Compilation of small ribosomal subunit RNA sequences

Peter De Rijk, Jean-Marc Neefs, Yves Van de Peer and Rupert De Wachter* Departement Biochemie, Universiteit Antwerpen, UIA, Universiteitsplein 1, B-2610 Antwerp, Belgium

INTRODUCTION

The database on small ribosomal subunit RNA (further abbreviated as SSU rRNA) structure has more than doubled in size in one year's time and currently contains 927 aligned sequences. Table 1 only lists the 475 sequences (references 1-475) that were added to the database since publication of the last compilation (476). The latter should be consulted for data and references concerning the sequences entered previously. The total set of 927 entries now consists of 197 eukaryotic cytoplasmic, 21 archaeal, 625 bacterial, 21 plastidial, and 63 mitochondrial SSU rRNAs. This set includes partial sequences, but only if they satisfy the criterion defined in detail in the previous compilation (476) and in footnote (f) of Table 1, in short if the combined lengths of the sequenced segments corresponds to at least 70% of the *Escherichia coli* 16S rRNA sequence.

Sequence alignment is based largely on the adopted secondary structure model, which in turn is corroborated by the observation of compensating substitutions in the alignment. Therefore, the secondary structure model can be gradually refined as more sequences become available. Some improvements to the secondary structure model for eukaryotic SSU rRNAs are described below.

SECONDARY STRUCTURE MODEL

Prokaryotic and eukaryotic models

Fig. 1 shows the prokaryotic secondary structure model, applicable to SSU rRNAs from archaea, bacteria, plastids and mitochondria. The model of Fig. 2 applies to eukaryotic cytoplasmic SSU rRNAs. Areas of conserved primary and secondary structure are drawn in bold lines. Areas of variable primary and secondary structure, drawn in thin lines, are labelled V1 to V9. Variability in secondary structure often consists in extension or reduction in size of helices in some species with respect to others. Long insertions present in a limited number of species result in the presence of extra helices, drawn in broken lines.

The prokaryotic model is identical to the one shown in the previous compilation (476), but the eukaryotic model has been adapted, the changes being enumerated below. The two models are distinguished, even though they have many helices in common, because helix P21, which usually forms variable area V4 of prokaryotic SSU rRNAs, apparently is not homologous to any of the helices E21-1 to E21-10 forming area V4 in eukaryotic SSU rRNAs.

Helix numbering system

Helices are given a different number if separated by a multibranched loop, (e.g. helices 9 and 10), by a pseudoknot loop (e.g. helices 1 and 2), or by a single stranded area that does not form a loop (e.g. helices 2 and 30). A single number is attributed to 48 'universal' helices, which are present in all hitherto known SSU rRNAs from archaea, bacteria, and plastids. They are also present in all known eukaryotic SSU rRNAs except that of the microsporidian Vairimorpha necatrix, which lacks helices 10, 11, and 44. Additional helices specific to the prokaryotic model (Fig. 1) are given composite numbers of the form Pa-b, where a is the number of the preceding universal helix and b sequentially numbers all helices inserted between universal helices a and a+1. Helices specific to the eukarvotic model (Fig. 2) are similarly numbered Ea-b. Mitochondrial SSU rRNAs, though they can be described by the prokaryotic model, show extreme variability in length, ranging from about 600 nucleotides in flagellates to about 2000 nucleotides in plants. This coincides with the absence of several universal helices in the smaller molecules and with the presence of extra helices of the P-series in the larger ones. A tentative helix occupancy table for mitochondrial SSU rRNAs and examples of secondary structure models can be found in the previous compilation (476). The alignment of, and transposition of secondary structure models to mitochondrial SSU rRNAs is less dependable than for other SSU rRNAs, not only because of the variability in length, but also because some of the sequences are very monotonous due to a high A+U content.

Changes made to the eukaryotic secondary structure model (Fig. 2)

Alignment of additional sequences has brought to light new compensating substitutions, leading to changes in the base pairing scheme adopted for helices 8 and 18. In addition, helices E21-1 to E21-4 of the previous model (476) have been rejected in favour of a different structure, and the numbering of the helices in area V4 was changed in consequence. Table 2 gives the helix occupancy for area V4 of eukaryotic SSU rRNAs according to the new structure and numbering system. Fig. 3 shows the secondary structure presently adopted for *Saccharomyces cerevisiae* SSU rRNA, which is typical for the majority of eukaryotic structures. Fig. 4 shows the new secondary structure for *Drosophila melanogaster* SSU rRNA, which is one of the species containing extra helices E21-3 and E21-4. The structure in the area of helix E21-10 (Fig. 2) remains uncertain. The insert present in this area in a number of species (see Table 2) may

^{*} To whom correspondence should be addressed

Fig. 1. Secondary structure model for prokaryotic SSU rRNAs. The 5'-terminus is symbolized by a dot, the 3'-terminus by an arrowhead. Helices are numbered in the order of occurrence from 5'- to 3'-terminus. Helices bearing a single number are common to the prokaryotic and eukaryotic (Fig. 2) models. Helices bearing a composite number preceded by P are prokaryote-specific. Areas of relatively conserved structure are drawn in bold lines. Nine variable areas labeled V1 to V9 are drawn in thin lines. Helices drawn in broken lines are present exceptionally.

actually form more than one extra helix, but it is not possible as yet to derive a reliable model on the basis of the available sequences.

COMPLETENESS, ACCURACY, AND AVAILABILITY OF THE DATA

SSU rRNA sequences deposited into the GenBank and EMBL nucleotide sequence libraries are obtained weekly from the EMBL file server by electronic mail. An appropriate set of programs is used for alignment of a new sequence, indication of secondary structure elements by comparison with a closely related sequence, checking the consistency of the postulated secondary structure, and checking for errors by comparison with the original record.

Files containing all the SSU rRNA sequences present in our database are available in the following three formats.

1. The sequences, listed one by one, written continuously without the gaps needed for alignment and without indication of secondary structure elements.

2. The sequences, listed one by one, but with nucleotide symbols interspersed with the gaps necessary for alignment. In these files, each sequence covers 4284 positions, which is the present length of the complete alignment of all eukaryotic, archaeal, bacterial, and organellar sequences.

Fig. 2. Secondary structure model for eukaryotic SSU rRNAs. Symbols are as in Fig. 1. Helices bearing a composite number preceded by E are eukaryote-specific. The area corresponding to V6 in Fig. 1 is more conserved among eukaryotic SSU rRNAs. See Table 2 for a complete survey of helix occupancy in known structures.

3. The sequences, listed in the form of an alignment with indication of the secondary structure elements. The alignment is divided into 43 pages each comprising 100 positions containing a nucleotide or a gap. These positions alternate with extra positions that are either blank or contain a symbol indicating the beginning or end of a secondary structure element. The secondary structure model adopted for each SSU rRNA sequence is completely defined in these files.

In addition, there are files containing a taxonomic list of species and general documentation on the database.

The database will be made available through 'anonymous ftp' on host uiam3.uia.ac.be (143.169.8.1). A previous, less complete version of the database was written on the CD-ROM disk distributed in December 1991 by the EMBL nucleotide sequence library at Heidelberg. Updates of the database will be similarly put at the disposal of the EMBL nucleotide sequence library for distribution on future releases of the CD-ROM, and in order to be made available on the EMBL file server as well. Due to the increasing volume of the database, copying it onto diskettes is getting cumbersome. However, researchers who do not have access to the aforementioned distribution channels can inquire about the availability of the database on magnetic media by writing to the authors or by sending an electronic mail message to DEWACHTER@CCV.UIA.AC.BE or to RRNA@CCV.UIA.AC.BE.

Fig. 3. Secondary structure model for Saccharomyces cerevisiae SSU rRNA. With respect to the previously published model (476), a different base pairing scheme has been adopted for helices 8, 18, and the area formed by helices E21-1 to E21-5.

Drosophila melanogaster

Fig. 4. Secondary structure model for *Drosophila melanogaster* SSU rRNA. With respect to the previously published model (476), a different base pairing scheme has been adopted for helices 8 and 18, while helices E21-1 to E21-5 replace a set of 4 different helices in the older model.

ACKNOWLEDGEMENTS

Our research is supported by the Incentive Programme on Fundamental Research in the Life Sciences (contract BIO/03) and the Programme on Interuniversity Poles of Attraction (contract 23) of the Office for Science Policy Programming of the Belgian State, and by the Fund for Medical Scientific Research. P. De Rijk is research assistant of the National Fund for Scientific Research.

