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The nature and scale of pre-Columbian land use and the conse-
quences of the 1492 “Columbian Encounter” (CE) on Amazonia are
among the more debated topics in New World archaeology and
paleoecology. However, pre-Columbian human impact in Amazo-
nian savannas remains poorly understood. Most paleoecological
studies have been conducted in neotropical forest contexts. Of
studies done in Amazonian savannas, none has the temporal res-
olution needed to detect changes induced by either climate or
humans before and after A.D. 1492, and only a few closely inte-
grate paleoecological and archaeological data. We report a high-
resolution 2,150-y paleoecological record from a French Guianan
coastal savanna that forces reconsideration of how pre-Columbian
savanna peoples practiced raised-field agriculture and how the CE
impacted these societies and environments. Our combined pollen,
phytolith, and charcoal analyses reveal unexpectedly low levels of
biomass burning associatedwith pre-A.D. 1492 savanna raised-field
agriculture and a sharp increase in fires following the arrival of
Europeans. We show that pre-Columbian raised-field farmers lim-
ited burning to improve agricultural production, contrasting with
extensive use of fire in pre-Columbian tropical forest and Central
American savanna environments, as well as in present-day savan-
nas. The charcoal record indicates that extensive fires in the sea-
sonally flooded savannas of French Guiana are a post-Columbian
phenomenon, postdating the collapse of indigenous populations.
The discovery that pre-Columbian farmers practiced fire-free sa-
vanna management calls into question the widely held assumption
that pre-Columbian Amazonian farmers pervasively used fire to
manage and alter ecosystems and offers fresh perspectives on an
emerging alternative approach to savanna land use and conserva-
tion that can help reduce carbon emissions.

pre-Columbian agriculture | anthropogenic fire | indigenous fire practices |
savanna ecology | tropical seasonal wetlands

Mounting archaeological and paleoecological evidence in-
dicates that societies of considerable size and complexity

emerged in some regions of Amazonia and began to transform
landscapes at an unprecedented scale during the late Holocene
(1–4). Anthropogenic dark-earth soils associated with intensive
agriculture developed along the bluffs of major rivers in forested
areas of Amazonia and its periphery, and large expanses of pre-
viously uncultivated seasonally flooded savannas were reclaimed
for intensive raised-field agricultural systems (5, 6).
Many seasonally flooded tropical savannas of South and Central

America, such as the coastal belt of the Guianas (7), the Mompos
depression in Colombia (8), and the Beni in the Bolivian Amazon
(9), were reclaimed into vast agricultural landscapes through the
construction of raised fields by pre-Columbian farmers during the
Late Holocene. Early European chronicles illustrate the practice
of raised-field agriculture by the Otomac in Venezuela (10) and by
the Tainos inHispaniola (11), who constructed small mounds using
wooden tools similar to the Arauquinoid shovel found in Suriname
and dating to around A.D. 1240 (12). Raised-field agriculture
provided pre-Columbian farmers with better drainage, soil aera-
tion, and moisture retention (important for these environments
subjected to a long rainy season and a severe dry season), increased

fertility, and possibly easier weeding and harvesting. In addition,
channels between raised fields can be used for fish and turtle
farming, and their muck and aquatic vegetation can provide a
renewable source of nutrients for the soil. Modern raised-field
experiments show that raised fields can be very productive,
yielding between 2 and 5.8 t ha−1 of maize (Zea mays L.) and up
to 21 t ha−1 of manioc (Manihot esculentaCrantz), and could thus
have supported large and concentrated populations (13).
The A.D. 1492 “Columbian Encounter” (CE) (14, 15) set in

motion dramatic changes in land use that significantly affected
these landscapes shaped by pre-Columbian intensive agriculture.
Previous studies show a late-Holocene surge in anthropogenic
burning attributed to pre-Columbian agricultural intensification,
both through a more intensive practice of slash-and-burn agri-
culture and through a more sedentary type of agriculture that led
to the formation of charcoal-rich, dark-earth soils (16–22). This
surge was followed by a sharp post-Columbian (post-A.D. 1492)
decline in anthropogenic burning, and subsequent reforestation,
attributed to indigenous population collapse resulting from the
arrival of European diseases (16–19, 21, 22). However, these
studies are from tropical forest contexts. Both fire history in
neotropical savannas and the impact of the CE on these eco-
systems remain poorly understood. Furthermore, lake-sediment
records located in Amazonian savanna contexts lack the tem-
poral resolution necessary to detect changes induced by either
climate or humans before and after A.D. 1492.
Here, we provide a unique perspective on pre- versus post-

