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Animals are capable of navigation even in the absence of prom-
inent landmark cues. This behavioral demonstration of path in-
tegration is supported by the discovery of place cells and other
neurons that show path-invariant response properties even in the
dark. That is, under suitable conditions, the activity of these
neurons depends primarily on the spatial location of the animal
regardless of which trajectory it followed to reach that position.
Althoughmanymodels of path integration have been proposed, no
known single theoretical framework can formally accommodate
their diverse computational mechanisms. Here we derive a set of
necessary and sufficient conditions for a general class of systems
that performs exact path integration. These conditions include
multiplicative modulation by velocity inputs and a path-invariance
condition that limits the structure of connections in the underlying
neural network. In particular, for a linear system to satisfy the path-
invariance condition, the effective synaptic weight matrices under
different velocities must commute. Our theory subsumes several
existing exact path integration models as special cases. We use
entorhinal grid cells as an example to demonstrate that our
framework can provide useful guidance for finding unexpected
solutions to the path integration problem. This framework may
help constrain future experimental and modeling studies pertain-
ing to a broad class of neural integration systems.

commutativity | attractor network | oscillatory interference |
dead reckoning | Fourier analysis

Even without allothetic or environmental cues, animals are
capable of finding their way home (1, 2), a process known as

path integration or dead reckoning. This “integrative process”
(3), whereby an internal representation of position is updated by
incoming inertial or self-motion cues, was hypothesized over
a century ago by Darwin (4) and Murphy (3). More recently,
potential neural correlates of path integration have been dis-
covered. For example, cells in brain regions associated with the
Papez circuit can signal the heading direction of an animal (5, 6);
grid cells in the entorhinal cortex presumably integrate this in-
formation and other self-motion cues to form a periodic spatial
code (7–9); and, downstream in the hippocampus, place cells
exhibit a sparser location code (10, 11).
Many computational models of path integration have been

proposed. For instance, two leading classes of models of grid cells
are continuous attractor networks (12–14) and oscillatory in-
terference models (15–20). These diverse models seemingly de-
scribe a diverse class of systems; however, deeper computational
principles may exist that unify the different cases of neural in-
tegration. Here we attempt to identify a general principle of path
integration by starting with the exact requirement of invariance to
movement trajectory in an arbitrary number of dimensions. This
general approach allows us to derive a set of necessary and suf-
ficient conditions for path integration and, for linear systems, to
find explicit solutions. This framework can help unify existing
models of path integration and also guide the search for un-
explored solutions. We demonstrate this utility by modeling var-
ious path integration systems such as grid cells, and we show that
several existing path integration models adhere to our framework.

Model
General System. We start with the most general case by considering
movement in a D-dimensional space with location coordinates de-
scribed by x ¼ ðx1; ···; xDÞT and movement velocity given by
v ¼ ðv1; ···; vDÞT ¼ dx=dt, where T indicates transpose. For exam-
ple, we have D ¼ 2 for location of a rat on the floor of a room. We
use an N-dimensional column vector u to describe the state or ac-
tivity of a network with N neurons. We assume that the network
obeys a generic dynamical equation of the form du=dt ¼ hðu; vÞ,
where the function h does not depend explicitly on location x
because here we focus only on velocity input and ignore any
landmark-based cues. As the location x changes in time, the
activity u can be solved as a function of time from the dynamical
equation. We say that the system performs exact path integration
if, starting from fixed initial conditions, the activity u at a final
location depends only on that location, irrespective of the
movement trajectory leading to that position (Fig. 1A). In other
words, now the activity u is path invariant and can be regarded as
an implicit function of location x. The path invariance implies
that du=dt ¼ hðu; vÞ ¼ FðuÞv for some function F. That is, the
dynamical equation can be written as

du
dt

¼ FðuÞv; [1]

where matrix F depends on the network state u but not on the
velocity v. To see this, consider the derivative chain rule,
du=dt ¼ ð∂u=∂xÞðdx=dtÞ ¼ ð∇uÞv, where the Jacobian matrix
∇u ¼ ∂u=∂x depends implicitly on x because u is an implicit
function of x. Assuming this implicit function is locally invertible,
we may write ∇u ¼ FðuÞ and obtain Eq. 1.
Exact path integration by Eq. 1 requires an additional condi-

