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Understanding how a simple chemical system can accurately repli-
cate combinatorial information, such as a sequence, is an important
question for both the study of life in the universe and for the
development of evolutionary molecular design techniques. During
biological sequence replication, a nucleic acid polymer serves as a
template for the enzyme-catalyzed assembly of a complementary
sequence. Enzymes then separate the template and complement
before the next round of replication. Attempts to understand how
replication could occur more simply, such as without enzymes, have
largely focused on developing minimal versions of this replication
process. Here we describe how a different mechanism, crystal
growth and scission, can accurately replicate chemical sequences
without enzymes. Crystal growth propagates a sequence of bits
while mechanically-induced scission creates new growth fronts.
Together, these processes exponentially increase the number of
crystal sequences. In the system we describe, sequences are ar-
rangements of DNA tile monomers within ribbon-shaped crystals.
99.98% of bits are copied correctly and 78% of 4-bit sequences are
correct after two generations; roughly 40 sequence copies are
made per growth front per generation. In principle, this process is
accurate enough for 1,000-fold replication of 4-bit sequences with
50% yield, replication of longer sequences, and Darwinian evolu-
tion. We thus demonstrate that neither enzymes nor covalent bond
formation are required for robust chemical sequence replication.
The form of the replicated information is also compatible with
the replication and evolution of a wide class of materials with pre-
cise nanoscale geometry such as plasmonic nanostructures or het-
erogeneous protein assemblies.
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In cells, long genomes are accurately replicated via a complex
replication process involving tens or sometimes hundreds of en-
zymes. Nearer to life’s origins, a much simpler system must have
been responsible for genome replication; evolution of this infor-
mation then produced more and more complex forms. How a
chemical system could be capable of sustained replication and
evolution and yet be simple enough to arise spontaneously is an
open question.

Enzyme-free autocatalytic systems, which are generally simpler
than those with enzymes, are known to exponentially replicate
one or a small set of species (1-5), but none of these systems
replicate an arrangement of subunits defining a combinatorial
sequence of information. Without the capacity for combinatorial
information replication, open-ended evolution, in which com-
plexity increases without bound (6), cannot occur.

Some RNA sequences have been shown to act as RNA poly-
merases that can assemble a general RNA sequence given a
template (7). If such an RNA sequence polymerized a copy of
itself, the required enzyme would be produced by the replication
process, making it self-sustaining. However, fidelity sufficient for
RNA-mediated RNA self-replication has not yet been observed
(8, 9). Similarly, extension of nucleic acid primers can occur ac-
curately without enzymes (10, 11), but it is not yet known whether
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arbitrary sequences could be assembled this way; further difficul-
ties are introduced by the need for the template and its newly
assembled complement to separate before another round of re-
plication can commence.

Homogeneous 2- and 3-dimensional crystal growth occurs
spontaneously in nonliving systems and defect rates during crystal
growth can be as low as error rates during genome replication
(12). Like prion growth (13), crystal growth can be autocatalytic
if mechanical forces fragment crystals, increasing the number of
crystal growth fronts (14). If a crystal stored information in its
arrangement of monomers, growth could propagate that informa-
tion and scission could, by creating new growth fronts for propa-
gation, replicate it. A crystal’s information would then be subject
to Darwinian evolution, as postulated by Cairns-Smith almost
50 years ago (15) (Fig. 14). While replication of chemical se-
quences through crystal growth has continued to be of interest
(16) because of its simplicity and potential compatibility with a
wide variety of chemistries, such replication has never been de-
monstrated. The replication of information in the form of crystal
defects has been observed, but fidelity was very low (17).

Here we show that DNA tile crystals (18, 19) can robustly
replicate combinatorial information, as theoretically proposed
earlier (20). DNA tiles are crystal monomers consisting of four
to six synthetic strands of DNA folded into a double crossover
structure (Fig. 1B). Tiles crystallize via sticky end hybridization
(Fig. 1C), and under appropriate growth conditions, complemen-
tary sticky ends hybridize, while noncomplementary sticky ends
are unlikely to interact.