Columbian savanna land use through analysis of a high-resolu-
tion, 2,150-y record of pollen, phytolith, and charcoal in a sedi-
ment core taken in a French Guianan coastal savanna. Contrary
to fire reconstructions from neotropical forests (18, 19, 21–23)
and lake records from Central American savannas (24, 25), our
data show unexpectedly low levels of late-Holocene biomass
burning, which we attribute to fire limitation by pre-Columbian
raised-field farmers, and a dramatic increase in fires associated
with the post-Columbian demise of labor-intensive raised-field
systems. A better understanding of how pre-Columbian inhab-
itants managed savanna environments—in the case studied here,
over the course of two or more centuries of raised-field agri-
culture—may provide insights into the sustainable use and con-
servation of these globally important ecosystems, which currently
occupy 20% of the lowland neotropics and are being destroyed
at an alarmingly high rate (26, 27).
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Results and Discussion
Coastal landscapes of French Guiana are characterized by wa-
terfront mangrove vegetation along the Atlantic seashore mud
flats. Progressively further inland are found, in turn, freshwater
marshes, seasonally flooded savannas with scattered forest
patches, and terra firme tropical forest. The coastal savannas are
bounded by Late Quaternary marine terraces that run parallel to
the seashore (4). Current climate is marked by highly seasonal
annual rainfall, between 2,500 and 4,000 mm, most of it during
the December to July rainy season (4). Remnants of pre-Co-
lumbian agricultural landscapes along the Guianan coast are
characterized by raised fields, canals, and ponds, which extend
over ∼600 km, from the Berbice River in Guyana to near Cay-
enne (Fig. 1) (7).
The K-VIII peat core (5° 11′ 54.72′′ N, 52° 41′ 39.92′′ W; 5 m

above sea level) (Figs. 1 and 2)was extracted in 2007with aRussian
corer from a ∼8-ha wetland in the seasonally flooded savannas of
French Guiana. The 31.5-cm deep K-VIII core represents the past
2,150 calendar years (Fig. S1). The K-VIII complex of pre-Co-
lumbian agricultural raised fields is located nearby (Fig. 2).

Vegetation History. Between ∼200 B.C. and A.D. 1200 (zone K-
VIII-1), the landscape was a seasonally flooded savanna, domi-
nated by Cyperaceae and Marantaceae, with negligible charcoal
abundance and low percentages of grass (Poaceae) pollen (Fig.
3A, and Figs. S1–S3). At approximately A.D. 1200, marked de-
creases in Cyperaceae and Marantaceae, paralleled by a sharp
increase in Poaceae pollen and the first appearance of maize
(Zea mays) pollen (Fig. S4), signify the initial construction and
use of agricultural raised fields (Figs. 3A and 4). Maize phytoliths
are also found at this time in the K-VIII and Bois Diable raised
fields (Fig. 3B). Today, sedges are more abundant in intermound
areas, and panicoid grasses dominate atop well-drained mounds
(4) (Fig. 5B). We therefore interpret the declines in Cyperaceae
and Marantaceae pollen and phytoliths as signifying a reduction

in extent of seasonally flooded savanna, but the concomitant
expansion of Poaceae pollen reflects increased terra firme (non-
flooded) habitat provided by the raised fields (Figs. 3A and 4).
Our inference that greater abundance of Poaceae pollen in

zone K-VIII-2 relative to zone K-VIII-1 reflects grasses growing
upon raised fields is strengthened by the dominance of panicoid
grass phytoliths throughout the soil profiles of raised fields of
comparable age (between approximately A.D. 1040 and 1250)
located about 700 m and 4 km away from the core site (Figs. 2
and 3B) (4, 13). Further support comes from other raised-field
sites in the region, where panicoid phytoliths dominate in mound
soil profiles and Cyperaceae phytoliths are more abundant in
intermound profiles (4, 13). Another major change in the K-VIII
core during the “raised-field farmer” period is the increase in
wild rice (Poaceae: Oryzoideae) phytoliths (Fig. S3). Wild rices
thrive in wetland margins; we interpret their increase as having
resulted from the multiplication of wetland border habitats that
took place with the establishment of raised fields in these pre-
viously seasonally inundated savannas. The drainage that took
place in the colonial period, through the construction of canals,
further lowered water levels and promoted the growth of wild
rice. Our dates for initial construction of raised fields are broadly
contemporaneous with the presence of Arauquinoid raised-field
farmer groups, which originated in the Middle Orinoco around
A.D. 450, reached western coastal Suriname around A.D. 650,
and spread eastward to the vicinity of Cayenne (28). In our study
area the Arauquinoid tradition is represented by the Barbakoeba
and Thémire cultures, which began approximately A.D. 950 and
1150, respectively (4, 28).

