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The trace element copper is indispensable for all aerobic life
forms. Its ability to cycle between twooxidation states,Cu1� and
Cu2�, has been harnessed by a wide array of metalloenzymes
that catalyze electron transfer reactions. The metabolic needs
for copper are sustained by a complex series of transporters and
carrier proteins that regulate its intracellular accumulation and
distribution in both pathogenic microbes and their animal
hosts. However, copper is also potentially toxic due in part to its
ability to generate reactive oxygen species. Recent studies sug-
gest that the macrophage phagosome accumulates copper dur-
ing bacterial infection, which may constitute an important
mechanism of killing. Bacterial countermeasures include the
up-regulation of copper export and detoxification genes during
infection, which studies suggest are important determinants of
virulence. In this minireview, we summarize recent develop-
ments that suggest an emerging role for copper as anunexpected
component in determining the outcome of host-pathogen
interactions.

History of Copper as a Bactericidal Agent

Copper has been used throughout the ages as an antimicro-
bial agent. The earliest recordedmedicinal use of copper can be
traced to the Edwin Smith Papyrus, an ancient Egyptian medi-
cal text that described the use of copper to sterilize chest
wounds and drinking water (1). Copper was also widely used by
the ancient Greeks and advocated by the Greek physician Hip-
pocrates. Roman and Aztec civilizations similarly used copper
compounds to treat common medical afflictions. Whether
ingested, inhaled as a powder, or applied topically, copper was
commonly used throughout much of human history to treat a
wide variety of infectious conditions until the modern era of
antibiotics (1).
Numerous applications of copper’s antimicrobial activity are

found in modern-day materials. For example, copper is used as
a fungicidal application for plants (2) and as an electrolytic ion-
izer to combat Legionella in hospital drinking water (3), and in
2008, copper alloys became the first solid surfaces registered by
the Environmental Protection Agency formarketing as an anti-
microbial. This has led to renewed interest in using copper
materials in the manufacture of frequently touched surfaces

within healthcare facilities such as door handles and railings to
combat the spread of nosocomial infections (4). Studies have
shown thatmethicillin-resistant Staphylococcus aureus is killed
on copper surfaces within 90min compared with 72 h on stain-
less steel (5), and recent studies have documented the killing of
several types of bacteria within minutes of contact with dry
copper surfaces (6).
The ability of bacteria to survive in the presence of soluble

copper salts or on solid copper surfaces is dependent on the
expression of copper tolerance genes (7, 8). Copper tolerance in
most bacteria involves the expression of at least one copper-
exporting ATPase-type pump that is transcribed from an
operon by a copper-responsive transcriptional regulator. Sev-
eral recent studies suggest that these same pathways of copper
tolerance within certain pathogenic bacteria are required to
survive the innate immune response during infection. Al-
though still in its infancy, this relatively new field of biometals
research underscores a novel and unexpected role for copper in
host immunity and emphasizes the medical importance of
understanding copper homeostasis at the host-pathogen inter-
face. Below is a brief review of current findings and future
directions.

Mechanisms of Copper Toxicity

Several mechanisms have been ascribed to the antimicrobial
properties of copper. These include its ability to accept and
donate an electron as it cycles between Cu(I) and Cu(II) oxida-
tion states. Under aerobic conditions, this redox property
enables copper to catalyze the production of hydroxyl radicals
via the Fenton and Haber-Weiss reactions (Reactions 1 and 2)
(9).

Cu1� � H2O2 ¡ Cu2� � OH� � �OH
REACTION 1

Cu2� � �O2 ¡ Cu1� � O2

REACTION 2

The hydroxyl radical is reactive with most types of macromol-
ecules, resulting in damage to lipids, proteins, and nucleic acids.
A second mechanism of copper toxicity is the disruption of
protein structure. This may occur via disruption of protein
structure through interactions with the polypeptide backbone
(the biuret reaction) or through adventitious binding of copper
to amino acids (e.g.Cys), whichmay exclude nativemetal cofac-
tors from their ligands. This latter process is thought to be
particularly damaging to iron-sulfur cluster proteins due to the
high propensity of sulfur to form thiolate bonds with Cu(I)
(10, 11).