We recently demonstrated that tiles can assemble ribbon-
shaped crystals that propagate a sequence of information during
growth (19). In that study, individual bits were copied highly ac-
curately, but errors in propagation such as sequence truncation
(i.e., the reduction of crystal width), or the spurious nucleation
of crystals carrying new random sequences were more common.
To decrease the rates of sequence truncation and spurious nuclea-
tion, we designed an improved tile set. The tiles in Fig. 1D form
ribbons containing an arbitrary sequence of 2-tile-thick indigo (I)
or orange (O) layers. During growth, only a tile matching the pre-
vious layer’s color can attach favorably (i.e., sticky ends) (21, 22)
(Fig. 1 C and E), so ribbon growth propagates the sequence, one
layer at a time (SI Appendix, Fig. S1). To improve fidelity, se-
quence copying is proofread: information is incorrectly propa-
gated only if two tiles in a row misattach (23, 19). The gray
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Fig. 1. Crystal replication. (A) An information sequence (here a column of white or black squares within a 2D crystal) is replicated in two stages. (B—E) DNA tile
crystals. (B) DNA tiles are self-assembled, multihelical complexes with 5-nucleotide, single-stranded sticky ends. (C) Tiles attach to crystals via cooperative sticky
end hybridization. (D) A tile set that can form ribbon crystals containing any sequence of indigo (I) or orange (O) tile blocks (or the null sequence). Using these
tile types, an n-bit wide ribbon could carry any of 2" possible sequences. The two “double” tiles are edge tiles, while the four green tiles below the top edge tile
and the four gray tiles above the bottom edge tile, the nucleation barrier tiles, create a thermodynamic barrier to the nucleation of new crystals (25, 24). The
four indigo (blue) tiles are the | block tiles and the four orange tiles are the O block tiles. White dots are biotin; colored digits denote sticky end types. Sticky end
complements have a *. A crystal seed programmed with sticky ends for a sequence templates growth of that sequence. (E) To be favorable, tiles must attach by

at least two sticky ends simultaneously, so growth copies the crystal sequence.

nucleation barrier blocks likewise make sequence truncation dif-
ficult by requiring that multiple tiles mismatch for truncation to
occur. These tiles also increase the energetic barrier to new nu-
cleation, making spurious nucleation of crystals not propagating
the templated sequence rare (24, 25) (SI Appendix, Supplemental
Methods sections 1-3 and 12).

Results

Crystal Growth. To study whether DNA crystal sequences could be
replicated via growth and scission, we characterized the increases
in the numbers of crystal layers and growth fronts as we grew crys-
tals (stage G1), created new growth fronts via scission (S1) and
then continued growth (G2) (Fig. 24). Without crystal seeds, tiles

produce an ensemble of crystal sequences dominated by those
easiest to nucleate, crystals containing neither orange nor indigo
layers (25, 24). To study the replication of a specific crystal se-
quence, we therefore programmed a DNA origami crystal seed
(26, 19) to template crystals with the sequence OIIO (Fig. 1D
and SI Appendix, Fig. S2). Previously, DNA crystals have been
grown via annealing, which gradually increases tile interaction
strength as temperature and concentration decrease. To permit
cycles of growth and scission, we developed a method for constant
temperature growth (SI Appendix, Supplemental Methods sections
4 and 5). To ensure consistently low supersaturation, tiles were
not depleted during growth, and G1, S1, and G2 and transfers
occurred in a temperature-controlled chamber. For G1, we mixed
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Fig. 2. Replication stages. (A) After growth (G1), crystals undergo scission (S1) and further growth (G2). (B-C) Scission mechanism. Compressed air propels
solution containing crystals through a constriction (B), where high elongational flows fragment crystals [zoom, (C)]. Arrow lengths indicate rough fluid velocity.
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approximately 25 nM tile monomers with 25 pM crystal seeds and
let them grow for 8 h at 31 °C, just below the crystal melting tem-
perature (25). To characterize the ribbon crystal population, we
collected images of crystals at random locations on a mica surface
via atomic force microscopy (AFM) at room temperature in fluid
(81 Appendix, Supplemental Methods sections 6 and 7). To prevent
crystal growth from occurring at room temperature during ima-
ging, we added DNA “guard” strands to the sample to be imaged
while it was still at 31 °C. Guard strands reduce or prevent the
rate of further crystal growth by binding to free tiles and growth
fronts and removing the sticky end strands at these edges. With-
out sticky ends, the tiles and crystals cannot interact (S Appendix,
Supplemental Methods section 8 and Figs. S7-S10). To distinguish
O from I tile blocks in the crystals and thus read their sequences, I
block and edge tiles were biotin-labeled during G1 (Fig. 24 and
SI Appendix, Fig. S3). Just before imaging we added streptavidin
(SI Appendix, Figs. S4-S6) which binds to biotin and is large en-
ough to see in our images (Fig. 3). To minimize sampling error, we
pooled data from several experiments.

