim tuberculosis (153). Later studies from our laboratory indicate that
CARD?9 inducibly associates with the LyGDI-Rac complex, a protein complex that regulates
NADPH oxidase and induces reactive oxygen species (ROS). Therefore, CARD9 deficiency
results in the defect of ROS production in macrophage, which plays a critical role for killing
the phagocytosed bacteria in macrophages (152). In addition, CARD9 is found to be
involved in anti-viral responses (27, 141), in which the CARD9-Bcl10 module appears to be
an essential component of the RNA helicase RIG-I-dependent pro-inflammatory response to
certain RNA viruses and IL-1f production (27).

Inactivation of the VHL gene is often observed in renal cell carcinoma and may lead to
increased NF-xB activity. Another study found that VHL associate with CARD?9, and
promoted the phosphorylation of CARD?9 by casein kinase 2 (CK2) (154). Therefore, it was
proposed that the VHL-induced phosphorylation of CARD9 inhibits CARD9, thereby
suppressing NF-xB activation, whereas inactivation of VAL gene expression leads to
activation of NF-xB (154). Consistent with this hypothesis, ectopic expression of CARD9
mutants that can not be phosphorylated resulted in an increased NF-xB activation and
decreased apoptosis in VHL-defective renal carcinoma cells, whereas knockdown of
CARD9 suppresses NF-xB activity in these cells (154). Although the role of CARD9
phosphorylation by CK2 is not clear, these authors speculate that this modification may
promote an inhibitory intra- or inter-molecular interaction or prevent the binding of CARD9
to NEMO or other protein required for its activity (154). One discrepancy for this proposed
regulatory mechanism of posttranslational modification of CARD9 and previous results is
that CARDS9 is mainly expressed in myeloid cells and the expression level of CARDS9 in
renal cells is very low (9, 141). Therefore, future studies are needed to investigate the role of
CARD?9 in non-myeloid cells.

Perspectives: conclusions and outstanding questions

In last decade, significant progress towards understanding the function of CARD proteins in
the NF-xB signaling pathways has been made. These studies demonstrate that CARMA/
CARD9-dependent IKK activation is involved in antigen receptor-, GPCR-, RTK-, and
CLR-induced NF-xB activation. However, further investigation is needed to define the
precise mechanism by which CBM complexes activate IKK and to reveal the mechanisms
by which different CBM complexes are linked to receptors. More research is required to
define the regulation of CARD protein-mediated signaling and the role of these proteins in
cancer and other genetic diseases. For example, it has been shown that human card9 gene
contains a germline mutation, which results in a high susceptible to fungal infection. It will
be interesting to investigate whether CARMA family members and Bcl10 also have as yet
unidentified human germline mutations that contribute to genetic disorders. These lines of
investigation will not only reveal the molecular mechanism of CARD proteins but also
provide the molecular insight for designing therapeutic agents for cancer and other diseases.
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Fig. 1. Schematic representation of the structural domains of CARD proteins

CARD - caspase recruitment domain; MAGUK - membrane-associated guanylate kinase-
like domain; BIR - baculovirus IAP repeat domain; NOD - nucleotide-binding
oligomerization domain; LRR — Leucine-rich repeat domain; RING — Really-Interesting-
New-Gene domain; S/T rich — Ser/Thr rich domain.
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Fig. 2. NF-xB activation induced by CARMA family member-mediated signaling pathways
TCR, T-cell receptor; BCR, B-cell receptor; GPCR, G protein-coupled receptor; RTK,

receptor tyrosine kinase.
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Fig. 3. Schematic presentation of the phosphorylation-dependent confor mational change of

CARMA1

(A) The proposed CARMAL structure in the inactive status. (B) The proposed CARMA1

structure in the active status. Ser residues that are phosphorylated are shown.
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