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Background: The PI3K/Akt pathway is involved in muscle development and regeneration.
Results: Knocking out Trpc1 channels or inhibiting Ca2� fluxes decreases PI3K/Akt activation, slows down myoblasts migra-
tion and impairs muscle regeneration.
Conclusion: Trpc1-mediated Ca2� influx enhances PI3K/Akt pathway during muscle regeneration.
Significance: The activity of PI3K/Akt pathway is modulated by intracellular Ca2�.

We previously showed in vitro that calcium entry through
Trpc1 ion channels regulates myoblast migration and differen-
tiation. In the present work, we used primary cell cultures and
isolatedmuscles fromTrpc1�/� andTrpc1�/� murinemodel to
investigate the role of Trpc1 in myoblast differentiation and in
muscle regeneration. In these models, we studied regeneration
consecutive to cardiotoxin-inducedmuscle injury and observed
a significant hypotrophy and a delayed regeneration in
Trpc1�/� muscles consisting in smaller fiber size and increased
proportion of centrally nucleated fibers. This was accompanied
by a decreased expression of myogenic factors such as MyoD,
Myf5, and myogenin and of one of their targets, the develop-
mental MHC (MHCd). Consequently, muscle tension was sys-
tematically lower in muscles from Trpc1�/� mice. Importantly,
the PI3K/Akt/mTOR/p70S6K pathway, which plays a crucial
role in muscle growth and regeneration, was down-regulated in
regenerating Trpc1�/� muscles. Indeed, phosphorylation of
both Akt and p70S6K proteins was decreased as well as the acti-
vation of PI3K, the main upstream regulator of the Akt. This
effect was independent of insulin-like growth factor expression.
Akt phosphorylation also was reduced in Trpc1�/� primary
myoblasts and in control myoblasts differentiated in the
absence of extracellular Ca2� or pretreated with EGTA-AM or
wortmannin, suggesting that the entry of Ca2� through Trpc1

channels enhanced the activity of PI3K. Our results emphasize
the involvement of Trpc1 channels in skeletal muscle develop-
ment in vitro and in vivo, and identify a Ca2�-dependent activa-
tion of the PI3K/Akt/mTOR/p70S6K pathway during myoblast
differentiation and muscle regeneration.

Tissue repair after wounding or injury is a common adapta-
tive response that occurs in many physiological or pathological
processes such as in several myopathies. In skeletal muscle,
regeneration involves successive steps of satellite cells activa-
tion, proliferation, and differentiation, and finally leads to for-
mation of regenerated myofibers. The process is regulated by
basic helix-loop-helix myogenic regulatory factors (1, 2). These
factors constitute the so-called MyoD family of proteins that
contains four members: Myf5, MyoD, myogenin, and MRF4,
the transcriptional activity of which is potentiated by myocyte
enhancer binding factor 2 (3, 4). Activated satellite cells express
Myf5 and MyoD during proliferation. MyoD expression leads
cells to withdraw from cell cycle and start differentiation (5). At
this stage, they express myogenin (6, 7). Members of theMyoD
gene family induce transcription of manymuscle specific genes
such as MHC genes (8, 9). Two MHC isoforms are expressed
during muscle development: embryonic and perinatal MHC
(10).Myf5 andMyoDhave been reported to specifically activate
the expression of theseMHCs duringmuscle regeneration (11).
Insulin-like growth factors (IGFs)3 are other important play-

ers in myoblast differentiation in vitro and in muscle regenera-
tion in vivo (12–14). Stimulation by IGFs induces phosphory-
lation and activation of IGF receptor (15). This leads to
recruitment of the phosphotyrosine-binding domain of insulin
receptor substrates (IRS) and results in IRS phosphorylation on
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specific tyrosine residues (16). Activated IRS recruits and
sequesters the p85 subunit of PI3K, liberating the p110 catalytic
subunit. The active p110 subunit generates 3�-phosphorylated
phosphoinositideswhich bind the pleckstrin homology domain
of phosphoinositide-dependent kinase 1 andAkt inducing their
membrane targeting (17–19). Phosphoinositide-dependent
kinase 1phosphorylates Akt, which phosphorylates the mam-
malian target of rapamycin mTOR, which in turn, phosphory-
lates p70S6K and activates protein synthesis.
Finally, extracellular Ca2� also is known to play an impor-

tant role in muscle development. Indeed, it has been
reported that migration and/or fusion which precedes myo-
tubes formation require Ca2� influxes (20, 21). It has been
suggested that this Ca2� influx occurs through T-type Ca2�

channels (22). We recently reported that the process also
involved the type 1 canonical subfamily of Trp (transient recep-
tor potential) channels. Indeed, using a knockdown strategy in
vitro, we showed that Trpc1 channels were responsible for the
increased Ca2� influx observed at the onset of myoblast differ-
entiation (23).
To investigate the role of Trpc1 channels during skeletal

muscle regeneration in vivo, we used a model of cardiotoxin-
induced muscle injury and compared muscle consecutive
regeneration in adult Trpc1�/� and Trpc1�/� mice. We
observed that Trpc1�/� mice presented a delayed regeneration
(smaller fibers, higher proportion of central nuclei, delayed and
diminished expression of myogenic transcription). We show
that the lack of Trpc1 or the inhibition of Ca2� entries reduces
Akt phosphorylation and delaysmuscle cell differentiation.We
suggest that the entry of Ca2� through Trpc1 channels
enhances the activity of PI3K/Akt/mTOR/p70S6K pathway
and accelerates muscle regeneration.