During G1, 0.017% + 0.013 of bits propagated (3 of 18,029)
were flipped, and for 0.084% =+ 0.026 of bits (16 of 18,029), an
error shortened or lengthened the propagated sequence (SI
Appendix, Supplemental Methods section 10), rates 5-7 times low-
er than previously reported (19). As a result, by the end of G1
76% £ 6 of templated growth fronts still propagated OIIO
(Fig. 4). Almost half of these mutations occurred when the first
crystal layer was copied from the seed. Such mutations happened
at 10% + 3 of seeds. The mean length of templated sequences
was 620 4+ 40 nm, or 39 =+ 3 layers; i.e. during growth an average
crystal copied its sequence 39 times (SI Appendix, Supplemental
Note 2). Errors also occurred because of spurious nucleation of
new crystals that did not carry the OIIO sequence. Because the
nucleation barrier grows with crystal width (24, 25), the 9% =+ 3 of
crystals that were spuriously nucleated were easily identified as
crystals with zero or, occasionally, one sequence bit (Fig. 3). Be-
cause each sequence is copied many times per generation and
mutations are amplified, the high fidelity we observed during se-
quence propagation and the low rate of spurious nucleation are
essential for sustained sequence replication (27).

Crystal Scission. We next sought to determine whether crystal scis-
sion could create new OIIO growth fronts. Elongational flow in a
constricted channel induces DNA tile crystal scission because of
differing amounts of drag force experienced along a crystal’s span
(Fig. 2C) (28). However, previous studies did not characterize the
structure of the crystal facets produced by elongational-flow-
induced scission: facet damage could prevent sequence propaga-
tion after scission or cause a mutated sequence to be propagated.
But because elongational flow can cause the alignment of rod or
polymer-shaped molecules along a flow gradient (29), it induces
tension primarily along the long axis. We therefore hypothesized
that fragmenting ribbon crystals via elongational flow could cre-
ate new growth fronts without significant layer loss or damage,
and that elongational flows could also fragment ribbon crystals.
To test these hypotheses, we designed a channel with a constric-
tion and pressure drop predicted to fragment OIIO crystals into
approximately 200 nm fragments (SI Appendix, Supplemental
Note 4). To accommodate an 800 psi pressure drop, we used a
compressed air tank, high-pressure tubing and a metal disk with
a laser-cut orifice as a constriction (Fig. 2 B and SI Appendix,
Fig. S11 and Supplemental Methods section 11).

After scission, the percentage of templated growth fronts that
were correct (80% + 3) was the same to within error as the per-
centage before scission. The number of seeds remained constant
throughout our experiments (SI Appendix, Supplemental Note 5)
and more correct growth fronts per seed were observed after scis-
sion (2.6 £ 0.3) than before (0.81 £ 0.07), implying that scission
produced many correct new correct growth fronts. However,
holes (Fig. 3) and frayed edges (SI Appendix, Fig. S12) were
sometimes observed, and scission of a few crystals cut through
the sequence rather than between layers (SI Appendix, Fig. S13).

Continued Sequence Propagation. To determine how well the new
growth fronts could propagate their sequences, we diluted one
part S1 mixture into four parts fresh monomers and let growth
continue in the fresh mixture for 6-8 h (G2). In order to distin-
guish G2 growth from G1 growth, the fresh solution contained
biotin-labeled O and unlabelled I tiles (Figs. 24 and 3).
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Fig. 3. Predicted and observed crystals. Predicted (cartoons) and example crystals (AFM images) for G1 (blue), S1 (yellow), and G2 (red). Gray-framed images
(Top right) show errors in G1: spuriously nucleated crystals and a bit flip at the arrow. Beige and brown lines (G2, Bottom) denote G1 and G2 growth, re-