Principles of Bacterial Copper Tolerance

The acquisition and insertion of copper intometalloenzymes
of all organisms must be balanced by strict homeostatic mech-
anisms that prevent adventitious interactions of copper with
cellular components. This is achieved in part by maintaining
the cytoplasm essentially free of unbound copper by a sophisti-
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cated network of homeostatic proteins. In eukaryotes, this
includes copper importers and exporters, as well as proteins
that compartmentalize and sequester copper as it traffics
within an organism. The reader is directed to excellent recent
reviews on eukaryotic copper homeostasis (12, 13). Unlike
eukaryotic cells, most bacteria have little need to import copper
into their cytoplasm because bacterial copper-dependent
enzymes are located within either the cytoplasmic membrane
(e.g. cytochrome oxidase) or the periplasmic space. Accord-
ingly, most microbes strive to exclude unligated copper within
the cytoplasm. In Escherichia coli, the copper-responsive tran-
scription factor CueR induces the expression of copper toler-
ance genes at 10�21 molar sensitivity, which translates to less
than one free copper atom in the cytoplasm (14). In general, the
avoidance of copper toxicity in bacteria is achieved by three
principle mechanisms, including 1) copper export across the
plasmamembrane into the periplasmic space or the extracellu-
lar milieu, 2) copper sequestration within the cytoplasm or
periplasm by copper-binding proteins, or 3) Cu(I) oxidation to
generate the less toxic Cu(II) ion. Below is a general description
of these mechanisms and their importance in bacterial
virulence.
Copper Exporters—Analyses of archaeal and bacterial

genomes indicates the presence of at least one P1B-typeATPase
predicted to function in copper export across the plasmamem-
brane (15). P1B-typeATPases are a ubiquitous subclass of heavy
metal pumps belonging to the P-type ATPase superfamily of
ATP-driven ion transporters. Like all P-type ATPases, the P1B-
type ATPases share a conserved aspartic acid motif, DKTGT,
which is phosphorylated during the reaction cycle via the
�-phosphate of ATP (16). Additional signature sequences pres-
ent in the P1B-type ATPases include copper-binding Cys-X2-
Cys or histidine-rich motifs at their cytoplasmic amino termini
and a canonical His-Pro or Cys-Pro-(Cys/His) motif within the
sixth membrane-spanning helix (17). P1B-type ATPases in
Gram-positive bacteria such as S. aureus and Bacillus subtilis
export Cu(I) out of the cytoplasm across the cell membrane

(15), whereas in Gram-negative bacteria, Cu(I) is exported
across the inner membrane to the periplasmic space (17). In
certain bacteria, copper is driven from the periplasmic space
across the outer membrane via additional transport systems. In
E. coli, this occurs via the CusABC complex, a large multisub-
unit protein driven by the proton-motive force (18, 19). In
Mycobacterium tuberculosis, the novel component MctB
(mycobacterial copper transport proteinB), located in the outer
membrane, is postulated to function as a channel for copper
export (Fig. 1) and, as discussed below, is a major determinant
of virulence (20).
Copper Sequestration—Other copper-detoxifying mecha-

nisms in bacteria include copper sequestration via metallothio-
nein-like proteins. MymT is a small metallothionein (4.9 kDa)
in M. tuberculosis required for copper tolerance, and like the
well describedmetallothioneins of eukaryotic cells,MymTcon-
tains cysteine-rich sequences capable of binding at least six
copper atoms via copper-thiolate bonds (21). The small Cu(I)-
binding protein CusF, located in the periplasm of E. coli, is
thought to similarly function as a copper buffer either by pre-
venting potentially toxic interactions with cellular components
or by functioning as a copper delivery chaperone to the Cus-
ABC complex for copper export across the outer membrane
(19). CueP is another recently identified protein in the
periplasm of Salmonella typhimurium whose ability to bind
copper is thought to protect against copper toxicity in this com-
partment (Fig. 1) (22, 23). Interestingly, cueP genes are found
only in bacterial genomes lacking an E. coli Cus-like complex
and may therefore be a functional surrogate for this system.
Copper Oxidation in the Bacterial Periplasm—As the major

site of copper utilization in bacteria, the periplasm of bacteria
contains several known copper-dependent enzymes. Notable
examples include the copper/zinc-containing superoxide dis-
mutases (SodC proteins), which protect certain pathogenic
bacteria against superoxide anions generated by the respiratory
burst of phagocytic cells (discussed below) (24, 25). Another
cuproenzyme in the periplasm is CueO, amulti-copper oxidase