tion. For simplicity we show the argument for D ¼ 2 here (for
generalization to higher dimensions, see SI Text 1). Consider the
differential form du ¼ f1dx1 þ f2dx2 of Eq. 1, where fk is the kth
column of F, which depends implicitly on x. If activity u is path
invariant, its cumulative increment over any closed movement
trajectory C must vanish: ∮C du ¼ 0. By Green’s theorem, this
means that ∮C du ¼∬Rð∂f2=∂x1 −∂f1=∂x2Þdx1dx2 ¼ 0 for any re-
gion R bounded by C. Hence ∂f2=dx1 ¼ ∂f1=dx2. For arbitrary
dimension D, this condition becomes

∂f ji
∂xk

¼ ∂f ki
∂xj

; [2]

where f ji is the entry in the ith row and jth column of matrix
F (i ¼ 1; ···;N and j; k ¼ 1; ···;D for D ≥ 2). Eq. 2 specifies a
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necessary and sufficient condition that guarantees that the dif-
ferential form du ¼ Fdx is integrable with respect to the spatial
variable x, which in turn means that activity depends on location
only and not on the movement trajectory. For D ¼ 2 or 3, Eq. 2
is equivalent to the curl-free condition for a gradient vector field
(F ¼ ∇u). In arbitrary dimensions, the general case of Eq. 2
follows from the Poincaré lemma (SI Text 1).
Eq. 1 implies that the rate of state change should be modulated

linearly by the velocity v. As shown in Fig. 1B, one way to implement
this general requirement is a model system where recurrent synapses
are multiplicatively modulated by velocity inputs (see Discussion for
other possibilities). Finally, note that Eq. 1 (as well as Eq. 3 below)
does not contain a decay term such as −u commonly seen in neural
models. We explain how this may be justified in SI Text 6.

Linear System. To gain a better understanding of the dynamical
equation (Eq. 1) and the path-invariance condition (Eq. 2), we
simplify the system by assuming that matrix FðuÞ is a linear function
of state u. That is, for FðuÞ ¼ ½f1ðuÞ; ···; fDðuÞ�, we assume each
column is a vector given by fkðuÞ ¼ ½f k1 ðuÞ; ···; f kNðuÞ�T ¼ Wku,
with Wk ¼ fwk

ijgi;j¼1;···;N being a weight matrix for each spatial
dimension k ¼ 1; ···;D. Here wk

ij is the weight of the connection
from unit j to unit i, and the superscript k indicates the spatial
dimension of velocity modulation. Now we can reformulate
Eq. 1 as

du
dt

¼
XD
k¼1

Wkuvk ¼
 XD

k¼1

Wkvk

!
u ¼ Weffu; [3]

where Weff ¼ fweff
ij gi;j¼1;···;N ¼PD

k¼1W
kvk is defined as the ef-

fective weight matrix. The effective weight from unit j to unit i
can be rewritten as:

weff
ij ¼

XD
k¼1

wk
ijvk ¼ wij · v; [4]

which is a dot product between the instantaneous velocity v and
a fixed weight vector wij ¼ ðw1

ij; ···;w
D
ij ÞT. Thus, the effective

weight is largest when velocity is aligned with the direction of the
weight vector, zero when the two vectors are orthogonal, and
negative when the angle between the two vectors is >90°. As
shown in Fig. 1B, the velocity-modulated connection between
a pair of units can be characterized by a single vector with the
appropriate orientation and magnitude.
Working with a linear system allows us to simplify the condi-

tion from Eq. 2 to the following:

WjWk ¼ WkWj [5]

for all j; k ¼ 1; ···;D (SI Text 1). In other words, the weight ma-
trices for different spatial dimensions must commute.