spectively. OlIO labels show seeds’ templated sequences. Scale bars 100 nm.
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Fig. 4. Changes in the number and fraction of correct growth fronts and
crystal length with replication stage. Top: Solid lines show measured number
of growth fronts (purple) and crystal length (green) per seed. Dashed lines
show the same values predicted by Eqgs. 1-2 for the reported L[0], F;[0]
and the resulting best fits for f and g. Bottom: Fraction of correct growth
fronts and fraction of crystal length that is correct, out of the total number
of templated growth fronts and total templated crystal length, respectively.
Errors here and elsewhere are 95% confidence intervals determined by boot-
strapping.

After G2, there were 1,750 £ 400 nm of correct layers per
seed vs. 620 + 40 nm per seed after G1 (Fig. 4), suggesting that
the new growth fronts increased the population’s rate of sequence
propagation; i.e., replication occurred. This increased rate of se-
quence propagation was observed despite the fact that around
20% of growth fronts appeared to be inactive; no layers were
added to them during G2.

To determine the implied replication rate, we modified models
of autocatalysis by simultaneous growth and stochastic scission
(30, 31) to separate growth and scission into stages. For simpli-
city, the model does not consider mutation. For sequence s, the
number F, of growth fronts and the total length L of crystal
layers after n 4 1 generations is

Ly[n + 1] = Ly[n] + gF;[n] (1]

Fin+1] = Fn) 4+ 2fLn + 1] [2]

where g is the growth rate in nm per growth front per generation
and f is the per nm probability of layer scission. Asymptotically,

Fs[”} = FS[O]}’",
and
1 1
Liln] = 3501 =D Filnl,
with
r=1+fg+/(1+fg) -1
6408 | www.pnas.org/cgi/doi/10.1073/pnas.1117813109

i.e., growth is exponential with replication rate r. The best fit of
our data to the model is f = 0.0016 + 0.0003 and g = 570 + 90,
for which r, the replication rate, is 3.5 +0.4 (SI Appendix,
Supplemental Notes 6-8 and Fig. S14). A replication rate of
3.5 implies that over many generations we would expect that
the number of growth fronts and crystal layers bearing the OIIO
sequence to increase by a factor of 3.5 per generation.

Sustained self-replication of a chemical sequence requires
not only that the abundance of the sequence grow with each gen-
eration; mutants also must not replicate faster than the original
sequence (27). In our experiments, mutants observably replicated
(81 Appendix, Fig. S15), and in a few cases, crystals were twisted
where G1 growth ended and G2 growth began incorrectly, sug-
gesting crystal lattice defects (SI Appendix, Fig. S16). “Monster”
crystals propagating >6 bits, which may have arisen via facet
growth or side-to-side joining (SI Appendix, Fig. S17), and crystals
joined end-to-end (SI Appendix, Fig. S18 and Supplemental Note
9) were also observed during G2.

Surprisingly, however, almost the same proportion of tem-
plated growth fronts (78% + 6) and layers (79% + 5) were cor-
rect after G2 as after G1 (Fig. 4). The mutants also did not
propagate faster than correct crystals: Between G1 and G2,
the total number of incorrect growth fronts increased at the same
rate as the number of correct growth fronts (3.2 +0.5 vs.
3.1 £ 1.0). Similarly, incorrect and correct growth fronts added
the same amount of length on average (530 £290 nm vs.
460 £ 140 nm). To estimate whether the observed mutation rate
and replication rate of mutants could allow sustained self-repli-
cation of the original OIIO sequence, we simulated further gen-
erations using growth, scission and error rates sampled from the
measured means and standard deviations. A simulated 1,000-fold
replication of correct growth fronts took on average 7 genera-
tions, after which on average 47% =+ 35 of templated crystals were
correct (SI Appendix, Supplemental Note 10).