FIGURE 1. Model of copper-mediated bacterial killing by the activated macrophage. Inflammatory agents (e.g. lipopolysaccharide) stimulate copper
uptake by inducing the expression of the CTR1 copper importer at the plasma membrane. Cytoplasmic copper is delivered via the ATOX copper chaperone to
the ATP7A copper pump, which undergoes trafficking to the phagolysosomal compartment, into which it loads copper. The NADPH oxidase (NOX) produces
superoxide, which spontaneously generates hydrogen peroxide, the bactericidal potency of which is augmented by conversion to the hydroxyl radical via
Cu(I)-catalyzed Fenton chemistry. Cu(I) may also function as a bactericidal agent by disruption of Fe-S clusters. Copper homeostasis proteins of S. typhimurium
and M. tuberculosis are shown. Those in color are known to contribute to survival within cultured macrophages or in animal models of infection as described in
the text.
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found in both E. coli and S. typhimurium that is proposed to
confer copper tolerance by oxidizing Cu(I) to the less toxic
Cu(II) form under aerobic conditions (18, 26, 27); however, its
definitive role is not completely understood. Periplasmic
enzymes are sensitive to copper-induced damage in E. coli
mutants of cueO (18, 27), consistent with studies suggesting
thatCueO functions in the oxidation of catecholate iron sidero-
phores to yield compounds that chelate copper, thus limiting its
toxicity within the periplasm (28). As noted below, CueO is also
a necessary determinant of S. typhimurium virulence (Fig. 1)
(29).
Regulation—The abundance of these bacterial copper

defense systems is typically increased under excess copper con-
centrations via the action of copper-sensing transcription fac-
tors. In E. coli, this occurs via copper-induced transcription of
cueO and copA genes by the CueR transcription factor (30, 31).
S. typhimurium also contains a CueR homolog for copper-
stimulated expression of cueO, copA, and cueP (32), aswell as an
additional transcription factor, GolS, which is responsive to
both copper and gold and induces the expression of GolT, a
second P1B-type ATPase involved in copper export into the
periplasm (33, 34). In other bacteria such asM. tuberculosis and
B. subtilis, copper inhibits transcriptional repressors such as
CsoR, resulting in the increased expression of copper tolerance
genes (35, 36). The mechanisms by which these transcriptional
regulators acquire copper in some cases involve the exchange of
copper with cytoplasmic copper chaperones (e.g. CopZ of
Enterococcus hirae) (37), which may also serve as copper carri-
ers to the copper-exporting P1B-type ATPases (23, 33).

Bacterial Copper Homeostasis as a Virulence
Determinant

The successful bacterial pathogen must be able to rapidly
respond to a changing hostile environment during infection
of the host. The production of bactericidal toxins such as
reactive oxygen and nitrogen species and the withdrawal of
nutrients to starve the invading microbe are critical defense
mechanisms of the innate immune system. Several recent
studies suggest that exposure of bacterial pathogens to toxic
copper concentrations within the host is a general defense
mechanism of the innate immune system, and the ability of
pathogenic bacteria to activate several of the aforemen-
tioned copper tolerance pathways influences their virulence.
Below is a summary of these recent developments with a
focus on the most well studied examples of the pathogenic
bacteria M. tuberculosis and S. typhimurium.

M. tuberculosis

As a pathogen of the mammalian respiratory system,
M. tuberculosis infects the lungs and is the causative agent of
tuberculosis. The ability to survive and replicate within alveolar
macrophages is an important determinant of M. tuberculosis
virulence (38). Infection of primary human macrophages by
M. tuberculosis induces the expression of the P1B-type ATPase
CtpV, which exports copper across the inner membrane (39).
Because the ctpV gene is part of the copper-induced regulon
that is controlled by the CsoR transcriptional regulator (36),
these findings provided some of the first insights into the pos-