Fire History. The low abundance of charcoal through the raised-
field zone K-VIII-2 is unexpected, given the large increase in this
zone (relative to the previous zone) of fire-prone grasses. Our
findings are at odds with neotropical fire-history reconstructions
from lowland forests and from Central American savanna envi-
ronments that show maximum fire activity during this period (18,
19, 21, 22, 24, 25). For example, documented high pre-Columbian
fire activity in rainforest of neighboring central Guyana (29) is not
reflected in the K-VIII core. The low charcoal abundance in zone
K-VIII-2 is most parsimoniously explained by the implementation
of fire limitation practices by pre-Columbian raised-field farmers,
especially because our study area is characterized by a long dry
season and commensurate high fire probability (30).
Fire limitation would have presented advantages for raised-

field agriculture. Fires result in the loss of nutrients, such as
nitrogen and phosphorus, through formation of gases and aer-
osols (31, 32). Fallows would probably have been most effective
at restoring plant biomass, soil organic matter, and soil structure
for the next cycle of raised-field agriculture in the absence of fire
(33–35). Furthermore, tight control of burning would have also
avoided the labor cost of weeding fire-adapted plants (33).
The record shows a clear correlation between the dramatic

increase in charcoal abundance beginning approximately A.D.
1540 and the arrival of Europeans in this coastal region. In A.D.
1500, the Spanish explorer Vincente Yánez Pinzón, after dis-
covering the mouth of the Amazon River, sailed northwest and
entered the Oyapock River, which forms the border between
present-day French Guiana and the Brazilian state of Amapá
(36). Spanish, British, Dutch, and French traders and explorers
traveled along the Guianan coast during the 16th Century and
established sustained trading and alliances with Arawak groups
(37). The first permanent European settlement in French Gui-
ana was established at Cayenne in A.D. 1643 (36).
The study reveals that the impact of the CE, through the

spread of diseases, and the migration and political reconfigura-
tion of ethnic groups in the region (37), played a major role in
the demise of raised-field agriculture in the coastal savannas of
French Guiana. Epidemics and pandemics following the CEFig. 1. Location of the study area.
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were rapid, thorough, and widespread throughout the Americas
(38, 39) and, according to some estimates (3, 40), may have
resulted in the loss of as much as 80–95% of the agricultural
population across the neotropics. The labor-intensive raised-field
agricultural systems (41) must have been particularly impacted
by this substantial reduction of the labor force, resulting in their
abandonment.
The charcoal record shows that after the CE, abandonment of

raised-field agriculture marked an unprecedented increase in the
frequency of fires in the coastal savannas of French Guiana. The
dramatic increase in biomass burning reflects the appearance of
savanna fires and the new land-use practices of colonial farmers,
who began to slash and burn forests to build agricultural raised
beds. Soil profiles in small, rectangular raised agricultural beds
located atop forested marine terraces revealed charcoal lenses
below these beds and indicate that Creole farmers opened for-
ested patches on the marine terraces to build the beds from the
mid-19th up to the mid-20th century (Fig. 6). Creole farmers,
descendants of slaves, preferred to construct raised beds in dry
areas, avoiding flood-prone areas. This preference constitutes a
clear cultural difference with pre-Columbian farmers, who cul-
tivated on the seasonally flooded savannas. Colonial farmers also
built canals to drain the savannas (Fig. 2), a practice consistent
with the further decrease in sedges and increase in Poaceae in

zone KVIII-3 (Fig. 3). The appearance in zone K-VIII-3 of pollen
of two cultigens, manioc (Manihot esculenta) and sweet potato
(Ipomoea batatas), and the disappearance in this zone of maize
pollen (Fig. 3, and Figs. S5 and S6), further testify to changes in
land use. Charcoal abundance plummets in the uppermost levels
of the record, a pattern consistent with the creation of the Guiana
Space Centre in A.D. 1960 and the suppression of fires within
its perimeter.