Like errors that change the sequence propagated during crystal
growth or scission, spurious nucleation of crystals produces new
mutants that can grow and replicate. Therefore, for sustained
self-replication it is also necessary that spurious nucleation occur
only rarely, so that spurious nuclei arise and replicate more slowly
than crystals with the desired sequence. Spuriously nucleated
crystals arose at 1.7+0.6x 10”7 nM/s during G2 and
0.9 £0.3 x 1077 nM/s during G1 (SI Appendix, Supplemental
Notes 11 and 12). After S1, 14 £ 7 times more spurious growth
fronts and 19 £+ 9 times more spurious layers were observed as
after G1. However, almost all of these were observed after scis-
sion experiments where, unintentionally, the scission device audi-
bly released cold air onto the crystals (SI Appendix, Figs. S22 and
$23). Cool air increases supersaturation and could have tempora-
rily increased spurious nucleation rates. When the 3 (of 6) experi-
ments where cooling may have occurred are omitted (S
Appendix, Fig. S22), only 0.6 & 0.4 times as many spuriously nu-
cleated layers and 1.3 + 0.7 times as many spuriously nucleated
growth fronts were observed, respectively. Interestingly, the num-
ber of spuriously nucleated layers may have decreased because
the forces applied to the crystals during scission could in some
cases be enough to melt the spuriously nucleated crystals (S/
Appendix, Supplemental Note 13). Therefore, these thinner crys-
tals may have been selected against.

To determine how spurious nucleation would affect the repli-
cation process, we repeated the simulations of replication of the
OIIO sequence, this time taking both mutation rates and spurious
nucleation into account (an omitting the experiments where cool-
ing may have occurred). We found that spuriously nucleated
crystals would comprise only 7% =+ 14 of crystals after 1,000-fold
replication (SI Appendix, Supplemental Note 10). Thus this and
the previous simulation support self-sustained, high-yield 1,000-
fold replication of the templated sequence (SI Appendix, Fig. S24,
Supplemental Note 14, and Tables S1-S2).
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Discussion

Here we have demonstrated that information can be propagated
by DNA crystals that we designed with error rates that are
lower than 1 in 4,000 bits copied. In a fluid flow environment,
these crystals fragment into on average 3.5 pieces containing the
same sequence information; and after additional crystal growth,
the rate at which new errors arise is almost unmeasurable. To-
gether, these results imply that it is possible to robustly store
and replicate combinatorial information within crystals. Simula-
tions of growth that use measured growth rates, scission rates,
and error rates during each generation suggest that over many
generations, replication would produce at least 1,000 times more
crystal growth fronts with an initial “seed” sequence with a high
yield of correct copies.

The methods for replicating a chemical sequence that we de-
scribe are not specific to the OIIO sequence: other sequences
were replicated (SI Appendix, Fig. S15) and a combinatorial
set of sequences could be templated (19) and undergo scission
using the same protocols. Replicating longer sequences will re-
quire that more sequence copies are made before fragmentation
and that the forces that induce fragmentation are of the right
scale, just as a long sequence template and its copy require suffi-
cient energy to separate in other types of replication.

An important contributor to the robustness of crystal replica-
tion is that no coordination is needed between crystal growth and
crystal scission processes for replication to occur. In contrast, in
replication processes where a single sequence copy is made from
a polymer template in each generation, template copying and the
separation of the sequence copy and its template must occur
one after the other in a tightly orchestrated process. One result
of this difference is that end-product inhibition, the failure of the
template and copy to separate, plagues other in vitro replication
schemes (which are based on the template copy model) but does
not affect crystal growth and scission-based replication. As a
consequence, attempts at de novo design of self-replication using
DNA nanotechnology (32) to implement the template copy me-
chanism have yielded cumbersome theoretical proposals (33, 34)
while in a recent experimental demonstration (35) each 7-bit se-
quence could be copied only two times each, producing a popula-
tion of “granddaughters” of which only 31% had the correct
sequence (8.0% error rate per bit copied), amid an excess of spur-
ious side products. This contrasts to our 4-bit sequences that were
copied roughly 110 times each by the end of G2, after which 78%
remain correct (0.02% error rate per bit copied), a fidelity rate
400 times higher. Spurious nucleated crystals also remain a minor
side product.

DNA tile crystal growth and fragmentation is also not con-
ceptually limited to the replication (and evolution) of crystals
that passively store information. DNA tile crystals can be pro-
grammed to process information during growth and thereby cre-
ate complex algorithmic patterns (19, 22, 36, 37). In the context
of self-replication, such algorithmic growth processes could result
in the selection of tile sequence patterns that have adapted in
complex ways to their environment (30, 37). In theory, crystals
can exhibit other lifelike behavior such as the programmed
growth of complex 2- or 3-dimensional structures (38), self-heal-
ing after damage (39), or the regrowth of complex shapes after
fragmentation (40). These examples point to a rich evolutionary
landscape that can be explored to elucidate evolutionary princi-
ples in nonbiological chemical systems.

