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Research and clinical investigations in psychiatry largely rely on the
de facto assumption that the diagnostic categories identified in the
Diagnostic and Statistical Manual (DSM) represent homogeneous
syndromes. However, the mechanistic heterogeneity that poten-
tially underlies the existing classification schememight limit discov-
ery of etiology for most developmental psychiatric disorders.
Another, perhaps less palpable, reality may also be interfering with
progress—heterogeneity in typically developing populations. In this
report we attempt to clarify neuropsychological heterogeneity in
a large dataset of typically developing youth and youth with atten-
tion deficit/hyperactivity disorder (ADHD), using graph theory and
community detection.We sought to determinewhether data-driven
neuropsychological subtypes could be discerned in children with
and without the disorder. Because individual classification is the
sine qua non for eventual clinical translation, we also apply support
vector machine-based multivariate pattern analysis to identify how
well ADHD status in individual children can be identified as defined
by the community detection delineated subtypes. The analysis
yielded several unique, but similar subtypes across both popula-
tions. Just as importantly, comparing typically developing children
with ADHD children within each of these distinct subgroups in-
creased diagnostic accuracy. Two important principles were identi-
fied that have the potential to advance our understanding of typical
development and developmental neuropsychiatric disorders. The
first tenet suggests that typically developing children can be classi-
fied into distinct neuropsychological subgroups with high precision.
The second tenet proposes that some of the heterogeneity in indi-
viduals with ADHD might be “nested” in this normal variation.
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In psychiatry, research and clinical investigation largely relies on
the de facto assumption that the diagnostic categories identified

in theDiagnostic and Statistical Manual of mental disorders (DSM-
IV) represent etiologically homogeneous syndromes. However,
there is considerable evidence that suggests the DSM does not
necessarily describe homogenous conditions, but rather reflects
the end result of multiple unique independent mechanistic path-
ways within a given disorder (1, 2). The mechanistic heterogeneity
that potentially underlies the existing classification scheme might
be limiting our ability to clarify etiology and identify novel thera-
peutics for several psychiatric illnesses (3).
A salient example, and our focus here, is attention deficit/hy-

peractivity disorder (ADHD). It is one of the earliest onset, most
common, and costly neurodevelopmental disorders in child psy-
chiatry (4, 5). Until recently, causal models of ADHD, as with
other mental disorders, proposed a single core dysfunction (6).
Investigators typically compare a group of children with ADHD
defined by core symptoms (i.e., DSM) to a group of control
children without the disorder. Statistical group differences based
on psychometrics, functional brain imaging, or genetics are then
used to inform models of the disorder.

This assumption of homogeneity in the case of ADHD has been
questioned in numerous theoretical papers (7–13). For example,
Nigg et al. (13) showed that several neuropsychological measures
central to ADHD had substantial distributional overlap between
ADHD and control samples. The data suggested that only a small
minority of subjects with the disorder could be considered clinically
“affected” on the basis of any one measure (13). Similar findings
have been noted elsewhere (14, 15). In other words, whereas nu-
merous unique neuropsychological measures have been proposed
as related to ADHD, perhaps each of them applies to only a subset
of those subjects with the disorder.
Although the role of heterogeneity in clinical populations has

caught the collective attention of funding agencies (16) and the
scientific community (8, 13, 15, 17), another, perhaps less palpable,
reality may also be interfering with progress in understanding
psychiatric illnesses—heterogeneity in typical populations. In the
same way that investigators are often bound by the “cognitive box”
(1) of the DSM when examining atypical development, they are
also generally obliged to conduct their analysis as if typically de-
veloping comparison populations represent a monolithic group.
Although consensus remains elusive on defining specific person-
ality or cognitive “types” (18, 19), substantial evidence has accrued
that individual differences in successful adaptive psychological
styles are central to human development, functioning, social co-
hesion, and health outcomes (20–23). It may be that identifying
a mechanism associated with a mental disorder requires compar-
ing individuals to well-adjusted persons with the same cognitive
style or profile.
Although it is easy to propose conceptually that there must be