REFERENCES

- Hedges,S.B., Moberg,K.D. and Maxson,L.R. (1990) Mol. Biol. Evol. 7, 607-633.
- 2-19. Same reference as 1.
- Stock, D.W., Moberg, K.D., Whitt, G.S. and Maxson, L.R. (1991) Environ. Biol. Fishes 32, 99-117.
- Degnan, B.M., Yan, J., Hawkins, C.J. and Lavin, M.F. (1990) Nucleic Acids Res. 18, 7063-7070.
- 22. Baldridge,G.D. and Fallon,A.M. (1991) Biochim. Biophys. Acta 1089, 396-400.
- Turbeville, J.M., Pfeifer, D.M., Field, K.G. and Raff, R.A. (1991) Mol. Biol. Evol. 8, 669-686.
- 24. Kim, W. and Abele, L.G. (1990) J. Crust. Biol. 10, 1-13.
- 25-28. Same reference as 24.
- Korbsrisate, S., Mongkolsuk, S., Haynes, J.R., England, D. and Sirisinha, S. (1991) Gene 105, 259-261.
- Ali,P.O., Simpson,A.J.G., Allen,R., Waters,A.P., Humphries,C.J., Johnston,D.A. and Rollinson,D. (1991) Mol. Biochem. Parasitol. 46, 201-208.
- 31. Littlewood, D. T. J., Ford, S. E. and Fong, D. (1991) Nucleic Acids Res. 19, 6048.
- 32. Savard, L. and Lalonde, M. (1991) Plant Mol. Biol. 16, 725-728.
- 33. Nickrent, D.L. and Franchina, C.R. (1990) J. Mol. Evol. 31, 294-301.
- 34-43. Same reference as 33.
- Barns,S.M., Lane,D.J., Sogin,M.L., Bibeau,C. and Weisburg,W.G. (1991) J. Bacteriol. 173, 2250-2255.
- 45. Same reference as 44.
- 46. Sogin, M.L., Bibeau, C., Elwood, H., Stickel, S., Weisburg, W., Barnes, S. and Lane, D.L. (unpublished).
- Illingworth, C.A., Andrews, J.H., Bibeau, C. and Sogin, M.L. (1991) Exper. Mycol. 15, 65-75.
- 48. Same reference as 46.
- 49-54. Same reference as 44.
- 55. Same reference as 46.
- 56. Same reference as 47.
- 57. Hendriks, L., Goris, A., Van de Peer, Y., Neefs, J.-M., Vancanneyt, M., Kersters, K., Berny, J.-F., Hennebert, G.L. and De Wachter, R. (in press) System. Appl. Microbiol.
- 58. Same reference as 57.
- 59-60. Same reference as 44.
- 61. Same reference as 46.
- 62. Same reference as 44.
- 63. Same reference as 57.
- 64. Same reference as 44.
- 65-66. Same reference as 57.
- 67. Same reference as 44.
- 68. Same reference as 57.
- 69. Same reference as 47.
- Van de Peer, Y., Hendriks, L., Goris, A., Neefs, J.-M., Vancanneyt, M., Kersters, K., Berny, J.-F., Hennebert, G.L. and De Wachter, R. (in press) System. Appl. Microbiol.
- 71. Same reference as 70.
- 72. Same reference as 46.
- 73-75. Same reference as 70.
- 76. De Wachter, R., Neefs, J.-M., Goris, A. and Van de Peer, Y. (in press) Nucleic Acids Res.
- 77. Huss, V.A.R., Seidel, B., Sogin, M.L. and Kessler, E. (unpublished).
- 78. Ariztia, E.V., Andersen, R.A. and Sogin, M.L.J. (1991) Phycol. 27, 428-436.
- 79. Same reference as 78.
- 80. Dore, J. and Stahl, D.A. (unpublished).
- 81-82. Same reference as 80.

- Greenwood,S.J., Sogin,M.L. and Lynn,D.H. (1991) J. Mol. Evol. 33, 163-174.
- 84. Same reference as 83.
- 85. Schlegel, M., Elwood, H.J. and Sogin, M.L. (1991) J. Mol. Evol. 32, 64-69.
- 86. Same reference as 83.
- 87. Same reference as 85.
- Gajadhar, A.A., Marquardt, W.C., Hall, R., Gunderson, J., Ariztia-Carmona, E.V. and Sogin, M.L. (1991) Mol. Biochem. Parasitol. 45, 147-154.
- 89. Waters, A.P., Higgins, D.G. and McCutchan, T.F. (in press) Proc. Natl. Acad. Sci. U.S.A.
- 90. Same reference as 89.
- Goman, M., Mons, B. and Scaife, J.G. (1991) Mol. Biochem. Parasitol. 45, 281-288.
- 92-93. Same reference as 88.
- Douglas,S.E., Murphy,C.A., Spencer,D.F. and Gray,M.W. (1991) Nature 350, 148-151.
- 95. Same reference as 94.
- 96. Eschbach, S., Wolters, J. and Sitte, P. (1991) J. Mol. Evol. 32, 247-252.
- Maier U.-G., Hofmann C.J.B., Eschbach S., Wolters J. and Igloi G.L. (1991) Mol. Gen. Genet. 230, 155-160
- Reddy,G.R., Chakrabarti,D., Yowell,C.A. and Dame,J.B. (1991) Nucleic Acids Res. 19, 3641-3645.
- 99-100. Same reference as 98.
- 101. Dennis, P.P. and Mylvaganam, S. (unpublished).
- 102. Same reference as 101.
- O'Connor,S.P., Dorsch,M., Steigerwalt,A.G., Brenner,D.J. and Stackebrandt,E. (1991) J. Clin. Microbiol. 29, 2144-2150.
- 104. Same reference as 103.
- Britschgi, T.B. and Giovannoni, S.J. (1991) Appl. Environm. Microbiol. 57, 1707-1713.
- 106. Same reference as 105.
- 107. Weisburg, W.G., Barns, S.M., Pelletier, D.A. and Lane, D.J. (1991) J. Bacteriol. 173, 697-703.
- Woese, C.R., Maloy, S., Mandelco, L. and Raj, H.B. (1990) System. Appl. Microbiol. 13, 19-23.
- Eden, P.A., Schmidt, T.M., Blakemore, R.P. and Pace, N.R. (1991) Int. J. Syst. Bacteriol. 41, 324-325.
- 110. Same reference as 103.
- 111. Birtles, R.J., Harrison, T.G., Saunders, N.A., Fry, N.K. and Taylor, A.G. (unpublished).
- 112. Woese, C.R. (unpublished).
- 113. Dryden, S.C. and Kaplan, S. (1990) Nucleic Acids Res. 18, 7267-7277.
- 114-115. Same reference as 113.
- 116. Dewhirst, F.E., Paster, B.J., La Fontaine, S. and Rood, J.I. (1990) Int. J.
- Syst. Bacteriol. 40, 426-433.
- 117. Same reference as 116.
- 118. Dewhirst, F.E., Paster, B.J., Olsen, I. and Fraser, G.L. (unpublished).
- 119-126. Same reference as 118.
- 127. Same reference as 116.
- 128-132. Same reference as 118.
- 133. La Fontaine, S. and Rood, J.I. (1990) Int. J. Syst. Bacteriol. 40, 154-159.
- 134. Same reference as 116.
- 135. Same reference as 105.
- 136-137. Same reference as 118.
- 138. Rossau, R., Duhamel, M., Jannes, G., Decourt, J.L. and Van Heuverswyn, H.J. (1991) Gen. Microbiol. 137, 277-285.
- 139-143. Same reference as 118.
- 144. Same reference as 116.
- 145-156. Same reference as 118.
- 157. Fry, N.K., Warwick, S., Saunders, N.A. and Embley, T.M. (1991) J. Gen. Microbiol. 137, 1215-1222.
- 158-165. Same reference as 157.
- 166. Same reference as 116.
- 167-174. Same reference as 118.
- 175. Same reference as 116.
- 176-181. Same reference as 118.
- 182. Dauga, C., Grimont, F. and Grimont, P.A.D. (1990) Res. Microbiol. 141, 1139-1149.

194. Wesley, I.V., Wesley, R.D., Cardella, M., Dewhirst, F.E. and Paster, B.J.

183-191. Same reference as 182.

195-197. Same reference as 194.

193. Same reference as 112.

198. Same reference as 112.

192. Rosson, R. and Schmidt, T.M. (unpublished).

(1991) J. Clin. Microbiol. 29, 1812-1817.

- 199. Amann, R.I., Lin, C., Key, R., Montgomery, L. and Stahl, D.A. (unpublished).
- 200-213. Same reference as 199.
- Paster, B.J., Lee, A., Fox, J.G., Dewhirst, F.E., Tordoff, L.A., Fraser, G.J., O'Rourke, J.L., Taylor, N.S. and Ferrero, R. (1991) Int. J. Syst. Bacteriol. 41, 31-38.
- 215. Same reference as 214.
- Ash, C., Farrow, J.A.E., Wallbanks, S. and Collins, M.D. (1991) Lett. Appl. Microbiol. 13, 202-206.
- 217. Same reference as 216.
- 218. Fox,G.E. and Rossler,D. (1991) Syst. Appl. Microbiol. 14, 266-269.
- 219-237. Same reference as 216.
- 238. Same reference as 218.
- 239-243. Same reference as 216.
- 244. Same reference as 218.
- 245. Same reference as 216.
- 246. Same reference as 218.
- 247-253. Same reference as 216.
- 254. Same reference as 218.
- 255-263. Same reference as 216.
- 264. Same reference as 218.
- 265-267. Same reference as 216.
- 268. Sathymoorthy, M., Alcorn, S.C., Lohnas, G.L., Anderson, J.J. and Uratani, B.B. (unpublished).
- 269. Kane, M.D., Brauman, A. and Breznak, J.A. (unpublished).
- 270. Garnier, T., Canard, B. and Cole, S.T. (1991) J. Bacteriol. 173, 5431-5438.
- 271. Williams, A.M., Rodrigues, U.M. and Collins, M.D. (1991) Res. Microbiol. 142, 67-74.
- 272 280. Same reference as 271.
- Martinez-Murcia, A.J. and Collins, M.D. (1991) FEMS Microbiol. Lett. 80, 69-74.
- 282. Same reference as 112.
- Collins, M.D., Rodrigues, U., Ash, C., Aguirre, M., Farrow, J.A.E., Martinez-Murcia, A., Phillips, B.A., Williams, A.M. and Wallbanks, S. (1991) *FEMS Microbiol. Lett.* 77, 5-12.
- 284-294. Same reference as 283.
- 295. Grau, O., Laigret, F., Carle, P., Tully, J.G., Rose, D.L. and Bove, J.M. (1991) Int. J. Syst. Bacteriol. 41, 473-478.
- 296. Krumholz,L.R., Bryant,M.P., Brulla,W.J., Vicini,J.L., Clark,J.H. and Stahl,D.A. (unpublished).
- 297. Bentley, R.W., Leigh, J.A. and Collins, M.D. (1991) Int. J. Syst. Bacteriol. 41, 487-494.
- 298-300. Same reference as 297.
- Williams, A.M., Farrow, J.A.E. and Collins, M.D. (1989) Lett. Appl. Microbiol. 8, 185-189.
- 302-318. Same reference as 297.
- Both, B., Kaim, G., Wolters, J., Schleifer, K.H., Stackebrandt, E. and Ludwig, W. (1991) FEMS Microbiol. Lett. 78, 53-58.
- 320-321. Same reference as 296.
- 322. Stackebrandt, E. and Charfreitag, O.J. (1990) Gen. Microbiol. 136, 37-43.
- 323. Wersing, U., Dorsch, M., Stackebrandt, E. and Hirsch, P. (unpublished).
- 324. Same reference as 324.
- 325. Same reference as 112.
- 326. Normand, P. (unpublished).
- 327. Yang, D. and Woese, C.R. (unpublished).
- 328. Rogall, T., Wolters, J., Flohr, T. and Boettger, E.C. (1990) Int. J. Syst. Bacteriol. 40, 323-330.
- 329. Urbance, J.W., Key, R. and Stahl, D.A. (unpublished).
- 330-335. Same reference as 329.
- 336. Wolters, J. (unpublished)
- 337. Same reference as 328.
- 338. Same reference as 329.
- 339. Same reference as 336.
- 340-341. Same reference as 328.
- 342. Same reference as 329.
- 343-345. Same reference as 328.
- 346-350. Same reference as 329.
- 351. Stahl, D.A. and Urbance, J.W. (1990) J. Bacteriol. 172, 116-124.
- 352-353. Same reference as 336.
 354. Teske, A., Wolters, J. and Boettger, E.C. (1991) FEMS Microbiol. Lett. 80, 213-238.
- 355. Same reference as 328.
- 356. Same reference as 329.
- 357-358. Same reference as 328.
- 359-364. Same reference as 329.
- 365-368. Same reference as 328.
- 369. Same reference as 336.