In a nonbiological context, previous work has recognized the
technological value of exponential amplification of a specific
material (such as carbon nanotubes with a specific width and
chirality) by means of repeated growth and fragmentation from
seeds (41). Similarly, the method for crystal replication we have

1. Paul N, Joyce GF (2004) Minimal self-replicating systems. Curr Opin Chem Biol
8:634-639.
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demonstrated could also be applied to the discovery of functional
materials: DNA crystals can serve as templates for proteins, small
molecules, and nanoparticles (42), allowing the use of this system
for the exploration via directed evolution of photonic or plasmo-
nic nanostructures (43, 44) or of how the specific nanoscale
arrangements of proteins gives rise to specific biological function
(45). And while DNA crystals are more complex than most nat-
ural crystals, crystal growth processes and strong mechanical
forces are varied and ubiquitous, suggesting the plausibility of
a natural crystal growth process and environment that together
support crystal information replication.

Materials and Methods

Tile Design and Assembly. Tile sequences and adapter strands—i.e. the strands
which attached to a DNA origami structure to form seeds—were designed as
previously (19) by using a computer program that produced sequences with
the required complementarity to form desired structures but with minimal
complementary when forming alternative structures. All crystal growth
reactions were performed in Tris-Acetate EDTA buffer containing 12.5 mM
hydrous Mg(CH3COO),. The seeds consisted of 25 pM of DNA origami scaf-
fold, 50 nM of each of the accompanying staples strands that fold the scaf-
fold into a rectangle (26), and 50 nM of each of the adapter strands. The
assembly mixture included 25 nM of the nucleation barrier tiles and edge
tiles and 100 nM of the orange and indigo tiles (in which the biotin label
was on an orange tile strand). For G1, solutions of tiles and seeds were heated
t0 90 °C, then cooled to 31 °Cin an Eppendorf Mastercycler PCR machine. The
temperature was held at 31°C during the growth period. The tiles for G2
included 25 nM of the edge and nucleation block tiles and 100 nM of the
orange and indigo block tiles (in which the biotin label was on an indigo tile
strand). For G2 growth, 12.5 pL of S1 crystals were added to 50 pL of G2 tiles
that had been freshly cooled to 31 °C from above the melting temperature of
the ribbons.

Scission. G1 growth took place inside a PCR machine housed within a glove
box held at 31 °C. Procedures for S1 all took place within this glove box, to
maintain the solution at a temperature where crystal growth occurs at a low
error rate and spurious nucleation rates are minimal. After G1, crystals were
loaded into biocompatible HPLC tubing (inner diameter 500 pm) containing a
constriction formed by a metal gasket with a r = 40 pm diameter, / = 125 pym
long orifice. Eight hundred psi pressure air was used to propel the crystal
solution through the construction. The maximum elongational flow experi-
enced by the crystals is approximately ¢y = Aﬁ’, where AP is the pressure

drop across the channel and u is the sample viscosity. The tension T experi-
enced within a crystal as a result of this elongational flow is approximately

T= % (28). If this tension exceeds the amount of force needed to force
melt a single helix (approximately 65 pN at room temperature (46)) times the
number of helices in a crystal (for 4-bit sequences, n = 28), scission should

occur.

Imaging. AFM imaging was performed on a Veeco Multimode AFM scanner
with Nanoscope llla controller at room temperature in buffer on a mica sub-
strate. To ensure that the crystals did not grow at room temperature, samples
were prepared for imaging in a temperature-controlled glove box. “Guard
strands,” which removed unbound sticky end strands from tiles, were added
to the samples to prevent crystal growth during imaging. The samples were
then cooled to room temperature and imaged over several hours. Controls in
which guard strands were not added before imaging suggest that these
strands did not significantly affect the shape of seeded crystals during the
imaging process.

Detailed descriptions of experiment design, protocols and analysis as well
as a list of all DNA sequences are included in S/ Appendix, Supplemental
Methods.
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