Results
Eigensolutions. We examine how the linear dynamical system in
Eq. 3 generates activity u as a function of location x. For all of
the examples considered in this paper, with the exception of the
linear tuning function (see Fig. 4A), we assume that the weight
matrices W1; ···;WD have distinct eigenvalues and are thus di-
agonalizable (general solutions without this assumption are
shown in SI Text 2). Because diagonalizable matrices share the
same eigenvectors if and only if they commute, the commutative
condition in Eq. 5 implies that these matrices have an identical
set of eigenvectors, although their eigenvalues may differ.
Whereas the solution to Eq. 3 specifies the activity u as

a function of time, we can replace time t with the position xðtÞ for
any trajectory because of path invariance. For simplicity we
choose our trajectory to start at the origin 0 and move toward x
at a constant velocity. Now Eq. 3 becomes a homogenous linear
differential equation with constant coefficients and its solution is
a linear combination of basis functions,

uðxÞ ¼
XN
i¼1

cizi exp
�
pTi x
�
; [6]

where pi ¼ ðλ1i ; ···; λDi ÞT, λki is the ith eigenvalue of matrix Wk, zi
is the associated eigenvector, and coefficient ci ¼ zTi uð0Þ. With
properly chosen eigenvectors and eigenvalues, this basis function
set fzi expðpTi xÞg can, in principle, approximate any smooth
function to arbitrary precision because it can at least provide
Fourier components when the eigenvalues are imaginary (SI Text
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Fig. 1. Constraints on a path integration network. (A) For the system to
perform exact path integration, the network state at location b should be the
same regardless of which path it took to get there from location a. (B) A four-
unit network with each recurrent connection node characterized by a weight
vector (wij in Eq. 4), shown as an arrow that represents the preferred direction
and the magnitude of velocity modulation. The effective weight of each
connection is the dot product between this weight vector wij and the
movement velocity v. The connection from neuron 4 to neuron 3 (Left, shaded
box) is expanded (Right), showing that each weight vector can be imple-
mented by summing excitatory synapses (green) and inhibitory synapses (red,
via interneurons) if these synapses are multiplicatively modulated by the
component velocity inputs. (C) Illustration of commutativity condition (Eq. 5)
for a linear network when one of two paths is followed: ab (blue) or ba
(orange). For movement in a straight line (a or b), the effective weights are
represented by the size of the dots and whether they are open (positive value)
or closed (negative value). For the commutativity condition to hold, the dot
product of the blue vectors should equal the dot product of the orange
vectors. The blue vector (shaded) on the left represents the outputs from
neuron 1 for direction a, whereas the blue vector on the right represents the
inputs to neuron 4 for direction b (and vice versa for the orange vectors).
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2). Weights for the linear system can be learned by a local su-
pervised learning rule (SI Text 4 and Fig. S1).

Illustrating the Commutative Condition. At first glance, the com-
mutative condition (Eq. 5) is not intuitive in a biological context.
For a more concrete illustration, we restate the condition as
a discrete version for arbitrary movement directions. First, we
choose two displacement vectors a and b (Fig. 1C). Using the
matrix exponential to solve Eq. 3, we have uðaÞ ¼ Wauð0Þ, where
Wa ¼ expðPD

j¼1W
jajÞ with a ¼ ða1; ···; aDÞT. It is easy to see that

path invariance requires commutativity of Wa with Wb because
the final activity along path ab is uðabÞ ¼ WbWauð0Þ, which
should equal uðbaÞ, implying WbWa ¼ WaWb for all a; b, in-
cluding movements in cardinal directions (as in Eq. 5).
Now we look at any pair of units and define the net influence

of unit i on unit j along path ab as the dot product of two sets of
connections for two movement segments: those from unit i to all
units for movement a (ith row ofWa and blue row in Fig. 1C) and
those from all units to unit j for movement b (jth row of Wb and
blue column in Fig. 1C). By Eq. 5, this net influence must stay the
same along path ba. Thus, for a pair of units, path invariance
puts restriction on connections involving all units in the network
and not just on direct connections.

Grid Cell Simulation. Grid cells in the rat medial entorhinal cortex
fire in a hexagonal pattern. Nearby cells have the same orientation
and spatial frequency but differing spatial phases, and their firing
patterns are maintained in the dark (7). Here we simulate the
spatial pattern of grid cell firing with a linear system governed by
Eqs. 3 and 5.We show that thismethod can guide us to find diverse
solutions that generate the same hexagonal activity pattern.
All of the examples in this section are based on sinusoidal

basis functions, which are special cases of the exponential func-
tions in Eq. 6 with purely imaginary eigenvalues (SI Text 2). We
first consider a minimal network. Because a hexagonal grid can
be generated by combining three sinusoids, the smallest network
possible has six neurons. The connection scheme (Fig. 2A) does
not show any obvious hexagonal symmetry and may even look
quite random, yet the weight matrices commute and can gener-
ate a hexagonal activity pattern by integrating velocity inputs
(Fig. 2 B and C). Each cell has the same activity pattern but
spatially shifted according to their relative spatial phases.
As another example, we choose a regular arrangement of