- 370. Same reference as 328.
- 371. Same reference as 329.
- 372-373. Same reference as 328.
- 374. Same reference as 336.
- 375. Same reference as 329.
- 376-377. Same reference as 328.
- 378. Same reference as 112.
- Gutenberger,S.K., Giovannoni,S.J., Field,K.G., Fryer,J.L. and Rohovec,J.S. (1991) FEMS Microbiol. Lett. 77, 151-156.
- Witt, D., Stackebrandt, E., Kemmerling, C., Kroppenstedt, R. and Liesack, W. (1991) Appl. Environ. Microbiol. 57, 1468-1477.
- 381. Same reference as 380.
- Van Wezel,G.P., Vijgenboom, E. and Bosch, L. (1991) Nucleic Acids Res. 19, 4399-4403.
- 383. Same reference as 380.
- 384. Kim, E., Kim, H., Kang, K.H., Kho, Y.H. and Park, Y.H. (1991) Nucleic Acids Res. 19, 1149.
- 385-394. Same reference as 380.
- 395. Collins, M.D., Smida, J., Dorsch, M. and Stackebrandt, E. (1988) Int. J. Syst. Bacteriol. 38, 385-391.
- 396. Kane, M.D. and Breznak, J.A. (unpublished).
- 397. Same reference as 396.
- 398. Marconi, R.T. and Garon, C.F. (unpublished). 399. Paster, B.J., Dewhirst, F.E., Weisburg, W.G., Tordoff, L.A., Fraser, G.J.,
- Hespell, R.B., Stanton, T.B., Zablen, L., Mandelco, L. and Woese, C.R.J. (1991) J. Bacteriol. 173, 6101-6109.
- 400-407. Same reference as 398.
- 408-410. Same reference as 399.
- Stanton, T.B., Jensen, N.S., Casey, T.A., Tordoff, L.A., Dewhirst, F.E. and Paster, B.J. (1991) Int. J. Syst. Bacteriol. 41, 50-58.
- 412-416. Same reference as 411.
- 417. Same reference as 399.
- 418. Rainey, F.A., Dorsch, M., Morgan, H.W. and Stackebrandt, E. (unpublished).
- 419. Same reference as 399.
- 420. Same reference as 411.
- 421-422. Same reference as 399.
- 423. Same reference as 411.
- 424. Same reference as 399.
- 425. Same reference as 411.
- 426. Weisburg, W.G., Giovannoni, S.J. and Woese, C.R. (1989) System. Appl. Microbiol. 11, 128-134.
- 427. Hartmann, R.K., Wolters, J., Kroeger, B., Schultze, S., Specht, T. and Erdmann, V.A. (1989) System. Appl. Microbiol. 11, 243-249.
- 428. Same reference as 112.
- Woese, C.R., Yang, D., Mandelco, L. and Stetter, K.O. (1990) System. Appl. Microbiol. 13, 161-165.
- 430-432. Same reference as 429
- 433. Woese, C.R., Maloy, S., Mandelco, L. and Raj, H.B. (1990) System. Appl. Microbiol. 13, 19-23.

443. Ligon, P.J.B., Meyer, K.G., Martin, J.A. and Curtis, S.E. (1991) Nucleic

448. Huber, R., Woese, C.R., Langworthy, T.A., Kristjansson, J.K. and

450. Fiala, G., Woese, C.R., Langworthy, T.A. and Stetter, K.O. (1990) Arch.

452. Stummann, B.M., Lehmbeck, J., Bookjans, G. and Henningsen, K.W. (1988)

453. Delaney, T.P. and Cattolico, R.A. (1991) Nucleic Acids Res. 19, 6328.

455. Maerz M., Wolters J., Hofmann C.J.B., Sitte P., Maier U.-G. (in press)

458. Arnason, U., Gullberg, A. and Widegren, B. (1991) J. Mol. Evol. 33,

454. Douglas, S.E. and Turner, S. (1991) J. Mol. Evol. 33, 267-273.

456. Maid, U. and Zetsche, K. (1991) Plant Mol. Biol. 16, 537-546.

459. Allard, M.W. and Honeycutt, R.L. (in press) Mol. Biol. Evol.

457. Kraus, F. and Miyamoto, M.M. (in press) Syst. Zool.

441. Weisburg, W., Hatch, T. and Woese, C.R. (unpublished).

444. Urbach, E., Robertson, D.L. and Chisholm, S.W. (unpublished).

Stetter, K.O. (1990) Arch. Microbiol. 154, 105-111.

451. Moyer, C.L. and Giovannoni, S.J. (unpublished).

Physiol. Plantarum 72, 139-146.

434. Same reference as 433.

442. Same reference as 433.

445. Same reference as 444.

449. Same reference as 448.

Curr. Genet.

556-568

435-438. Same reference as 429. 439-440. Same reference as 433.

Acids Res. 19, 4553.

446-447. Same reference as 105.

Microbiol. 154, 120-126.

- 460. Same reference as 459.
- 461. Same reference as 457.
- 462-469. Same reference as 459.
- 470. Chang, Y.S. and Huang, F.I. (unpublished).
- 471. Okimoto, R., MacFarlane, J.L., Clary, D.O. and Wolstenholme, D.R. (unpublished).
- 472. Same reference as 471.
- 473. Martin, R., Schwob, E., Augustyniak, H., Makalowski, W., Stiegler, P. and Dirheimer, G. (unpublished).
- 474. Shen, Z. and Fox, T.D. (1989) Nucleic Acids Res. 17, 4535-4539.
- 475. Gardner, M.J., Feagin, J.E., Moore, D.J., Spencer, D.F., Gray, M.W., Williamson, D.H. and Wilson, R.J.M. (1991) Mol. Biochem. Parasitol. 48, 77-88.
- 476. Neefs, J.-M., Van de Peer, Y., De Rijk, P., Goris, A. and De Wachter, R. (1991) Nucleic Acids Res. 19, 1987-2015.
- 477. Brusca, R.C. and Brusca, G.J. (1990) Invertebrates. Sinauer Associates, Inc, Sunderland.
- 478. Cronquist, A. (1971). Introductory Botany. Harper & Row, New York.
- 479. Ainsworth,G.C., Sparrow,F.K. and Sussman,A.S. (1973) The Fungi: an Advanced Treatrise. Academic Press, New York, Vol. 4A.
- 480. Corliss, J.O. (1984) BioSystems 17, 87-126.
- 481. Woese, C.R. (1987) Microbiol. Reviews. 61, 221-271.
- 482. Stackebrandt, E., Murray, R.G.E. and Trüper, H.G. (1988) Int. J. Syst. Bacteriol. 38, 321-325.
- Wayne, L.G., Brenner, D.G., Colwell, R.R., Grimont, P.A.D., Kandler, O., Krischevsky, M.I., Moore, L.H., Moore, W.E.C., Murray, R.G.E., Stackebrandt, E., Starr, M.P. and Trüper, H.G. (1987). Int. J. Syst. Bacteriol. 37, 463-464.