distinct subgroupswithinmental disorders (or typical populations),
empirically demonstrating such subgroups is not straightforward.
In the case of ADHD, emphasis has been on latent class analysis
using symptom profiles (24), personality traits (25), and devel-
opmental trajectories of symptoms (26). These approaches are
promising but appear to have mainly tended to identify severity
classes rather than distinct categories (27). Efforts to identify types
using neurocognitive measures—in theory, related to pathophysi-
ological mechanisms—are still in the beginning stages. A key goal
of this work is to identify procedures that are not prone to simply
identifying severity groupings.
One approach, which may prove fruitful toward this goal,

emanates from graph theory. Graph theory is a mathematical
discipline about the study of networks, in which networks are
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simply sets of nodes or vertices joined in pairs by lines or edges
(Fig. 1). Graph theory has been used to examine the organization
of a number of relationships within systems (28). Importantly,
many systems have well-defined internal structures and can be
described or demarcated with graph theoretical analyses (28, 29).
One area that has received considerable attention is the de-
tection of community structure in networks. Community struc-
ture refers to the appearance of densely connected groups of
nodes, with only sparse connections between the groups (Fig. 1)
(29). The focus of this report is whether groups of children that
share similar empirical neuropsychological features segregate to
form specific data-driven phenotypic subtypes.
Because individual classification is the sine qua non for eventual

translation to clinical use, we followed our community detection
analysis with an investigation using support vector machine (SVM)-
basedmultivariate pattern analysis (MVPA) (30, 31) to identify how
well individual children can be identified as defined by the com-
munity detection delineated subtypes. SVMs are supervised classi-
fication algorithms rooted in statistical learning theory, capable of
recognizing patterns for the purposes of categorization. Typically
SVMs examine a set of training data for which each data point (e.g.,
person) has been assigned to a unique categorywith several defining
features. On the basis of patterns among the features within each
category, the training algorithm then builds a model capable of
assigning new data points (e.g., individuals) into these specific cat-
egories. Here we use SVM-based MVPA to determine whether
there is sufficient information in the neuropsychological scores to
predict whether any individual can be accurately classified into
a particular neuropsychological subgroup or profile defined by the
community detection procedure. We also use the approach to de-
termine whether ADHD status can be more accurately assigned
after considering the community-based profiles.

Results
Feature Reduction Supported a Seven-Factor Model of Cognitive
Abilities. For the current investigation we apply community de-
tection to a well-characterized dataset of 498 children who in-
clude both typically developing control youth (TDC) (n = 213)
and youth with ADHD (n = 285) (Table S1). From these youth,
some 20 neuropsychological measures were obtained that were
intended to cover a wide domain of cognitive functions variously
theorized to be involved in ADHD (Table S2 and Fig. 2).
Our approach was to use a broad set of neuropsychological

variables relevant to ADHD, while avoiding use of an excessive
number of redundant indicators in our analysis. We therefore
conducted a rational feature reduction using confirmatory factor
analysis (CFA), according to the conceptual model that had
guided our work (Fig. 2 and refs. 32 and 33). All measures were
transformed such that higher scores were indicative of worse

performance (e.g., slower speed or worse accuracy). Fig. 2 por-
trays our primary model with the empirical factor loadings
(SI Text). Because we were sensitive to the possibility of equiva-
lent models, we also tested several competing models that con-
formed in varying degrees to our theorized reasons for choosing
these measures. Fit of all models was evaluated using several in-
dexes, including the χ2-value, the comparative fit index (CFI), the
Tucker Lewis index (TLI), and the root mean-square error of
approximation (RMSEA) (SI Text).
Results for the feature reduction for the neuropsychological