Implications. This study shows a heterogeneous impact of the CE
across neotropical ecosystems. In contrast to neotropical paleo-
fire reconstructions from forested regions and Central American
savannas, which show a dramatic decline in burning at approxi-
mately A.D. 1500, attributed to population collapse resulting
from the CE (18, 19, 21, 22, 24, 25), the K-VIII core reveals that
savanna fires in the region are largely a post-Columbian phe-
nomenon. These findings suggest that pre-Columbian raised-
field farmers limited fire, in marked contrast to modern swidden
horticulturalists living in similar environments, who regularly
burn savannas for a variety of reasons (e.g., increased visibility
for hunting and prevention of catastrophic fires at the end of the
dry season) (42, 43). The data also call into question the wide-
spread view that anthropogenic fires have been a pervasive

Fig. 2. Aerial photo (1987; 1:8,000) of the study area showing: (A) K-VIII core site; (B) K-VIII pre-Columbian agricultural raised fields; (C) Bois Diable pre-
Columbian agricultural raised fields (located 3.5 km east of the K-VIII core); (D) colonial drainage canal (canal Leroy, 18th Century); (E and F), colonial ag-
ricultural raised beds under forest and in open areas, respectively (source: Institut National de l’Information Géographique et Forestière, Paris, France).
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feature of neotropical savanna ecosystems (43, 44), including
those inhabited by pre-Columbian raised-field farmers (45).
The discovery that pre-Columbian farmers used fire-free sa-

vanna management offers fresh perspectives on an emerging al-
ternative approach to savanna land use and conservation (46).
Human pressure on existing savannas is intensifying, via conver-
sion to agricultural land and pasture (26) and frequent burning,
which leads to depletion of soil nutrients (34, 47), as well as in-
creased carbon emissions to the atmosphere (48, 49). Adoption
of raised-field agriculture in seasonally flooded savannas has
the potential to reduce atmospheric carbon emissions (48), via
limitation of burning during fallow periods, and alleviate poverty

in developing tropical countries through a more productive and
sustainable (46) form of land use than cattle ranching, common in
these savannas today.

Fig. 3. (A) Percentage pollen (light green) and phytolith (dark green) dia-
gram of selected plant taxa and macroscopic charcoal influx (red) from the
K-VIII peat swamp core. Symbols represent presence of cultigens: maize ( ),
manioc (○), sweet potato (◇). (B) Percentage phytolith diagram of selected
plant taxa from soil profiles from the K-VIII and Bois Diable pre-Columbian
agricultural raised fields. The dates show the age of the uppermost levels of
the buried A horizon (peat) immediately below the overlying raised-field soils.

Fig. 4. Schematic drawing of changing vegetation and disturbance regimes as
inferred from analysis of pollen, phytoliths, and charcoal from the K-VIII core.

Fig. 5. (A) Aerial view of the K-VIII pre-Columbian raised-field complex after
burning (photo: S. Rostain, 1989). (B) Field view of the K-VIII site during the rainy
season, showing grasses (Poaceae; light green) growing on top of pre-Columbian
raisedfieldsand sedges (Cyperaceae; darkgreen)growing in the intervening canals.
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Materials and Methods
The age-depth model for the K-VIII core (Fig. S1) is based on linear in-
terpolation between four calibrated (CALIB 5.0.1) (50) radiocarbon dates
(Table S1). A top-core date of A.D. 2007 was used to anchor the age-depth
chronology to the year of core collection. Phytoliths, pollen, and charcoal
were analyzed following standard techniques. Phytoliths were identified
based on the modern phytolith reference collection of 750+ neotropical
plant taxa, including a reference collection from the French Guiana savannas
taken from specimens deposited at the Herbier de Guyane (CAY, Cayenne,
French Guiana) and the Royal Botanical Gardens (K, London), which is
housed at the Archaeobotany Laboratory, Department of Archaeology,
University of Exeter, as well as on phytolith atlases (51–53). Pollen identi-
fications were made according to published tropical pollen floras (54, 55),
a digital tropical pollen database (56), and a neotropical pollen reference

collection consisting of > 1,000 specimens [collected from herbaria at the
Noel Kempff Mercado Natural History Museum (MNK) in Santa Cruz, Bolivia,
and the Royal Botanic Garden Edinburgh, United Kingdom (E)], held at the
School of Geosciences, The University of Edinburgh. For more details, see SI
Materials and Methods.
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