1.2	Species (b)	Specification (c)	Taxonomic (6	Position	Length (e)	E.coli (f)	Access. (g)	Method (h)
	EUKARYOTES Turdus migratorius allinator mississinoissis	Liver/Ova	Chordata (Ph.), Vertebrata (SPh.)	Aves (Cl.)	(1621)	87.9	M59402	T T T
	Heterodor missing	Liver/Ova	Chordata (Ph.), Vertebrata (SPL.) Chordata (Ph.), Vertebrata (SPL.)	Reputing (cf.) Reputing (cf.)	(1594)	86.1	M59392	225
	Sceloporus undulatus	Liver/Ova	Chordata (Ph.), Vertebrata (SPh.)	Reptilia (Cl.)		72.2	M59400	22
	Amphiuma tridactylum	Liver/Ova Liver/Ova	Chordata (Ph.), Vertebrata (SPh.) Chordata (Ph.), Vertebrata (SPh.)	Amphibia (Cl.)	(0641)	75.9	M59385	r r
	Bufo valliceps Discoglossus pictus	Liver/Ova Liver/Ova	Chordata (Ph.), Vertebrata (SPh.) Chordata (Ph.), Vertebrata (SPh.)	Amphibia (Cl.) Amphibia (Cl.)	(1345)	83.3	M59386 M59387	55
	Eleutherodactylus cuneatus Gastrophryne carolinensis	Liver/Ova Liver/Ova	Chordata (Ph.), Vertebrata (SPh.) Chordata (Ph.), Vertebrata (SPh.)	Amphibia (Cl.) Amphibia (Cl.)	(1456)	75.7	M59388 M59390	RT T
	Grandisonia alternans Hvla cinerea	Liver/Ova Tiver/Ova	Chordata (Ph.), Vertebrata (SPh.)	Amphibia (Cl.)	(1414)	75.0	M59391	12
-	Ichthyophis bannanicus	Liver/Ova	Chordata (Ph.), Vertebrata (SPh.)	Amphibia (Cl.)	(1399)	6.67	M59395	221
	Nesomantis thomasseti Plethodon yonhalossee	Liver/Ova Liver/Ova	Chordata (Ph.), Vertebrata (SPh.) Chordata (Ph.), Vertebrata (SPh.)	Amphibia (Cl.) Amphibia (Cl.)	(1504) (1417)	75.4	M59396 M59397	RT RT
	Scaphiopus holbrooki	Liver/Ova	Chordata (Ph.), Vertebrata (SPh.)	Amphibia (Cl.)	(1410)	75.0	M59399	T 7
	Typhionectes natans	Liver/Ova	Chordata (Ph.), Vertebrata (SPh.)	Amphibia (Cl.)	(1465)	76.5	M59403	1
)	Herdmania monus	rrozen skeretat muscle Sperm	Chordata (Fh.), Vercentata (SFh.) Chordata (Ph.), Urochordata (SPh.)	Accidiacea (Cl.) Ascidiacea (Cl.)	1803	100.0	X53538	ž
2 1	Aedes albopictus Amblyomma americanum	Larvae, cell line ATC-15, Chromosome 3	Arthropoda (Ph.), Uniramia (SPh.) Arthropoda (Ph.), Cheliceriformes (SPh.)	Insecta (Cl.) Chelicerata (Cl.)	1950	100.0	X57172 M60487	Ë
-	Callinectes sapidus		Arthropoda (Ph.), Crustacea (SPh.)	Malacostraca (CL.)	(1522)	83.0	M34360	2
n vo	Penaeus aztecus		Arthropoda (Ph.), Crustacea (SPh.) Arthropoda (Ph.), Crustacea (SPh.)	Malacostraca (C1.) Malacostraca (C1.)	1468	73.7	M34362	R T R
r a	Procambarus leonensis Stanonus hismidus		Arthropoda (Ph.), Crustacea (SPh.)	Malacostraca (Cl.) Malacostraca (Cl.)	(1699)	89.5 76.7	M34363	RT T
	Opisthorchis viverrini	Stage Adult	Arthropoda (Fn.), Crustacea (SFn.) Platyhelminthes (Ph.)	Trematoda (Cl.)	1992	100.0	x55357	Ĩ
0	Schistosoma mansoni	Strain NWRI	Platyhelminthes (Ph.)	Trematoda (Cl.)	1992	100.0	X53047	Į
	Alnus glutinosa	suur, nemocyce and sperm Strain Gaertner, leaves	Magnoliophyta (Div.)	Magnoliopsida (Cl.)	(1697)	92.0	X54984	ĮĮ
	Buckleya distichophylla Ruxus semmervirens		Magnoliophyta (Div.) Macnolionhyta (Div.)	Magnoliopsida (Cl.) Magnolioneida (Cl.)	(1717)	93.7	X16598 X16599	5
	Cornus florida		Magnoliophyta (Div.)	Magnoliopsida (Cl.)	(1676)	1.16	X17370	1
	Cornus racemosa Dendrophthora domingensis		Magnoliophyta (Div.) Magnoliophyta (Div.)	Magnoliopsida (CL.) Magnoliopsida (Cl.)	(1727)	94.2	X16602 X16601	1 X X
	Euonymus alatus		Magnoliophyta (Div.)	Magnoliopsida (Cl.)	(1699)	93.1	X16600	F.K.
	Hydrocotyle sibthorpioides		Magnollophyta (Div.) Magnollophyta (Div.)	Magnoliopsida (CL.) Magnoliopsida (Cl.)	(1647)	8.12 8.9	X16605	T T
	Nyssa sylvatica Dhoradandron servitnim		Magnoliophyta (Div.) Magnoliophyta (Div.)	Magnoliopsida (Cl.)	(1664)	91.0	X16603 X16607	T T T
	Schoepfia arenaria		Magnoliophyta (Div.)	Magnoliopsida (Cl.)	(1697)	92.7	X16606	RT
	Aspergillus fumigatus 1 Aspergillus fumigatus 2	Strain ATCC 36607, clone sequence Strain ATCC 36607, rRNA sequence	Ascomycotina (Ph.) Ascomycotina (Ph.)		1799 (1630)	100.0	M60300 M60301	Ϋ́ς Ϋ́ς
	Aspergillus funigatus 3 Aureobasidium mullulane	Tanlate VII7	Ascomycotina (Ph.) Ascomycotina (Ph.)		1798	100.0	M55626 M55639	Ë d
_	Blastomyces dermatitidis		Ascomycotina (Ph.)		1799	100.0	M55624	Í
	Candida albicans 2 Candida clabrata 2	Strain MUCL 29800, ATCC 18804 Strain MUCL 29833 CBS 138 ATCC 2001	Ascomycotina (Ph.)		1787	100.0	M60302	Ϋ́ς Ι
	Candida parapsilosis	Strain MUCL 29868, CBS 604, ATCC 22019	Ascomycotina (Ph.)		(1633)	89.5	M60307	5 T
~ ~	Candida tropicalis 2	Strain CBS 94, ATCC 750	Ascomycotina (Ph.)		(1638)	89.8	M60308	T T T
	Clavispora lusitaniae 2	Strain ATCC 42720	Ascomycotina (Ph.)		(1603)	89.2	M60306	22
	Coccidioides immitis Colletotrichum gloeosnorioides		Ascomycotina (Ph.)		1795	100.0	M55627 M55640	a) d
	Debaryomyces hansenii	Strain MUCL 29826, CBS 1795	Ascomycotina (Ph.)		1802	100.0	X58053	i
	Dekkera bruxellensis Issatchenkia orientalis 2	Strain MUCL 27700, CBS 72, ATCC 10560 Strain MUCL 29849, CBS 573, ATCC 6258	Ascomycotina (Ph.) Ascomycotina (Ph.)		(1595)	88.7	X58052 M60305	RT
_	Kluyveromyces lactis 2 Denoicilium octatum	Strain MUCL 29873, ATCC 4135, CBS 607	Ascomycotina (Ph.)		(1365)	73.2	M60303	RT
	Pichia angusta	Strain ATCC 34438, CBS 4732	Ascomycotina (Ph.) Ascomycotina (Ph.)		(1632)	0.08	M60310	RT
	Pichia anomala Pichia quilliermondii	Strain MUCL 28639, CBS 5759 Strain MUCL 29837 CBS 566 ATCC 6260	Ascomycotina (Ph.) Ascomycotina (Ph.)		1795	99.99 2.88	X58054 M60304	Ъ
	Pichia membranaefaciens	Strain MUCL 30004, CBS 107, ATCC 26288	Ascomycotina (Ph.)		1765	6.99	X58055	1
~~	Schizosaccharomyces pombe 2 Yarrowia lipolytica	Strain MUCL 30245, CBS 356 Strain MUCL 29853, ATCC 18942, CBS 6124	Ascomycotina (Ph.) Ascomycotina (Ph.)		1839 (1521)	0.001 88.88	X58056 M60312	RT
-	Zygosaccharomyces rouxii	Strain MUCL 30254, CBS 732, ATCC 2623	Ascomycotina (Ph.)		1801	100.0	X58057	Ę
	Bullera alba	Strain MUCL 30301, CBS 501, ATCC 18568	Basidiomycotina (Ph.) Basidiomycotina (Ph.)		1807	100.0	X60179	ž
	Filobasidiella neoformans 1 Filobasidiella neoformans 2	Strain MUCL 30453, CBS 6886, ATCC 28958	Basidiomycotina (Ph.)		1797	100.0	X60183	
	Rhodosporidium toruloides	Strain MUCL 30249, CBS 14, ATCC 15385	Basidiomycotina (Ph.) Basidiomycotina (Ph.)		1804	100.001	X60180	
	Sporobolomyces roseus	Strain MUCL 30251, CBS 486, ATCC 24257	Basidiomycotina (Ph.)		1805	99.9	X60181	
. !	דרנורפארירהו ההרמוופיייי	DIEGIN MOLE 20200 / 202 - 2020 / 2020					->->>	

Table 1. List of SSU rRNA sequences added to the database since publication of the previous compilation (477).