measures showed that a one-factormodel fit inadequately [χ2 (70)=
386.2, CFI=0.87, TLI= 0.84, RMSEA=0.09], justifying our effort
to create a multiconstruct model. Fit was satisfactory and compa-
rable for the best-fitting five-, six-, and seven-factor models as fol-
lows:five-factor χ2 (63)=103.4, CFI=0.98, TLI=0.97,RMSEA=
0.036; six-factor χ2 (58) = 95.1, CFI = 0.98, TLI = 0.98, RMSEA=
0.035; and seven-factor χ2 (52) = 89.9, CFI = 0.98, TLI = 0.97,
RMSEA = 0.038. For our main analysis we present results for the
seven-factor model because we viewed it as conceptually the most
differentiated description of the abilities tested, the most consistent
with our conceptual framework, and equivalent in fit to the other
models. However, we conducted the modularity analysis using the
best-fitting six- and five-factor solutions as well to see whether
community assignments were conceptually similar with these slightly
different indicators, and indeed they were (Fig. S1).

Comparing the Full ADHD and TDC Cohorts Replicated Previous
Findings. The second stage of our analysis began with a tradi-
tional comparison between the ADHD and TDC cohorts. This
analysis was followed by our SVM pattern classifier to determine
how well the neuropsychological scores can inform individual
distinctions between ADHD and TDC.

Fig. 1. Graph theory and community detection. Displayed is a depiction of
a network, where nodes (solid circles) are connected by edges (solid lines). In
this paper nodes are participants and edges are correlations between par-
ticipants’ neuropsychological scores. Community detection algorithms (29)
can be applied to graph structures to identify clusters of nodes (shaded
clouds) that share many edges within clusters relative to between clusters.

Fig. 2. Data reduction for neuropsychological measures. Confirmatory factor
analysis (CFA)was used to conduct rational reduction of themeasures listed in
Table S2. Shown is our conceptual model that depicts how we hypothesized
that our measured variables relate to seven latent factors. It also displays the
factor loadings for the seven-factor model. For ease of presentation, the fig-
ure does not display error terms, cross loadings, or correlations among latent
factors. CWIN, color word inhibition; CWSP, color word speed; CWSW, color
word switching; d′, D-prime; DSB, digit span backward; DSF, digit span for-
ward; SDX, response variability; SSB, spatial span backward; SSF, spatial span
forward; SSRT, stop signal reaction time; STARS, stars task; TAP, tapping task
(temporal information processing task); TRSP, trails number and letter naming
speed average; TRSW, trails-making task switching.
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The comparisons yielded significant differences across all
measures (Fig. 3A and Table S3). Importantly, despite these
highly reliable differences, the SVM classifier was unable to make
strong distinctions in individual cases with regard to ADHD
status (65% accuracy, 86.3% sensitivity, and 38.5% specificity).
This analysis served as a baseline to determine whether the

subgroups identified by our community detection analysis (below)
showed similar findings or whether the atypical nature of any given
factor resided in specific profiles (i.e., groups of participants). In the
same way, we also used this baseline to determine whether di-
agnostic classification could be improved when considering our
community detection-derived profiles.

Community Detection Revealed Unique Subpopulations or Profiles in
both the TDC and the ADHD Cohorts. We first applied community
detection to the TDC population. Although common practice
would expect this investigation to yield one unitary group, the
analysis instead yielded four unique communities or subgroups
(Fig. 4). Importantly, the quality index (Q = 0.45) and variation
of information (VOI) (two measures of community robustness),
as well as a secondary randomization analysis (SI Text and Figs.
S2 and S3), showed that the subgroups identified here were
significantly different from random.
Each of the four groups had unique patterns of factor scores.

One group (43% of sample) appeared to have a pattern consistent
with more response variability relative to their peers (subgroup 1).
The second group (20%of sample) had reduced workingmemory,
memory span, inhibition, and output speed (subgroup 2). The
third group (18% of sample) had relatively inaccurate temporal
information processing (subgroup 3). The last group (18% of
sample) had relatively weak signal detection, suggesting sub-
optimal or altered arousal (subgroup 4). These groups show
minimal differences in intelligence quotient (IQ), age, or sex ra-
tios (with one exception, see Tables S4 and S5). This analysis
shows that despite traditional assumptions that nonclinical con-
trol populations are uniform entities, our results fit better with the
alternative supposition that there are unique neuropsychological
profiles even in typically developing, well-adjusted samples.
Wenext applied the same community detection procedure to the