spatial phases and a regular connection pattern where each
neuron receives symmetric inputs from its six nearest neighbors
(Fig. 3 and Fig. S2A). In this example, the hexagonal activity
pattern arises due to the inherent hexagonal symmetry of the
connections. Each neuron connects to a uniformly spaced ring of
other neurons and each weight vector is proportional to the
relative spatial positions of the connected neurons, ensuring that
the weight matrices commute (Fig. S2 and SI Text 3).
We also studied a large network with many neurons with ran-

dom spatial phases and found that, on average, there was a weak
preference for preferred velocities out of phase with the grid ori-
entation (Fig. S3 B–D). By contrast, for the case of evenly spaced
spatial phases as in Fig. 3, the preferred weight directions all lined
up exactly with the grid (Fig. S3A), an observation that is more
consistent with grid cell studies (21), hinting that such biological
systems may favor a radially symmetric connection scheme.

Example Solutions from the Linear System. Any linear path in-
tegration system can be built using the eigensolutions described
above after identifying the dimensionality of the system and the
basis functions of the desired spatial activity pattern. A broad class
of path integration systems can be simulated in this way, covering
various dimensionalities and types of space, either periodic or
nonperiodic. Several examples of these linear systems are shown
in Fig. 4. In the one-dimensional examples, a sinusoid solution

(Fig. 4A, Left) is generated by using a weight matrix with a pair
of imaginary eigenvalues, whereas a linear activity pattern (Fig. 4A,
Right) is generated by using a weight matrix with repeated eigen-
values of zero. In higher dimensions, arbitrarily complex patterns
can be generated, ranging from an image of a human eye to a hy-
pothetical 3D grid cell (Fig. 4 B and C). Because the solution set
scales with the number of neurons and not dimensionality, a mini-
mal model of 3D grid cells requires only two additional neurons
beyond the six-unit minimal model of 2D grid cells.

min max

9 minutes

30 minutes

A

B

C

Fig. 2. A six-unit grid cell network. (A) Weights were found for a network
with randomly chosen spatial phases. This network is shown using the same
convention as in Fig. 1B. (B) Simulated trajectory over 9 min is shown (black
line). To display activity, spikes are plotted as colored dots whenever a unit’s
activity crosses 75% of its maximum. If multiple units simultaneously cross the
threshold, only the unit with highest activity is displayed. Color scheme is same
as in A. Inset shows the spatial phases for each unit on top of the underlying
hexagonal tiles. (C) For a full 30-min session, the average unit activity at each
position (100 × 100 bins) for the first neuron (previously in red) is shown. White
indicates positions not visited in the simulation. See SI Text 7 for further details.
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Existing Exact Path Integration Models. We chose four disparate
models of exact path integrators and asked whether they adhere
to our conditions. These four models are a linear eye position
integrator, nonlinear bump attractor networks, oscillatory in-
terference models, and a 3D head orientation model. Although
the actual computational mechanisms in these examples are
radically different, we find that these models all obey the same
mathematical conditions of Eqs. 1 and 2 to achieve exact path
integration (see SI Text 5 for details and proofs). Briefly, a linear
eye position integrator model that produces firing rates pro-
portional to position (22, 23) is consistent with our theory in one-
dimensional space. The continuous attractor network (24–26)
supports a stable activity pattern that can be moved by velocity
inputs. We must first let the system settle to a stable activity
pattern, after which it performs exact path integration. The os-
cillatory interferencemodels (15, 16, 20, 27) of grid cells and place
cells perform path integration by modulating the oscillator fre-
quencies. Although the activity of the interfering oscillators is not
spatially invariant, the envelope is. Finally, in a recent vestibular
model (28), angular velocity, an inexact differential quantity, is
integrated to calculate head orientation. We must first convert to
a coordinate system where velocity is an exact differential quan-
tity. With respect to the new coordinates, the system is an exact
integrator.