Method (h)		Ď	ğ			ğ	ð	ğ	Į,	ŽŽ	i		ļ	Į	Į	ğ								RT	Į,	ĮŐ	ğ		ក្តី	2				ţ	ž								ĩ					2	ž	i		ğ				R			-
Access.	 X62396 X62441	M55285	M55286	0120M	M62706	X56532	X56533	X53485	X56531	M64245	M61722	M61723	M54897	M64243	X57162	X57008	X54276	X55032	X59604	X59605 X59607		000100	X61689 X61689	M69186	M65248	M63812	M60313	M62790	M58171	X60047	M60671	X53853	X53854	20000V	M35020	M75037	M/5038	M75035	M75036	M75062	12002/W	M75072	M35017	M75068	M75047	M75071	M75075	M35016	M63811	M75044	M75041	M63900	M75079	M75084	M75064	M35019	M75061	M75073	~~~~
E.coli	100.0	100.0	100.0	97.9 7 0 7 0	81.8	96.2	96.0	100.0	96.2	0.001	98.9	98.4	100.0	0.001	100.0	100.0	0.001	99.99	0.001	100.0		0 001	100.0	95.5	95.5	87.5	6.99	92.6	94.6	0.46	93.1	100.0	100.0	2.25	95.2	96.0	2.02	95.8	95.7	94.7	0.0	95.1	93.8	- 0 - 0 - 0	20.0	8.46	94.8	8.1	5.78	94.7	95.1	97.1	9.46	95.3	95.5	96.0	95.4	6.49	;;;
Length (e)	1798	1790	1829	(6161)	(1502)	(1708)	(1695)	1771	(1686)	1796	(2071)	(2102)	2147	1744	1773	2039	1762	1884	1693	1693			1472	 (1420)	(1420)	(1293)	1493	(1420)	(1402)	(21303)	(1380)	1466	1466	(1464)	(1467)	(1478)	(1477)	(1476)	(1472)	(1457)	(1462)	(1464)	(1456)	(1881)	(1465)	(1459)	(1459)	1529	(1347)	(1457)	(1463)	(1495)	(1457)	(1467)	(1450)	(1480)	(1467)	(1455)	
ic Position (d)	 Ch]oronhvta (Bh.)	Chrysophyta (Ph.)	Xanthophyta (Ph.)	Chytridiomycota (Ph.)	Chvtridionvcota (Ph.)	Ciliophora (Ph.)	Ciliophora (Ph.)	Ciliophora (Ph.)	Ciliophora (Ph.)	Peridines (Ph.)	Sporozoa (Ph.)	Sporozoa (Ph.)	Sporozoa (Ph.)	Sporozoa (Ph.)	Cryptophyta (Ph.)	Cryptophyta (Ph.)	Cryptophyta (Ph.)	Cryptophyta (Ph.)	Microsporidia (Ph.)	Microsporidia (Ph.) Microsporidia (Ph.)	•			Alpha group	Alpha group	Alpha group	Alpha group	Alpha group	Alpha group	Alpha group	Alpha group	Alpha group	Alpha group	Beta group	Beta group	Gamma group	Camma group	Gamma group	Garma group	Garma group	Camma group	Gamma group	Gamma group	Gamma group	Gamma group	Gamma group	Gamma group	Gamma group	Gamma group	Gamma group	Gamma group	Gamma group	Gamma group	Gamma group	Gamma group Gamma group	Gamma group	Gamma group	Gamma group	
Taxonomi	 Basidiomycotina (Ph.) Chlorobionts (assemblage)	Chromobionts (assemblage)	Chromobionts (assemblage)	Mastigomycetes (assemblage) Maetinomycetes (assemblane)	Masticomycetes (assemblace)	Ciliates (assemblage)	Ciliates (assemblage)	Ciliates (assemblage)	Ciliates (assemblage)	cillates (assemulage) Dinofladellates (assemblade)	Sporozoa (assemblage)	Sporozoa (assemblage)	Sporozoa (assemblage)	Sporozoa (assemblage)	Cryptomonads (assemblage)	Cryptomonads (assemblage)	Cryptomonads (assemblage)	Cryptomonads (assemblage)	Microsporidia (assemblage)	Microsporidia (assemblage) Microsporidia (assemblage)			Halobacteria Halobacteria	Proteobacteria	Proteobacteria	Proteobacteria	Proteobacteria	Proteobacteria	Proteobacteria Droteobacteria	Proteobacteria	Proteobacteria	Proteobacteria	Proteobacteria	Proteobacteria Proteobacteria	Proteobacteria	Proteobacteria	rroteobacteria Proteobacteria	Proteobacteria	Proteobacteria	Proteobacteria Protechanteria	Proteobacteria Proteobacteria	Proteobacteria	Proteobacteria	Proteobacteria Droteobacteria	Proteobacteria Proteobacteria	Proteobacteria	Proteobacteria	Proteobacteria	Proteobacteria	Proteobacteria	Proteobacteria	Proteobacteria Droteobacteria	Proteobacteria	Proteobacteria	Proteobacteria Proteobacteria	Proteobacteria	Proteobacteria	Proteobacteria Droteohantaria	
Specification (c)	Strain MUCL 30488 Strain 211-8k (T)	Strain COMP A3807	Strain UTEX 50	SCIRIT NUI Strain MOHI	Strain FL				Strain ATTC 30600				Strain Uganda-I-CDC		Nuclei	Nucleomorph	Nuclei	Nucteomorph	Erythrocytes	Erythrocytes Erythrocytes			Clone PHC8, OPEFON FINA Clone HH10, Operon FrnB	CCI Strain B91-007353	Strain B91-007352, ATCC 53690			Strain ATCC 25396	Strain MS1, ATCC 31632 Strain arcc 35685	Strain NCTC 12138		Strain 2.4.1, operon rrnA	Strain 2.4.1, operon rrnB	Strain ATCC 25869 (T)	Strain ATCC 14686 (T)								Strain ATCC 19393 (T)					Strain 198A	SULAIN AILC 19929 (1)			Strain CIP 542 (T)				Strain ATCC 33391 (T)			
Species (b)	Jstilago maydis (i) Thiorella sorokiniana	Mallomonas papillosa	Tribonema aeguale	Neocallimastix joyonii	Piromonas communis	Colpidium campylum	Glaucoma chattoni	Onychodromus guadricornutus	Opisthonecta henneguyi	uxytricna granuiitera rruntharodinium cohnii	Plasmodium fragile	Plasmodium gallinaceum	Plasmodium malariae	Sarcocyatta mutta Thailaria annilata	Cryptomonas phi 1	Cryptomonas phi 2	Pyrenomonas salina l	Pyrenomonas salina 2	Babesia bigemina 1	Babesia bigemina 2 Babesia bigemina 3		ARCHAEBACTERIA	Halobacterium marismortui Halobacterium marismortui 2	EUBACTERIA Afipia clevelandensis	Afipia felis	Alpha-proteobacterium 1 Albha-proteobacterium 2	Anaplasma marginale	Ancylobacter aquaticus	Aquaspirillum magnetotacticum	Bartonella bacilliformis 1 Bartonella bacilliformis 2	Rhodobacter capsulatus 2	Rhodobacter sphaeroides 1	Rhodobacter sphaeroides 2	Knocobacter spinerolues J Vincella indolonanae	Neisseria denitrificans	Actinobacillus actinomycetemcomitans 1	Actinobacillus actinomycetemcomitans 2 actinobacillus actinomucatamcomitans 3	Actinobacillus actinomycetemcomitans 4	Actinobacillus actinomycetemcomitans 5	Actinobacillus capsulatus 1	Actinobacilius capsulatus 2 Actinobacilius capsulatus 3	Actinobacillus equuli	Actinobacillus lignieresii 1	Actinobacillus lignieresti 2	Actinobacilius pieuropneumoniae	Actinobacillus summins Actinobacillus suis	Actinobacillus ureae	Bacteroides nodosus	CardioDacterium nominis Camma_protecharterium	Haemophilus aegyptius	Haemophilus aphrophilus	Haemophilus ducreyi 1	Haemophilus ducreyi 2 Haemophilus ducreyi 3	Haemophilus ducreyi 4	Haemophilus haemoglobinophilus usemonhilus haemoluticus	Haemophilus influenzae	Haemophilus paracuniculus	Haemophilus parahaemolyticus	
	 5 	78 M	H 62		5	8	84	85 0	8		68	90 P	91 19	n E		95	96 P	- da - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	86 86	a 001		~	101 102 H	 103 8	104 8	106	107	108	601		112	113			112	118	611	121	122	123	124	18	127	128	62 -	RE	Ē	133	12	136	137	138	2.9	=	23	2	15	146	