ADHD sample. Independently testing the community structure in
this sample revealed similar findings, albeit via six groups (Fig. 4).
Again,Q (Q= 0.55) and the VOI analysis (Fig. S2) highlighted the
robustness of the communities. Similar to the TDC, the first group

(21% of sample) appeared to have a pattern consistent with high
levels of reaction time variability relative to their peers (subgroup
1). As with TDC, the second group (17% of sample) appeared to
have reduced working memory, memory span, and output speed
(i.e., subgroup 2A). The third group (20% of sample) also had the
same apparent weaknesses, but with a slightly modified profile in
the remaining measures (i.e., subgroup 2B). The fourth group
(25% of sample) had inaccurate temporal information processing
(subgroup 3). The fifth group (8%of sample) was also similar to the
fourth group of TDC youth in that they appeared to be charac-
terized by suboptimal arousal (subgroup 4A). The sixth group (8%
of sample) was similar to the fifth with regard to low arousal,
however, with a slightly different profile in the remaining measures
(subgroup 4B).
Strikingly, even though these groups were all distinct in their

neuropsychological profiles, they again showed minimal differ-
ences in symptom scores, IQ, age, or sex ratios (Tables S4 and
S5). Thus, these are not simply more or less severe ADHD
groups, but rather unique cognitive profiles within children who
all have similar severity of ADHD.

SVM-Based MVPA Highlights the Robustness of the Community
Detection-Defined Profiles. To further test the overall robustness
of these defined groups we next arranged our SVM to classify
individual subjects between the profiles identified within the
TDC and ADHD cohorts. To do this we first split the ADHD
and TDC samples into two: each cohort having a test set and
a training set (SI Text). We independently reapplied our com-
munity detection procedure to both the ADHD and the TDC
cohorts and reproduced the group assignments identified in the
first analysis (Fig. S4). We then used our training set to train the
SVM on the four group assignments for TDC and the six group
assignments for the ADHD populations. The test evaluates how
robustly any one individual can be classified into his/her neuro-
psychological profile.
Classification generally was quite respectable across the

groups with 78% accuracy for the TDC population (subgroup 1,
93%; subgroup 2, 71%; subgroup 3, 71%; subgroup 4, 81.25%)
and 77% accuracy for the ADHD population (subgroup 1, 78%;
subgroup 2A, 75%; subgroup 2B, 66.25%; subgroup 3, 77%;
subgroup 4A, 88%; note that subgroup 4B was unable to be
examined as it was not reproduced in large enough numbers of
participants within each split to do SVM testing) (SI Text).

Fig. 3. Atypical neuropsychological measures are specific to cognitive subgroup. Here we show the comparison of neuropsychological measures between
ADHD and TDC. (A) Comparison between the entire TDC and ADHD samples. (B) ADHD vs. TDC comparison within each subgroup. Interestingly, atypical
neuropsychological measures relative to the control population are not uniform across all subgroups. Rather, each subgroup has a unique pattern of atypical
measures (*, significant differences between groups; details in Table S3).
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Atypical Neuropsychological Measures Are Unique on the Basis of
Profile and ADHD Classification Improves Within Profiles. Consider-
ing the unique nature of the subclassifications, we next returned
to our group comparisons between ADHD and TDC. However,
instead of comparing all ADHD with all TDC, we now compared
ADHD and TDC neuropsychological scores within their specific
assigned neuropsychological “type” or group. The results are
presented in Fig. 3 and Table S3. Whereas the ANOVA in six of
the seven factors showed a main effect of diagnosis, the post hoc
comparisons showed that not all subgroups had the same atypical
neuropsychological scores.
Among ADHD subgroups, atypical inhibitory control, speed,

and working memory were each found in three groups. Atypical
arousal and span were each identified in two groups. Atypical
response variability and temporal information priming were each
found in four groups. Interestingly, the ADHD classification im-
proved or remained the same for all but one of the groups, relative
to the initial All ADHD vs. All TDC analysis. Group 4A had the
maximal improvement at 84.1% classification of ADHD vs. TCD
youth (83.3% sensitivity and 84.6% specificity). The remaining
groups were as follows: group 1, 68% total, 49.2% sensitivity,
80.4% specificity; group 2A, 68.5%, 83.7%, 51.2%; group 2B,
64.7%, 80.4%, 44.2%; group 3, 73.6%, 88.73%, 46.2%; group 4A,
84.1%, 83.3%, 84.6%; and group 4B, 61.9%, 37%, 76.9%.