Discussion
Path integration is a general mechanism used in various neural
models. Insight into the fundamental computational principles
behind accurate path integration can both unify existingmodels and
provide guidance for future investigations into unexplored mech-
anisms. Here we have derived necessary and sufficient condi-
tions for exact path integration under very general assumptions.
These two conditions, multiplicative modulation and equivalence

of mixed partial derivatives, arise from the chain rule and the
Poincaré lemma, respectively. Each of these results bears theoret-
ical and experimental implications for path integration.
The first condition, multiplicative modulation of inputs by

velocity, is intuitively sound because doubling the speed should
double the drive to move the system along the manifold of po-
sition. Various neural systems have been shown to use multi-
plication, including gain fields of parietal area 7a neurons (29),
looming-sensitive neurons of the locust visual system (30), and
conjunctive cells of the entorhinal cortex (31). Various models
exist to explain how this multiplication could be implemented in
a biologically plausible manner. Exponentiation by active mem-
brane conductances of summed logarithmic synaptic inputs gives
rise to an effective multiplication of inputs (32, 33). Another
dendritic mechanism is that of nonlinear interaction of nearby
inputs on a dendritic tree to yield multiplication followed by
summation at the soma of more distal inputs (34). Alternatively,
multiplication can be achieved through network effects via
a properly tuned recurrent network (35). Finally, there are hints
that synchrony of inputs and interplay with the theta rhythm
could allow for one input to modulate other inputs (36, 37).
Multiplication in a real biological system may require additional
mechanisms to deal with negative weights and the degenerate
case of zero net input at zero velocity.
The second condition constrains the connectivity of a path-

invariant network. Computationally, equality of mixed partial
derivatives provides a robust condition for identifying whether
a model is path invariant. Experimentally, verifying path in-
variance and linking connectivity to activity patterns are more
difficult. One way to test the equality of mixed partial derivatives
is by in vivo patch clamp of a neuron to measure synaptic cur-
rents over a variety of paths (38). Whereas these data could

Fig. 3. A nine-unit grid cell network with spatial symmetry. Each unit
connects to its six nearest neighbors. These connections are illustrated for
two of the units (green and red dots). Arrows indicate preferred directions
for each weight. For the red unit, the connections wrap around the tile to
the opposite edge (identified by the arrowheads). A tessellation of the
hexagonal tile is also shown, illustrating that these units are evenly spaced.

min max

A

B

C

2 2

8 200

2 4 396

Fig. 4. Diverse activity patterns can be generated by a linear network per-
forming exact path integration in multiple dimensions. (A) In one dimension,
the solution set includes sinusoids (Left, periodic as seen in head direction cells)
and first-order polynomials (Right, nonperiodic as seen in the eye position in-
tegrator of the oculomotor system). (B) In two dimensions, the solutions are
superpositions of one-dimensional patterns. These patterns can be a single si-
nusoidal grating (Left), two gratings at 90° to form a square grid (Center; this
pattern is generated by the four-unit network of Fig. 1B), or a large number of
sinusoids to forma representationofan imageofahumaneye (Right). (C) These
solutions generalize to higher dimensions. In three dimensions, a grid based on
thehexagonal close-packed lattice (Left) or a place cell basedona large number
of random-frequency zero-phase sinusoids (Right) can be formed. The numbers
below indicate the number of units used to generate that spatial pattern.
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provide support for path invariance, a complete network needs
to be identified to have a full characterization of the dynamics of
the system. For example, in our small grid cell network in Fig. 2,
even if it could be measured experimentally, the connection matrix
exhibits no clear symmetry, yet it produces hexagonal symmetry in
its activity. Thus, one needs an explicit, quantitative model for such
cases. Recent technological advancements would allow a model to
be tested against simultaneously measured connectivity and activ-
ity. By combining focal optogenetic control of neurons (39),
two-photon calcium imaging of a large number of neurons (40),
recordings from freely moving animals via virtual reality (41) or
miniaturization of optics (42), and reconstruction of neural con-
nectivity via serial EM (43) or postmortem in vitro path clamping
(44), one could both record and manipulate the functional and

anatomical properties of path-invariant neurons on a large scale.
Even then, accurate measurement of all network parameters
would be difficult but simplifications, such as a linear approxima-
tion studied here, could make the problem more tractable.
Finally, although we have focused on spatial invariance in this

paper, our results are not just limited to systems that are involved
in navigation. The many other neural systems that use in-
tegration (45, 46) conform to our results as well, provided that
they can be cast under our mathematical framework.
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