sibility that copper tolerance genes may play a role in virulence
of M. tuberculosis, and recent studies are consistent with this
hypothesis. The �ctpV mutant was found to inflict less severe
lung damage and lower rates of killing in a study of infected
mice and guinea pigs compared with wild-typeM. tuberculosis
(40). However, because this same study found no difference in
the lung bacterial load between �ctpV and wild-type strains, it
raised the possibility that other copper defense mechanisms
might partially compensate for the loss of CtpV. Further insight
came from studies of the putative outer membrane channel
protein MctB (20). Loss of themctB gene inM. tuberculosis or
its homologous gene in Mycobacterium smegmatis resulted in
hyperaccumulation of copper and amarked increase in the sen-
sitivity to elevated concentrations of Cu(I), consistent with a
role for MctB in copper export from the periplasmic space to
the extracellular milieu (20). In a mouse model infected with
aerosols of M. tuberculosis, the recovery of �mctB bacteria
from the lung was reduced 10-fold in comparison with the wild
type, and remarkably, this difference was increased to 100-fold
if CuSO4 was added to the drinking water of the mice. These
findings provided evidence not only that copper export is a
critical determinant of virulence inM. tuberculosis but that this
phenotype is subject to the level of copper intake by the host.
AlthoughMctB appears to play a dominant role in this process,
several important questions are raised by these findings. What
is the effect of combined mutations in copper tolerance path-
ways involvingMymT, CtpV, andMctB, and are these proteins
functionally interconnected?What is the importance of a newly
identified copper-responsive regulon in M. tuberculosis that is
regulated by RicR, a paralog of CsoR (41)? Do the copper-han-
dling pathways ofM. tuberculosis function effectively in the rel-
atively aerobic environment of the exposed lung mucosa or the
hypoxic environment of the granuloma, where much of the
persistent infection resides?Clearly, there ismuch that needs to
be done to fully understand the roles of copper in M. tubercu-
losis pathogenesis.

S. typhimurium

World wide, this Gram-negative bacterium is responsible for
93 million cases of gastrointestinal disease annually (42). Dur-
ing systemic infection, the ability of S. typhimurium to survive
and replicate within the macrophage phagosome is a critical
determinant of virulence, and likeM. tuberculosis, the activities
of copper tolerance genes appear to play important roles in this
process. Two copper-exporting P1B-type ATPases in S. typhi-
murium, CopA and GolT, are functionally analogous to the
M. tuberculosis CtpV protein and similarly contribute to cop-
per tolerance by exporting copper out of the cytoplasm into the
periplasmic space. Recent studies have explored the contribu-
tion of CopA and GolT to S. typhimurium virulence. The tran-
scription of the copA gene was found to be induced between
8- and 12-fold upon phagocytosis by macrophage cells, thus
providing further evidence that elevated phagosomal copper
concentrations are a general feature of the activated macro-
phage during infection (23, 43). Although deletion of either
copA or golT was found to have no impact on bacterial survival
in cultured macrophages compared with the wild-type strain,
the loss of both genes markedly reduced bacterial survival in
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this model (23). Thus, although copper export is important for
S. typhimurium survival within themacrophage, it appears that
there is some redundancy in the contributions of CopA and
GolT. Interestingly, the ability of the �copA/�golT double
mutant to colonize the livers and spleens of mice challenged
with an oral gavage was no different from that of the wild-type
strain. Although this underscores the potential differences
between in vitro and in vivo models of infection, it also high-
lights the possibility that a more complete disruption of copper
tolerance pathways may be required to fully sensitize the bac-
terium to the innate immune system in the whole animal.
In this context, it is interesting to note that CueO (also

known as CuiD) appears to contribute to the virulence of
S. typhimurium in amousemodel of systemic infection. Loss of
cueOwas found to impair colonization in the lungs and spleens
of mice challenged with an oral gavage, but no differences were
noted between the mutant and wild-type bacteria recovered
from intestinal Peyer’s patches ormesenteric lymph nodes (29).
The implication of these findings is that the loss of CueO did
not affect initial phases of infection but rather later stages once
the bacteria had seeded the peripheral organs. Although this
might suggest a defect in replicative ability within macro-
phages, no such differences between wild-type and mutant
CueO bacteria were found, at least within a cultured macro-
phage model (29). Although these findings collectively point to
the importance of several mechanisms of copper homeostasis
in S. typhimurium for virulence, they also highlight the possi-
bility that specific pathways of copper tolerance might offer a
greater degree of protection at different stages of infection.
Clearly, it will be important to generate individual and com-
bined disruptions in the entire copper regulon to address such
questions.

Is Copper Tolerance in Bacteria a General Determinant of
Virulence?