Discussion
Trait Variation in the Typically Developing Population Informs
Heterogeneity in ADHD. In this report we used graph theoretical
tools to clarify a portion of the heterogeneity that exists within
ADHD and typically developing control populations. Two impor-
tant principles were identified that have thepotential to advance our
understanding of typical development and developmental neuro-
psychiatric disorders. The first tenet suggests that, on the basis of
neuropsychological performance, typically developing children can
be classified into distinct subgroups with high precision. The second
tenet proposes that the heterogeneity in individuals with ADHD
appears to be “nested” in this normal variation. As illustrated by our
single subject classification procedures, comparing typically de-
veloping children with ADHD children within each of these distinct
subgroups increases diagnostic accuracy (i.e., ADHD vs. non-
ADHD classification) on the basis of the neuropsychological

measures. This work highlights that illumination of such subgroups
could potentially have significant practical importance for un-
derstanding the nature of typical development and identifying the
etiologic underpinnings of complex disorders such as ADHD.

What Is the Role of Behavioral Variation in the Typically Developing
Population and How Might It Arise? For years evolutionary psy-
chologists have argued that human behavior (and that of other
animal species) is under the same selective pressures as the
physical traits so elegantly described by Darwin (34). Indeed,
Darwin himself predicted this likeness to be the case at the end
of his work On the Origin of Species, noting “In the distant future
I see open fields for far more important researches. Psychology
will be based on a new foundation, that of the necessary ac-
quirement of each mental power and capacity by gradation”
(Darwin, 1859) (ref. 19, p. 399). As such, there are evolutionary
arguments to be made with regard to how neuropsychological
diversity might arise in the population.
The modeling literature related to adaptive complex social

systems also provides significant evidence that suggests psycho-
logical heterogeneity is an important means by which to improve
the robustness of the collective when faced with shifting envi-
ronmental demands (35). It is a key feature in the stability of
complex social systems and thus has likely been an important
attribute of our evolving species.
With respect to our findings it should be noted that at times

heritable diversity might form along a continuous dimension
(i.e., unimodal distribution), whereas at others times it may form
as multiple discrete strategies (i.e., multimodal distributions) (21,
36–38). In the latter proposal, average fitness would be about
equal across the normal range of any given behavioral strategy,
but individuals of different strategies might vary in the way they
achieve fitness. Rapid and sizeable changes in environmental
demands across time may have served as the driving force toward
multiple “peaks” with regard to neurocognitive strategies or
profiles in typical populations (21, 36), as found here.
For example, in the cognitive neuroscience literature some have

recently argued that the single-nucleotide polymorphism (val158-
met) of the catechol O-methyltransferase (COMT) gene, which
codes for an enzyme that degrades dopamine in prefrontal cortex,
may relate to evolutionary trade-offs between efficient executive
functioning (met) and improved emotional regulation (val) (21,