Table	1. continued							
9. 1	Species (b)	Specification (c)	Taxonomic (Position d)	Length (e)	E.coli	Access.	Method (h)
148	Haemophilus parainfluenzae 2		Proteobacteria	Gamma group	(1459)	94.6	M75081 M75076	
150	Haemophilus paraphrophilus 1 Haemophilus paraphrophilus 1		Proteobacteria Proteobacteria	Gamma group	(1457)	7.46	M75042	
151	Haemophilus paraphrophilus 2 Haemophilus haranis 1		Proteobacteria Proteobacteria	Gamma group	(1452)	94.1	M75065	
12	Haemophilus parasuis 2		Proteobacteria	Gamma group	(1467)	95.3	M75066	
154	Haemophilus segnis Haemophilus sp.		Proteobacteria Proteobacteria	Gamma group Gamma group	(1479)	95.7	M75077	
156	Haemophilus taxon C		Proteobacteria	Gamma group	(1475)	95.7	M75056	H.C.
157	legionella bozemanii Legionella ervthra	Strain NCTC 11368 Strain NCTC 11977	Proteobacteria Proteobacteria	Gamma group Gamma group	(1389)	89.5	M36027	L L
159	Legionella hackeliae	Strain NCTC 11979	Proteobacteria	Garma group	(1416)	4.16	M36028	RT.
160	Legionella longbeachae	Strain NCTC 11477	Proteobacteria Protecharia	Garma group	(1426)	92.3	M36029 M36023	RT T
162	Legionella pneumophila 2	Strain NCTC 11286	Proteobacteria	Garma group	(1420)	91.7	M36024	RT.
591	Legionella pneumophila 3	Strain NCTC 11233	Proteobacteria	Gamma group	(1406)	90.6	M36025	T T M
165	Legionella spiritensis	Strain NCTC 11900 Strain NCTC 11990	Proteobacteria	Gamma group	(1424)	92.2	M36030	RT
166	Oceanospirillum linum Destauralle services	Strain ATCC 11336 (T)	Proteobacteria Proteobacteria	Garma group	(1511)	94.8	M22365 M75048	
168	Pasteurella anatis		Proteobacteria	Garma group	(1469)	95.6	M75054	
169	Pasteurella canis		Proteobacteria Protechanteria	Gamma group	(1466)	95.7	M75051	
22	resteurella gallinarum		Proteobacteria	Carma group	(1469)	94.9	M75059	
172	Pasteurella haemolytica 1		Proteobacteria	Garma group	(1469)	95.5	M75063 M75080	
174	Pasteurella langaa		Proteobacteria	Garma group	(1463)	95.1	M75053	
175	Pasteurella multocida	Strain NCTC 10322 (T)	Proteobacteria	Garma group	(1500)	96.4	M35018 M75083	RT
175	rescenteila sp. 1 Pasteureila sp. 1		Proteobacteria Proteobacteria	Gamma group	(1482)	96.2	M75052	
178	Pasteurella sp. 2		Proteobacteria	Gamma group	(1470)	95.4	M75055	
179	Pasteurella stomatis Pasteurella volantium 1		Proteobacteria Proteobacteria	Gamma group Gamma group	(1460)	4.46	M75060	
181	Pasteurella volantium 2		Proteobacteria	Gamma group	(1473)	95.5	M75070	Ę
182	Serratia entomophila Serratia ficaria	Strain ATCC 43705 Strain C4024, ATCC 33105	Proteobacteria Proteobacteria	Gamma group Gamma group	(1483)	96.5	no Acc	z tz
184	Serratia fonticola	Strain G3965, ATCC 29844	Proteobacteria	Garma group	(1486)	9.96	no Acc	28
185	Serratia grimesii Serratia linuafariane	Strain G503, ATCC 14460 Strain G866 ATCC 77602	Proteobacteria Proteobacteria	Gamma group Gamma group	(0641)	9.7.6	no Acc	z tz
187	Serratia marcescens	Strain G504, ATCC 13880	Proteobacteria	Gamma group	(1491)	97.3	no Acc	T L
188	Serratia odorifera	Strain G1073, ATCC 33077	Proteobacteria	Garma group	(1491)	97.0	no Acc	L A
190	Serratia plymuthica Serratia proteamaculans	Strain G510, ATCC 183 Strain G3630, ATCC 19323	Proteobacteria Proteobacteria	Gamma group Gamma group	(1671)	0.76	no Acc	T T
161	Serratia rubidaea	Strain G864, ATCC 27593	Proteobacteria	Garma group	(1494)	97.2	no Acc	RT
192	Vibrio harveyi Campylobacter coli		Proteobacteria Proteobacteria	Gamma group Uncertain affiliation	(1379)	91.2	no acc	
191	Campylobacter fetus subsp. fetus	Strain ATCC 27374	Proteobacteria	Uncertain affiliation	(1447)	92.6	M65012	
195	Campylobacter fetus subsp. venerealis Campylobacter budintestinalis	Strain ATCC 19438	Proteobacteria	Uncertain affiliation Uncertain affiliation	(1446)	92.6	M65009	
197	Campylobacter hyointestinalis 2	Strain ATCC 35217	Proteobacteria	Uncertain affiliation	(1448)	95.3	M65010	
198	Campylobacter jejuni		Proteobacteria	Uncertain affiliation	(1437)	94.9	NO ACC M62690	
200	Fibrobacter intestinales i Fibrobacter intestinales 2	Strain Jul Strain LH1	Proteobacteria Proteobacteria	Uncertain affiliation	(1344)	88.3	M62691	
201	Fibrobacter intestinales 3	Strain NR9	Proteobacteria	Uncertain affiliation	(1349)	88.4	M62695 M62686	
203	Fibrobacter intestinales 4	Strain DR7	Proteobacteria Proteobacteria	Uncertain affiliation	(1337)	87.9	M62687	
204	Fibrobacter succinogenes 1	Strain REH9-1	Proteobacteria	Uncertain affiliation	(1142)	75.1	M62682	
205	Fibrobacter succinogenes 2 Fibrobacter succinogenes 3	Strain A3C Strain B1	Proteobacteria Proteobacteria	Uncertain airillation Uncertain affiliation	(1328)	87.7	M62684	
207	Fibrobacter succinogenes 4	Strain BL2	Proteobacteria	Uncertain affiliation	(1344)	88.7	M62685	
208	Fibrobacter succinogenes 5 Fibrobacter succinomenes 6	Strain GC5 Strain HM2	Proteobacteria Proteobacteria	Uncertain affiliation Uncertain affiliation	(1335)	- 0.88	M62689	
210	Fibrobacter succinogenes 7	Strain MB4	Proteobacteria	Uncertain affiliation	(1319)	87.2	M62692	
212	Fibrobacter succinogenes 8 Fibrobacter succinogenes 9	Strain MC1 Strain MM4	Proteobacteria Proteobacteria	Uncertain affiliation Uncertain affiliation	(1328)	88.1	M62694	
213	Fibrobacter succinogenes 10	Strain S85	Proteobacteria	Uncertain affiliation	(1428)	1.16	M62696	
214	Helicobacter felis 1 Helicobacter falte 2	Strain CS1 (T) Strain DS3	Proteobacteria Proteobacteria	Uncertain affiliation Uncertain affiliation	(1413)	94.6	M37643	RT
216	Bacillus acidoterrestris	Strain DSM 3922	Firmicuta	LOW G+C	(1415)	91.2	X60602	
217	Bacillus alcalophilus Bacillus alvei 1	Strain DSM 485 strain and 6344	Pirmicuta		(6181)	4.68	X57304	
219	Bacillus alvei 2	Strain NCDO 1153	Firmicuta	Low G+C	(1332)	85.5	X60604	
220	Bacillus amyloliquefaciens Bacillus amylolyticus	Strain ATCC 23350 Strain NCTMB 8144	Firmicuta	LOW G+C	(1389)	4.68	X60606	
222	Bacillus aneurinolyticus	Strain NCIMB 10056	Firmicuta	Low G+C	(1407)	91.5	X60645	
223	Bacillus atrophaeus	Strain NCIMB 12899	Firmicuta	Fow 6+C		1 2.00		

	Specification		Taxonomic Position	Length	E.colil	Access. 1
(Þ)	(c)		(d)	(e)	• (£)	(6)
ans	Strain ATCC 35681	Firmicuta	Low G+C	(1378)	88.8	X60608
	Strain MCD0 1760	Firmicuta		(1343)	87.0	X60609
cans	Strain NCIMB 12555	Firmicuta	Low G+C	(1420)	51.16	X60611
	Strain NCDO 1775	Firmicuta		(1383)	1.06	X60612
	Strain NCDO 1761	Firmicuta	Low G+C	(1394)	1.06	x60614
30.8	Strain DSM 91	Firmicuta	Low G+C	(1415)	91.5	X60615
rus	Strain NCIMB 11434	Firmicuta		(147)	1.16	X60616
	Strain ATCC 29948	Firmicuta	LOW G+C	(1373)	69.3	X60617
	Strain DSM 5	Firmicuta	LOW G+C	(1384)	69.3	X60642
2011	Strain NCIMB 854/	rirmicuta signification	Tow G+C	(1420)	91.6	X60618
orus 1	Strain ATCC 3343 Strain ATCC 6344 DSM 36	Firmicuta Firmicuta			6.06	X60619
orus 2	Strain NCDO 1763					100104
	Strain NCTMR 12780	Pirmicuta Pirmicuta		(2021)	1.06	070004
218	Strain Arr 14707	Firstore			1.12	179093
	Strain NCDO 1127			(6961)		770007
ormis	Strain NCDO 1772	Firmicute Firmicute			0.00	100000
1	Ctrain and 2344 Dow 24			(1951)	0.00	57909X
- •	CLUST ALCO 0234, USN 24	LITERICUCS		(1476)	22.26	X57306
		FIFT TOULA	LOW G+C	(1359)	87.4	X60624
Lensis I	SCRAIN DSM/ATCC23464	Firmicuta	LOW G+C	(1476)	94.9	x57305
ensis 2	Strain NCTC 10419	Firmicuta	Low G+C	(1419)	91.1	X60625
115	Strain NCIMB 10500	Firmicuta	Low G+C	(1397)	5.06	X60626
	Strain NCIMB 10437	Firmicuta		(1368)	6.88	X60628
	Strain DSM 32	Firmicuta				070000
	Ctrain WTWD 13701			(6901)		47000Y
	STATE NORT 12/21			(00+1)	1.06	X60630
anticus	Strain NCDU 1/65	L'ILMICALS	LOW G+C	(1357)	87.0	X60627
[]	Strain NCIMB 8841	Firmicuta	I LOW G+C	(1379)	89.0	X60631
	Strain DSM 36	Firmicuta	Iow G+C	(1176)	2,5	X57308
2	Strain NCDO 1774	Firmicuta				000000
	Strain ATCC 14706					10000
	Strain after 23304					5500Y
SULT IN SULT IN			TOW 64C	(1362)	88.1	X60634
Saccharolyticus	Strain ATCC 23296	Firmicuta	I LOW G+C	(1388)	89.9	X60635
ciens	Strain NCDO 1141	Firmicuta	LOW G+C	(1381)	88.8	X60636
	Strain NCDO 1766	Pirmicuta	Low G+C	(1384)	89.6	X60637
	Strain DSM 1321	Firmicuta	2+2 701	10361)	0.98	VEDEJB
	Strain DSM 4216	Pirmicut a				
116	Strain NCDO 1767	Pirmicuta				
correction 1				(0/01)	0.10	8000Y
contraction of						500 CY
7 SULIDATIO	Strain NULU 1/00	LITTLUICUCA	TOW G+C	(1364)	87.8	X60640
;	Strain NCUU 1/69	FIRMICULA	Tow G+C	(1418)	91.8	X60646
lucosadicus	Strain ATCC 43742	Firmicuta	Low G+C	(1321)	86.9	X60641
		Firmicuta	104 640	1521	0001	A60935
bei i		Firmicuta				
		STUTT STUTT S		(2021)	0.00	M02421
ruabut		r i rmicuta	TOW G+C	1517	100.0	M69264
	Strain NCDO 2369 (T)	Firmicuta	I LOW G+C	(1441)	92.5	no Acc
sliflavus	Strain NCDO 2376	Firmicuta	LOW G+C	(1383)	88.9	no Acc
78	Strain NCDO 596 (T)	Firmicuta	Low G+C	(1437)	92.4	no Acc
ium	Strain NCDO 942 (T)	Firmicuta	Low G+C	(7521)	92.2	000 000
inarum.	Strain NCDO 2313 (T)	Firmicuta	U+0 nC1	12011	10	004
	Strain NCDO 1258 (T)	Firmicuta				
doratus	Strain NCDO 846 (T)					
111	Ctrain MCDO 2376 (m)	Pist and other				
						DO ACC
		DIDITE T	TOW 6+C	(5441)	1.54	no Acc
Incout	SCIAIN NULL IZISZ (T)	FIRMICUTA	TOW G+C	(1452)	93.4	no Acc
ureus	Strain NCDO 23/9 (MUTK31)	Firmicuta	TOW G+C	(1484)	95.2	X55133
THE STATE		Firmicuta	I LOW G+C	(1475)	95.7	M59230
idophilus	Strain NCDO 1748 (T)	Firmicuta	Low G+C	(1341)	86.6	X61138
imalis	Strain NCDO 2425 (T)	Firmicuta	Low G+C	(1369)	88.1	x61133
evis	Strain NCDO 1749 (T)	Firmicuta				VELLAN
	Strain MOTO 110 (T)	Pi vel onte				
				(9771)	+ · · · · ·	X01139
7 195		r i finitore		(9651)	1.05	X61135
mencum	(I) OCI DODA UTATI	FILMICULA	TOW G+C	(1332)	85.3	X61142
uctosus	Strain NCDO 2345 (T)	Firmicuta	I LOW G+C	(1304)	84.2	X61140
iseri	Strain NCDO 2233 (T)	Firmicuta	Low G+C	(1282)	82.7	X61137
lveticus	Strain NCDO 2712 (T)	Firmicuta	LOW G+C	(1268)	81.8	X61141
	Strain NCDO 2160 (T)	Firmicuta				
francisco	Christ True 666					
DIFFUCTION		LIEMICULA	TOW GAC	(1440)	9.16	X61132
STIRUTS	Strain NCIC 12197	Firmicuta	LOW G+C	(11+1)	91.1	X61136
7	Strain PPAV	Firmicuta	Low G+C	1151	100 0	X55271
		Pirmicuta		10000		
i dont n i mus	Strain MOTO 2025 (T)	Pit sum i cut a				10/704
				(6671)	03.1	105858
suartytus	STEALD NCLU 1091 (T)	Firmicuta	LOW G+C	13061/		
ationation				1100011	83.5	X58319