The importance of copper resistance for virulence has been
shown for several bacterial pathogens carrying mutations in
P1B-ATPases. In Pseudomonas aeruginosa, a Gram-negative
opportunistic pathogen that often infects individuals with a
compromised immune system, deletion of the CopA1 ATPase
(also known as CueA) decreased bacterial survival in murine
spleen compared with the wild-type strain (44). Other studies
have shown that a deletion mutant of the CtpA copper-export-
ing P-type ATPase in Listeria monocytogenes was cleared more
rapidly from the livers of infected mice compare with the wild-
type strain and was outcompeted by the wild-type strain in
mixed infections (45). In a recent study, deletion of the CopA
P1B-ATPase of Streptococcus pneumonia was found to reduce
survival in the lungs of infected mice and, to a greater extent,
the nasopharynx but surprisingly did not affect bacterial load in
the blood (46). These findings highlight the possibility that bac-
terial copper homeostasis mechanisms play more important
roles in the colonization of the host at initial sites of infection
relative to subsequent events involving systemic infection.
These studies reinforce the concept of copper homeostasis as a
general mechanism of survival required by both Gram-positive
and Gram-negative bacteria during infection of the host, the

importance of which may vary according to the site or stage of
infection.

Copper Homeostasis in the Mammalian Host

It has been known for decades thatmarked changes inmicro-
nutrient homeostasis in the host are accompanied by infection
or inflammation. The adaptive changes in iron homeostasis of
both host and pathogen during infection are among the most
intensively studied examples in this area (47, 48). Although the
invading pathogen expresses an array of iron acquisition path-
ways needed for replication and survival, this is countered by a
complex series of iron-withholding mechanisms in the host. In
contrast to iron, it is well documented that copper levels in the
serum are significantly elevated in response to inflammation
(49–60). Copper accumulates at sites of inflammation (61),
within granulomatous lesions of lungs infected with M. tuber-
culosis (20), and within the exudates of wounds and burns
relative to serum (62, 63). The form of copper at these inflam-
matory sites is unknown; however, a candidate is the copper-
containing protein ceruloplasmin, a serum protein containing
85% of circulating copper that is secreted from the liver during
the acute-phase inflammatory response (64). Although the
mechanisms by which copper homeostasis is altered within
specific organs in response to infection are unknown, these
changes may form adaptive responses of the innate immune
system to mobilize copper toward sites of infection to aid in
bacterial killing by macrophages. Consistent with this concept,
various studies have shown that copper deficiency increases the
susceptibility to various pathogens, includingCandida albicans
(65, 66), Pasteurella haemolytica (67),Trypanosoma lewisi (68),
S. typhimurium (69), and coxsackievirus B3 (70). Conversely,
other studies have shown that copper supplementation is pro-
tective against E. coli-induced mastitis in dairy cattle (71) and
M. tuberculosis in mice (20). Although the underlying mecha-
nisms by which the copper status of the host impacts suscepti-
bility to infection are unknown, it is likely that the bactericidal
activity of phagocytic cells of the innate immune system is par-
tially responsible because the respiratory burst capacity of and
the bacterial killing by these cells are reduced by copper defi-
ciency (72–74). Elemental analysis using x-ray microprobe
approaches has demonstrated that although the abundance of
some elements declines within the mycobacterium-containing
phagosome, the copper abundance markedly increases up to
several hundred micromolar (75), a concentration well within
the range known to induce expression of copper exporters in
M. tuberculosis and S. typhimurium and to kill mutants lacking
such transporters (23, 36).