Fig. 4. Community detection identified sub-
groups. (A) After applying the community de-
tection procedure to the typically developing
cohort, four unique subgroups (i.e., cognitive
profiles) emerge (y axis = z score). The commu-
nity structure is depicted by correlation matrices
shown in B. These correlation matrices represent
a 213 × 213 matrix (for TDC) and 285 × 285
matrix (for ADHD). On the grid, darker colors
reveal lower or negative correlations between
subjects, and lighter colors reveal positive cor-
relations between subjects. Identified commu-
nities are outlined in white. (C) Independently
applying the community detection algorithm to
the ADHD cohort shows similar findings to those
in A. The difference between the two appears
to be split in subgroup 2 and subgroup 4. The
correlation matrices of the ADHD cohort are
presented in D.
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37). In this proposal each allele is maintained in the population
because each provides an environment-specific selective advan-
tage—one for cognitive efficiency under typical conditions and the
other for emotional resilience under stressful circumstances (21,
37). Similar arguments have been made with regard to COMT and
working memory, with an evolutionary trade-off between efficient
working memory updating (val) and robust working memory
maintenance (met) (22). It might be reasoned that the discrete
subgroups observed here (Figs. 3 and 4) are a small representation
of similar forms of neuropsychological diversity.
Just as important, these data suggest that heterogeneity within

developmental neuropsychiatric disorders, such as ADHD, might
be nested within this normal variation. This proposal provides
a unique, and perhaps fruitful, way to conceptualize and study
heterogeneity in developmental neuropsychiatric disorders.

Atypical Neuropsychological Patterns in ADHDAre Specific to Subgroup
Membership. In general all of the measures examined here have
been previously reported as atypical in ADHD (ref. 13 and Fig.
3). The question then is, Are these measures equally atypical
within all of the identified subgroups?
For the purposes of simplicity, after the community detection

analysis, we labeled each identified subgroup on the basis of the
“standout” factor(s) that was lower relative to the general cohort
for the TDC population. This procedure left us with four groups,
which we label as follows: a variability group (subgroup 1), a low
executive group (subgroup 2), a low temporal information pro-
cessing group (subgroup 3), and a low arousal group (subgroup 4).
Interestingly, independently applying Newman’s community

detection algorithm (29) on the ADHD cohort replicated this
finding, showing similar subgroup patterns (Fig. 4). The main
deviation from the finding in TDC was the revelation of an addi-
tional low arousal group (subgroup 4B) and an additional low
executive group (subgroup 2B). This particular result, again,
suggests that some of the heterogeneity within ADHD appears to
be nested within the variation found in typically developing pop-
ulations. If we begin to examine the cognitive deficits within these
subgroups (Fig. 3 and Table S3), rather than comparing across the
entire cohorts of ADHD and TDC (Fig. 3 and Table S3), we see
unique defining patterns in the deficits based on specific profiles.
For example, poor response inhibition has been suggested to

be a critical component of ADHD (39) and has been well
established at the group level (40). Our initial analysis comparing
the entire ADHD cohort to the TDC population replicates this
particular finding (Fig. 3). However, a closer look at this effect
based on the subgroups identified in our graph analysis shows
that this measure is atypical in only three of the six ADHD
subgroups relative to controls within the same profile.
A similar finding is reported for two other well-known deficits in

ADHD—working memory and temporal information processing.
Again, whereas the comparison of the full ADHDandTDCcohort
replicated previous findings in this regard (41), the comparisons
based on community structure yielded only a subset of profiles with
working memory and temporal information processing deficits.
Qualitatively stronger results appeared for response variability,
which was atypical in four of the six communities, supporting
theories of its importance in ADHD (8). Finally, weaker, although
statistically significant, contributions toward ADHD status were
also identified for spatial span and speed, but again in only a subset
of the identified profiles (Fig. 3 and Table S3). These results
support the claim outlined in the introductory section of this pa-
per: Whereas numerous unique neuropsychological measures
have been proposed as related to ADHD (13), each of them
appears to apply to only a subset of those with the disorder.

Individual Classification Based on Neuropsychological Measures
Improves After Community-Based Subtyping. We note that the ro-
bustness of the identified communities was tested in several ways

(e.g., Figs. S2 and S3), indicating that the group assignments
identified here are highly deviant from random. One of these tests
was the single-subject classification using the SVM-based MVPA.
Here we demonstrated that there is enough information in the
applied cognitive battery to make valid predictions of community
assignment for individual subjects. In addition, we see that di-
agnostic classification of ADHD status for individuals in most of
the subgroups, albeit modest in some, can be identified with higher
accuracy when the community assignments were taken into ac-
count. The ability to characterize individual subjects and identify
ADHD status empirically on the basis of a cognitive battery opens
the door for tractable genetic, functional, and clinical applications.
However, a crucial next step will be to evaluate the temporal
stability of these cognitive types to see whether they improve on
the temporal instability of DSM-IV clinical types.