Method (h)	R R	21	2 2	RT		2 52	RT	T N U		RT	RT	E I	25	12	ł								ñ							e da	ź		Į	5		Ъ Б	ž						1	ž	; •	ð	ğ						Ĕ		Ő		ğ	ğ	Ř	
Access.	X58317 no Acc	X58310	X58306	X58314	X58318	X58316	X58311	X58302	ACCESSY ACCESSY	X58312	X58315	X58304	0758CX	X56321	X54275	M62702	M62703	M33908	X55609	X55608	M38018	C # C 8 C M	X52918	M61667	M61668	M61669 M61670	M61671	M61672	M61673	1000003	M61662	X55592	X52932	M61663	X52919	X52923	X52927	M61683	M61684	M61685	M29575	X55591	X55587	77055X	M61666	X52920	X52928	M61674	M61676	M61677	M61679	M61680	X52934	42626X	X52922	X55590	X52926	X52925	X52917	X55588
E.coli	83.4 93.6	81.5	78.3	82.2	83.8	82.8	80.0	83.0		83.1	1.18	84.3		4. 60 8. 1. 0		7.46	88.5	86.6	81.8	91.2	97.1	0.001	95.2	86.6	87.9	87.9	88.5	88.2	0.68	4.19	85.6	93.3	95.1	9.78	95.0	95.0	34.5	6.98	88.8	88.5		95.9	95.5	2	87.7	97.1	95.2	87.6	87.2	88.3	87.5	87.4	95.1	0.0	95.2	95.5	95.0	95.2	95.5	92.4
Length (e)	(1294) (1457)	(1262)	(1215)	(1276)	(0021)	(1285)	(1242)	(1286)		(1290)	(1256)	(1308)		(10001)	1518	(1481)	(1387)	(1313)	(1241)	(0681)	(1201)	2101	(1460)	(1320)	(1346)	(1337)	(1356)	(1351)	(1363)	(1410)	(1298)	(1416)	(1446)	(2441)	(1455)	(1453)	(1446)	(1353)	(1361)	(1355)	(2551)	(1458)	(1478)	(1443)	(1344)	(1488)	(1461)	(1337)		(1349)	(11461)	(1337)	(1458)	(1641)	(1449)	(1450)	(1454)	(1461)	(1464)	(1416)
nomic Position (d)	Low G+C	LOW G+C		Low G+C	Low G+C	Low G+C	Low G+C	Low G+C		Tow G+C	LOW G+C	LOW G+C	Low G+C	Tour G+C	velated to low G+C Firmicuta	Species with Gram-negative walls	Snecies with Gram-negative walls	High G+C	High G+C	High G+C	High G+C	High G+C		High G+C	High G+C	High G+C		High G+C	High G+C	High G+C	High G+C	High G+C	High G+C		High G+C	High G+C	High G+C		High G+C	High G+C		High G+C	High G+C	High G+C		High G+C	High G+C	High G+C	High G+C		High G+C	High G+C	High G+C	High G+C		High G+C	High G+C	High G+C	High G+C	High G+C
Taxon	Firmicuta	Firmicuta	Firmicuta	Firmicuta	Firmicuta	Firmicuta	Firmicuta	Firmicuta	Firmicuta	Firmtcuta Pirmtcuta	Firmicuta	Firmicuta	Firmicuta	Firmicuta	Firmicuta	PER LINE OL GESCENC	r Limitute	Firmicuta Firmicuta	Firmicuta	Firmicuta	Firmicuta	Firmicuta	Firmicuta	Firmicuta	Firmicuta	Firmicuta	Firmicuta Distribute	Firmicuta	Firmicuta	Firmicuta	Firmicuta	Firmicuta	Firmicuta	Firmicuta	Firmicuta Firmicuta	Firmicuta	Firmicuta	Firmicuta	Firmicuta	Pirmicuta	Firmicuta	Firmicuta	Firmicuta	Firmicuta	Firmicuta Diversions	Firmicuta	Firmicuta	Firmicuta	Firmicuta	Firmicuta Firmicuta	Firmicuta Firmicuta	Firmicuta	Firmicuta	Firmicuta	Firmicute Dirmicute	Firmicuta	Firmicuta	Firmicuta	Pirmicuta Pirmicuta	
Specification (c)	NCDO 597 (T) NCTO 2674	NCTC 11325 (T)	NCDO 2720 (T)	D NCDO 2493 (T)	NCDO 1037 (T)	DSM 20770 (T)	NCTC 11324 (T)	n NCTC 11558 (T)	n NCTC 10449 (T)	D NCIC 1142/ (T)	NCD0 600 (T)	n NCDO 2723 (T)	n NCDO 1779 (T)	n DSM 20742 (T)	NCTC 12166 (T)	20102			DOM DOW (TEAM 379)	DSM new (IFAM 78)				01758 WSD UT						vin vallee	ain ATCC 14472	10 DSM 43294	ain ATCC 14474	rain ATCC 6841 (T)	teres amon teres	rain ATCC 14470	rain ATCC 15985					Strain ATCC 124/8 Strip atcc 23013			train ATCC 29571		Strain ATCC 19530						Strain ATCC 19698	Strain ATCC 19981	Strain ATCC 25275	Strain ATCC 19400 Strain ATCC 33026	Strain ATCC 25799		565810 AUCC 13/33 244440 437	
	Strain	Strain	Strain	Strai	Strai	Strair	Strait	Strai	Strai	SCLA	Strai	Strai	Strai	Strai	Strain		SCLAIN	CLEATO		Strai				STIA						Stre	Str	Stra	Str	Sti	ć	5 K	s S				_				<u></u>				_	_			-	_						5
Species (b)	Streptococcus bovis streptococcus bovis strantococcus caonius	Streptococcus constellatus Strain	Streptococcus cricetus Strain	Streptococcus downed Streptococcus acui	Streptococcus equinus Strai	Streptococcus hyointestinalis Strair	Streptococcus intermedius Strai	Streptococcus macacae Strai	Streptococcus mutans	Streptococcus oralis	Streptococcus porcinus	Streptococcus rattus	Streptococcus salivarius	Streptococcus sobrinus Strai	Streptococcus vestibularis Strain	Propionigenium modestum	Selenomonas ruminantium 2 Strain		ACLINICHYCES VISCOBUS 2 DELENI Amunolata sitrificans 2 Detesi	Amycolata Detroleophila Strai	Brevibacterium bifidum	Frankia sp.	Micrococcus luteus	Mycobacterium avium 3 Muchactarium avium 4	Mycobacterium avium 5	Mycobacterium avium 6	Mycobacterium avium 7	Mycobacterium avium 8	Mycobacterium avium 10	Mycobacterium bovis 2 Stra	Mycobacterium chelonae	Mycobacterium cnitae z Mycobacterium farcinogenes	Mycobacterium flavescens 2 Str	Mycobacterium fortuitum	Mycobacterium gadium	Mycobacterium gastri Mycobacterium gordonae 2 St	Mycobacterium intracellulare 1 St	Mycobacterium intracellulare 2	Mycobacterium intracellulare 3 Mycobacterium intracellulare 4	Mycobacterium intracellulare 5	Mycobacterium intracellulare 6	Mycobacterium kansasii 2	Mycobacterium lebrae 2	Mycobacterium leprae 3	Mycobacterium malmoense 1 S	Mycobacterium maimoense z Murcharterium marinum	Mycobacterium monchromogenicum 2 1	Mycobacterium paratuberculosis 2	Mycobacterium paratuberculosis 3	Mycobacterium paratuberculosis 4	Mycobacterium paratuberculosis 5	Mycobacterium paratuberculosis / Mycobacterium maratuberculosis 8	Mycobacterium paratuberculosis 9	Mycobacterium scrofulaceum	Mycobacterium simiae	Mycobacterium smegmatis Mycobacterium subachi	Mycobacterium szulgai 1	Mycobacterium szulgai 2	Mycobacterium terrae 2	

	Method (h)	
	Access. (g)	X52929 X529160 X551160 X551161
3 1 1 1 1 1	E.coli (f)	៵៷៵៴៵៳៰៸៶ ៵៷៵៴៵៳៰៸៶ ៲៹៶៸៵៴៳៸៰៶៸៴៸៵៱៵៸៹៱៷៵៱៵៷៵៱៹៷៵៱៵៱៵៱៵៱៵៱៵៹៵៵៵៵៵៹៵៵៱៰៰៰៵៱៰៰៵៵៱៵៵៵៵៵៵៵៵៰៰៰៰៰៰៰៰
	Length (e)	
	c Position (d)	High Gec High Gec Dreartain affiliation Uncertain affiliation Uncertain affiliation Plavobecterium group Flavobecterium group Plavobecterium group Flavobecterium group Plavobecterium group Flavobecterium group Plavobecterium group Flavobecterium group Flavobecterium group
	Taxonomio (Firmicuta Firmic
	Specification (c)	Strain ATCC 19260 Strain ATCC 19260 Strain ATCC 19260 Strain DSM 40313 (T) ISP 5313 Strain DSM 40313 (T) ISP 5496 Strain DSM 40313 (T) ISP 5069 Strain DSM 4083 (T) ISP 509. Strain DSM 4083 (T) ISP 509. Strain DSM 4083 (T) ISP 509. Strain DSD 0081 ISP 5509. Strain DSD 0081 ISP 5509. Strain DSD 0083 (T) ISP 5509. Strain DSD 0083 (T) ISP 5509. Strain DSD 0083 (T) ISP 5509. Strain DSD 0093 (T) ISP 5509. Strain DSD 0003 (T) ISP 55
. continued	Species (b)	<pre>Mycobacterium xenopi 2 Mycobacterium asteroidas 2 Froglonibacterium actues Streptonyces busis Streptonyces busis Streptonyces deallosing Streptonyces griaeus aubsp. griaeus Streptonyces griaeus aubsp. griaeus Streptonyces griaeus aubsp. griaeus Streptonyces griaeus aubsp. griaeus Streptonyces furgillium baldachum Streptonycritcillium baldachum Streptonycritcillium baldachum Streptonycritcillium alkonenes Streptonycritcillium baldachum Streptonycritcillium salmonis Streptonycritcillium salmonis Streptonycritcillium salmonis Streptonycritcillium salmonis Streptonycritcillium salmonis Streptonycritcillium salmonis Streptonycritcillium salmonis Mostormal burgdorferi 5 Borrella formona succhiforonis Treponema burgluicum Treponema burglui trachonis Platubecter un fuguul Bundenes physidoreterium ferudis Platubecterium ferudis Bundenes burgluis trachonoris Bundenes burgluis trachonoris Bundenes fuguul Bundenes fuguul Bundenes fuguul Bundenes fuguul Bundenes fuguul Bundenes fuguul Bundenes fuguul Bun</pre>
Table 1	Nr. (a)	