Importance of Mammalian Copper Transporters in
Macrophage Bactericidal Activity

Bacterial phagocytosis by the macrophage occurs via plasma
membrane invagination, budding, and fusion events, which
result in the formation of the membrane-enclosed phagosome
containing the microbe (76). The phagosome then undergoes a
series of maturation steps, acquiring bactericidal enzymes and
toxins as it acidifies and fuses with lysosomes to become the
phagolysosomal compartment. A critical event in pathogen
killing is the assembly of theNADPHoxidase on themembrane
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of the phagosome, which catalyzes the one-electron reduction
of oxygen to produce superoxide (77). This so-called respira-
tory burst is a front line defense against invadingmicrobes, and
its importance in innate immunity is underscored in patients
with X-linked granulomatous disease, in which lack of a func-
tional NADPH oxidase increases the susceptibility to infection
(78). Recent studies from the author’s (P. J. P.) laboratory have
demonstrated a link between the copper homeostasis machin-
ery of the macrophage and its ability to use copper as a bacte-
ricidal agent. Proinflammatory factors lipopolysaccharide (a
component of the Gram-negative bacterial cell wall) and inter-
feron-� were found to stimulate copper uptake in RAW 267.4
macrophage cells by increasing the expression of the copper
importer CTR1 (79, 80). Significantly, these same proinflam-
matory conditions led to an increase in the expression of the
ATP7A protein, a P1B-type ATPase that is normally located in
the Golgi complex, into which it transports copper to various
metalloenzymes in the secretory pathway. Moreover, these
inflammatory conditions induced the trafficking of the ATP7A
protein into cytoplasmic vesicles and the phagolysosome, thus
providing a possible mechanism by which bactericidal levels of
copper may be delivered into this compartment during infec-
tion (Fig. 1) (79). Consistent with this model, the killing of
E. coli was suppressed in RAW 264.7 macrophages in which
ATP7A expression was silenced, suggesting that copper deliv-
ery to the phagosomal lumen via ATP7A augments its bacteri-
cidal activity (79). Further support for thismodel came from the
finding that a copper-sensitive mutant of E. coli lacking the
CopA copper-exporting P1B-type ATPase was not only killed
more efficiently by RAW 264.7 macrophages compared with
the wild-type strain, but this hypersensitivity was abrogated by
knockdown of ATP7A in macrophages (79). Whether CTR1
and ATP7A play critical roles in killing other bacterial patho-
gens such asM. tuberculosis and S. typhimurium in vitro and in
vivo is the subject of ongoing investigations. However, consis-
tent with a role for ATP7A in immune defense, it is notable that
patients with Menkes disease who lack a functional ATP7A
copper transporter have increased susceptibility to infection of
the bladder and lungs (81–84).

Possible Mechanism of Copper-dependent Bacterial
Killing by Macrophages

Although the above studies shed light on the transporters
underlying copper-dependent killing by macrophages, the
question ofmechanism remains unanswered. It is reasonable to
speculate that the toxic potential of coppermay be exploited by
the macrophage to augment bacterial killing by the respiratory
burst (Fig. 1). The superoxide radical is short-lived in the pha-
gosome and converts to H2O2 non-enzymatically. H2O2 is
highly diffusible and relatively unreactive; however, in the pres-
ence of a reduced transition metal such as Cu(I), H2O2 can
produce, via the Fenton reaction, the highly reactive hydroxyl
radical, which is able to oxidatively damage surrounding mole-
cules encountered (Fig. 1) (85, 86). It is also possible that copper
may indirectly contribute to iron-mediated Fenton chemistry
by releasing iron from labile sites such as iron-sulfur cluster
proteins (10). In these scenarios, it is readily apparent how

bacterial copper detoxification mechanisms might confer
increased survival in the macrophage.
It is worth noting that in some bacteria such as M. tubercu-

losis and S. typhimurium, the presence of copper-containing
superoxide dismutases in the periplasm contributes to viru-
lence by protection against superoxide (24, 25). However,
under conditions in which Cu(I) levels are elevated in the pha-
gosome, one can envisage the activity of these superoxide dis-
mutases as a double-edged sword that contributes toH2O2 pro-
duction and thus Fenton chemistry, which may be exacerbated
by bacterial copper exporters into the periplasm. It will there-
fore be of interest to determine how the function of ATP7A-
mediated copper delivery into the phagosome, as well as bacte-
rial exporters of copper into the periplasmic space, affects the
contribution of SodCproteins to virulence in organisms such as
M. tuberculosis and S. typhimurium.

Future Directions

The antimicrobial properties of copper have played impor-
tant roles in medicine for millennia; however, its role in the
innate immune system is a relatively recent discovery. Accord-
ingly, there are many unanswered questions to be addressed in
the coming years.What is themechanism bywhich copper kills
bacteriawithin themacrophage?Can drugs that are designed to
inhibit copper tolerance proteins of bacterial pathogens give
rise to a new class of antibiotics?What are the transporters and
regulatory mechanisms in the host responsible for systemic
mobilization of copper into the bloodstream during infection,
and does this process play a role in delivering copper to sites of
infection? Does themacrophage use copper against other path-
ogenic agents such as fungi, viruses, helminths, andprotists?Do
other professional phagocytes such as dendritic cells,microglia,
and neutrophils similarly use copper as a weapon against bac-
teria? The answers to such questions will require careful explo-
ration of copper-handling pathways within the host and patho-
gen at the levels of biochemistry, cell biology, and physiology
and how each of these pathways contributes to the struggle to
control this essential yet toxic nutrient at the host-pathogen
interface.
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