Current Approach Can Be Extended Across Multiple Modalities for
Other Neuropsychiatric Disorders. Although we believe our repor-
ted findings are quite provocative, we do not claim that they are
exhaustive. Repeating our analysis using additional or unique
neuropsychological domains might further classify or character-
ize profiles. Likewise, extending the present approach to neu-
roimaging studies may accelerate such characterization and
inform heterogeneity in the neurobiology underlying the typical
developing and ADHD populations (42, 43). This approach
would allow for a more streamlined procedure to help inves-
tigators target and test theories related to multiple unique
pathways or circuits related to ADHD (42, 43). Indeed, the same
methods may be well suited to categorize participants on the
basis of the neural circuitry itself or genetic markers (or path-
ways) rather than neuropsychological domains. We hypothesize
that each group identified here is represented by distinct, mul-
tiple brain profiles. Finally we note that the approach used here
is not limited to the study of ADHD, but could be used to inform
heterogeneity and perhaps etiology in other developmental or
adult neuropsychiatric disorders, and thus has broad appeal.

Methods
Subjects and Demographics. Children who completed a full research psychi-
atric evaluation aged 6–17 y participated in this study (TDC, n = 213; ADHD,
n = 285) (SI Text). Demographic details are listed in Table S1.

Background Measures of Cognitive Functioning. Youth completed a diagnostic
screening along with other testing, which included a short form of the
Wechsler Intelligence Scale for Children, Fourth Edition (WISC-IV) (44). The
age-adjusted standardized score was used as the estimate of full-scale IQ.

Neuropsychological Measures Theorized to Relate to ADHD. The neuro-
psychological battery was designed to capture working memory (41), re-
sponse inhibition (39, 45), response variability (8), temporal information
processing (46), arousal and activation (47), interference control (48), and
response speed (49). All of our measures are listed in Table S2. Detailed
explanations of each measure are provided in SI Text.

Factor Analysis Data Reduction for Neuropsychological Measures. Rational data
reduction of our measures was accomplished via confirmatory factor analysis
(Fig. 2). Fit for all of our models was evaluated using several indexes as noted
in Results and SI Text, using the latent variable modeling program, MPLUS.

Identification of Subgroups via Community Detection. To examine the strength
of subject-to-subject relationships via graph theory, correlationmatrices were
created between subjects across the seven identified factor scores. This
procedure created two square correlation matrices providing distance in-
formation (i.e., a correlation) between any given subject pair within the
ADHD and TDC cohorts (Fig. 4). Subsequent community detection (29) was
applied to these matrices separately. The threshold for connected vs. un-
connected pairs in each cohort was based on the maximum threshold where
reachability remained equal to 1 (SI Text). This reachability threshold for
the TDC graph was at r = 0.56, and the threshold for the ADHD graph was
r = 0.73. To ensure our analysis did not depend on threshold selection, we
also ran our community detection across multiple thresholds. In addition, we
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applied a weight-conserving modularity algorithm not dependent on
threshold selection (50). Both additional procedures yielded largely consis-
tent results (Fig. S2 and SI Text). The strength of the modularity assignments
was based on the quality index (Q), VOI (29, 51), and simulations created by
iteratively repeating our analyses after randomizing the factor scores across
participants (SI Text and Figs. S2 and S3). All of the preceding calculations
were performed in MATLAB (Mathworks), using scripts generously provided
by Olaf Sporns, Mikail Rubinov, and other collaborators (52) (Indiana Uni-
versity, Bloomington, IN).

Support Vector Machine-Based Multivariate Pattern Analysis. For the SVM-
based MVPA we use Spider (http://people.kyb.tuebingen.mpg.de/spider/main.
html), an object-orientated environment for machine learning in MATLAB. Full
details of this procedure are provided in SI Text.
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