Nr. (a)	Species (b)	Specification (c)	Taxono	wic Position (d)	Length (e)	E.coli * (f)	Access.	Method (h)
455 455 455 455 455	PLASTIDS Pisum attivum Olisthodiscus luteus Cryptenomonas Phi Pyretenomonas salina Antithamnion sp.	Strain F	Magnoliophyta (Div.) Chromobionts (sssemblage) Cryptomonads (sssemblage) Cryptomonads (sssemblage) Rhodophytes (sssemblage)	Magnoliopsida (Cl.) Chrysophyta (Ph.) Cryptophyta (Ph.) Cryptophyta (Ph.) Rnodophyta (Ph.)	1487 1520 1520 1493 1490	100.00	M37430 M82860 X56806 X55015 X54299	
457 458 459 461	MITOCHONDRIA Antilocapta americana Balaenoptera physalus Bathyergus janetta Bathyergus suillus Capta hircus	Adult femmale, liver, isolate no 27	Chordata (Ph.), Vertebrata (SPh.) Chordata (Ph.), Vertebrata (SPh.) Chordata (Ph.), Vertebrata (SPh.) Chordata (Ph.), Vertebrata (SPh.) Chordata (Ph.), Vertebrata (SPh.)	Mammalia (CL.) Mammalia (CL.) Mammalia (CL.) Mammalia (CL.) Mammalia (CL.)	958 976 (784) 978	100.0 86.3 86.3	M55540 X61145 M63565 M63564 M55541	
4 4 4 4 4 4 6 3 2 4 6 3 7 4 6 3 7 4 6 3 7 4 6 3 7 4 6 3 7 4 6 3 7 4 6 3 7 4 6 3 7 4 6 3 7 4 6 3 7 4 6 6 3 7 4 6 6 3 7 4 6 6 7 6 6 3 7 6 6 7 6 6 7 6 6 7 6 6 7 6 6 7 6 6 7 6 6 7 6 6 7 6 6 7 6 6 7 6 6 7 6 6 7 6 6 7 6 6 7 6 6 7 7 6 7 7 6 7 7 6 7 6 7 6 7 7 6 7	Cryptomys damarensis Cryptomys hottentotus 1 Cryptomys hottentotus 1 Cryptomys capenteous 2 Georychus capenteocinereus Heterocephalus glabr.		Chordata (PL.), Vertebrata (SPL.) Chordata (PL.), Vertebrata (SPL.) Chordata (PL.), Vertebrata (SPL.) Chordata (PL.), Vertebrata (SPL.) Chordata (PL.), Vertebrata (SPL.)	Mammalia (CL.) Mammalia (CL.) Mammalia (CL.) Mammalia (CL.) Mammalia (CL.)		8888888 9999 9999 9999 9999 9999 9999	M63569 M635667 M635667 M635666 M635666 M635666	
468 470 471	Percomus typicus Percomus typicus Thryonomys swinderianus Cyptinus carpio Ceanorthadditis elegans	Strain N2 Bristol.	Chordata (Ph.), Vertebrata (SPh.) Chordata (Ph.), Vertebrata (SPh.) Chordata (Ph.), Vertebrata (SPh.) Chordata (Ph.), Vertebrata (SPh.) Nematoda (Ph.), Vertebrata (SPh.)	Mammalia (CL.) Mammalia (CL.) Mammalia (CL.) Gateichthyes (CL.) Secerneitea (CL.)	(752) (752) 951	100.00 86.38 100.00	M63571 M63570 X61010 X54252	
474	Lupinus luteus Lupinus luteus Saccharomyces cerevisiae 5 Plasmodium falciparum	Tissue body wall muscle and egg Strain cv. Topaz, seedlings Strain V25T-R5	Nematoda (Ph.) Magnoliophyta (Div.) Ascomyotina (Ph.) Sporozoa (assemblage)	Secernentea (Cl.) Magnoliopsida (Cl.) Sporozoa (Ph.)	2023	100.00	X54253 211512 X14966 X57167	

Table 1. continued

Footnotes to Table 1

a)This number corresponds with the literature reference.

b)Species are classified alphabetically within each taxonomic group as defined in columns 4 and 5. When different sequences are determined for various strains or genes of the same organism, the sequences are listed separately and the species name is followed by a number

c)This column contains the following data, if specified by the authors:

Strain name for laboratory animals, (cultivated) variety for plants, culture collection and strain number in the case of microorganisms

Tissue from which the DNA used for cloning or amplification was extracted in the case of differentiated organisms.

Ribosomal RNA operon to which belongs the cloned SSU rRNA gene in the case of bacteria.

The absence of a specification is often due to the fact that a sequence is unpublished and that the specification is not mentioned in the submission to a nucleotide sequence library.

d)The taxonomic position is described according to the following references:

477 for the Metazoa (No. 1 to 31), 478 for the higher plants (No. 32 to 43), 57, 70, and 479 for the higher fungi (No. 44 to 76). The taxonomic position of the remaining eukaryotes is decribed according to Corliss (480). The archaebacteria are classified according to Woese (481). The classification of the eubacteria is according to Stackebrandt et al. (482) for the Proteobacteria, according to Wayne et al. (483) for the Firmicuta, and according to Woese (481) for the remaining taxa. We have no information yet on the taxonomic position of species 450 and 451. Taxon designations corresponding to an

e)The SSU rRNA termini are located experimentally (e.g. by S1 nuclease mapping) by some authors, but more often deduced by comparison with structures from related species. In case of length established taxonomic level are followed by the abbreviation Ph. (Phylum), SPh. (Subphylum), Div. (Division) and Cl. (Class).

heterogeneity the length of the longest variant is listed. A number enclosed in brackets means that the sequence is incomplete and gives the number of sequenced nucleotides. This includes partially identified nucleotides denoted as B, D, H, K, M, R, S, V, W or Y, but not unidentified nucleotides denoted as N.

incomplete sequence because a missing segment may be situated in an insertion relative to the E. coli sequence. In order for an SSU rRNA sequence to be listed, the sequenced segments should correspond 1)For incomplete sequences, this is the combined length of the corresponding E. coli SSU rRNA segments as a fraction of the total E. coli SSU rRNA length. This may amount to 100% even for an to segments in the E. coli sequence amounting to a combined length of at least 70% of the complete E. coli SSU rRNA (477).

BAccession number in the EMBL and Genbank nucleotide sequence libraries. The accession number for a sequence is the same in both libraries but there can be a delay before a sequence submitted to one ibrary arrives in the other one.

the h)RT: the SSU rRNA was sequenced by the dideoxynucleotide method using reverse transcriptase. PCR: amplification of the DNA involved use of polymerase chain reaction. In the remaining cases, specific information about the methods used was not available (e.g. unpublished results) or DNA was amplified by cloning only. Sequencing of amplified DNA was then performed in most cases by dideoxynucleotide method.

The SSU rRNA sequence of Ustilago maydis contains a 411-base pair intron between bases 1158 and 1159.

	Mawanan i a					1	Hel:	ices	s (a	a)					
Taxon	level	E8	E1	0	E2	1									E43
		1	1	2	1	2	3	4	5	6	7	8	9	10	1
Insecta	Class	-	*	-	*	*	*	*	*	*	*	*	*	-	-
Platyhelminthes	Phylum	-	*	-	*	*	*	*	*	*	*	*	*	-	-
Schizosaccharomyces pombe	Species	-	*	-	*	*	-	-	*	*	*	*	*	-	*
Yarrowia lipolytica	Species	-	*	-	*	*	-	-	-	*	*	*	*	-	*
Blastocladiella emersonii	Species	-	*	-	*	*	-	-	*	*	*	*	*	-	*
Euplotes aediculatus	Species	*	*	-	*	*	-	-	*	*	*	*	*	-	*
Plasmodium	Genus	-	*	-	*	*	-	-	*	*	*	*	*	-	*
Physarum polycephalum	Species	*	*	*	*	*	-	*	*	*	*	*	*	-	*
Kinetoplastidea	Phylum	*	*	-	*	*	-	-	*	*	*	*	*	*	*
Euglena gracilis	Species	*	*	*	*	*	-	*	*	*	*	*	*	*	*
Babesia bigemina	Species	-	*	-	*	*	-	-	-	*	*	*	*	-	-
Vairimorpha necatrix	Species	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Giardia	Genus	-	-	-	-	-	_	-	-	*	*	*	*	-	-
Naegleria gruberi	Species	-	*	*	*	*	-	*	*	*	*	*	*	-	*
Acanthamoeba castellanii	Species	-	*	-	*	*	-	*	*	*	*	*	*	-	*
All other eukaryotes		-	*	-	*	*	-	-	*	*	*	*	*	-	-

Table 2. Helix occupancy in eukaryotic SSU rRNAs.

a) The presence of a helix is indicated by an asterisk. Only eukaryote-specific helices are listed since universal helices are present in all eukaryotic SSU rRNAs, except for Vairimorpha necatrix SSU rRNA, which misses helices 10, 11 and 44.