EXPERIMENTAL PROCEDURES

Trpc1�/� and Trpc1�/� Mice—Generation of Trpc1�/�

mice has been described previously (24). Trpc1�/� and
Trpc1�/�were obtained fromheterozygous animals. Trpc1�/�

were compared with their Trpc1�/� control littermates.
Muscle Injury—Three- to four-month-old Trpc1�/� and

Trpc1�/� mice were anesthetized by intraperitoneal injection
of a solution containing ketamine (10mg�ml�1 Pfizer, Brussels,
Belgium) and xylazine (1 mg�ml�1 Bayer HC, Diegem,
Machelen, Belgium). Tibialis anterior (TA) and extensor digi-
torium longus (EDL) muscles were injured by intramuscular
injection of 50 and 20 �l, respectively, of a solution containing
10 �M cardiotoxin from Naja Naja (Sigma) (unique injection
after limb skin opening and identification ofmuscle; skin closed
by surgical suture). Muscles were harvested after specific peri-
ods of time to investigate the rate of regeneration.
Mechanical Measurement—Trpc1�/� and Trpc1�/� mice

were anesthetized deeply (see above) to preserve muscle perfu-
sion during dissection of both TA and EDL muscles. Depth of
anesthesia was assessed by the abolition of eyelid and pedal
reflexes. After dissection, the animals were killed by rapid neck
dislocation. This protocol has been approved by the Animal
Ethics Committee of the Catholic University of Louvain (Brus-
sels, Belgium).

EDL muscles were bathed in a 1-ml horizontal chamber
superfused continuously with Hepes buffered Krebs solution
(100% O2) containing the following: 135.5 mM NaCl, 5.9 mM

KCl, 1.0 mMMgCl2, 2.5 mMCaCl2, 11.6 mMHepes sodium, and
11.5 mM glucose, maintained at 20 � 0.1 °C. One end of the
muscle was tied to an isometric force transducer and the other
was tied to an electromagnetic motor and length transducer
(25). Stimulation was delivered through platinum electrodes
running parallel to themuscles. Restingmuscle length (L0) was
adjusted carefully for maximal isometric force using 100 ms
(EDL)maximally fused tetani. Force was digitized at a sampling
rate of 1 KHz, using a PCI 6023E i/o card (National Instruments
under a homemade Labview program). Tension was expressed
relative to cross-sectional area, obtained by multiplying abso-
lute force by the quotient “muscle fiber length (mm)/muscle
blotted weight (mg)” and considering the fiber length equal to
0.5 � L0 (26). Maximal tension was then expressed as a per-
centage of contralateral noninjected muscle tension.
Histology Assessment—Histological investigations were per-

formedon cardiotoxin-injuredTAmuscles after a period of 1 to
14 days of regeneration. Muscles were dissected, fixed in 4%
paraformaldehyde on ice for 4 h, embedded in paraffin, and
sectioned. Sections were stained with hematoxylin and eosin as
described previously (27). The size of muscle fiber sections was
measured using a homemade planimetry program (200 fibers
were counted per muscle).
Immunohistochemistry—Five-�m thick paraffin embedded

sections of TA muscles at day 3 of regeneration were deparaf-
finated, rehydrated, and blocked using a 0.5% bovine serum
albumin solution in phosphate-buffered saline (PBS) during 1 h
at room temperature. Sections were then incubated at 4 °C
overnight with mouse MHCd antibody (1:10, Novocastra, UK)
diluted in blocking solution, washed three times in PBS for 10
min, incubatedwith an anti-mouse antibody coupledwith alka-
line phosphatase (1:50, Sigma) for 1 h, washed three times
again, and revealed using alkaline phosphatase (Sigma). The
reaction was stopped with Tris-EDTA solution, pH 8, and sec-
tions were fixed in formol and mounted with Mowiol (Calbi-
ochem, La Jolla, CA).
Measurement of Transcription Factor Activity—The global

activity ofmyogenic transcription factors wasmeasured using a
luciferase plasmid gene reporter. The 4RTK-luciferase vector
containing four oligomerized MyoD-binding sites upstream of
a thymidine kinase promoter (28) (kindly provided by Dr. Steve
Tapscott, Fred Hutchinson Cancer Research Center, Seattle,
WA) was amplified in Escherichia coli TOP10F� (Invitrogen)
and purifiedwith an EndoFree PlasmidGiga kit (Qiagen, Venlo,
Netherlands) (29). The day before injection, 30 �g of plasmid
were lyophilized and resuspended in 30 �l of 0.9% NaCl solu-
tion. Three days before cardiotoxin injection, each mouse was
anesthetized, and 1 �g/�l plasmid solution was injected into
TAmuscles; these were electroporated as described previously
(30). At day one of regeneration, animals were sacrificed, and
TA muscles were removed. Whole TA muscles were homoge-
nized with Ultraturax (IKA-Labortechnik, Staufen, Germany),
and luciferase activity was quantified using a luciferase assay
system (Promega, Madison, WI).
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Western Blot Analysis—Cells were scraped off, rinsed twice
with ice-cold PBS, centrifuged at 1500 � g for 10 min at 4 °C,
and kept at �80 °C until use. Injured TA muscles were har-
vested, frozen in liquid nitrogen, and also kept at �80 °C until
use. Cells pellets were suspended in 60 �l and TA muscles in
500 �l of lysis buffer containing the following: 50 mM Tris/HCl
(pH 7.5), 1 mM EDTA (pH 8), 1 mM EGTA, 10 mM �-glycero-
phosphate, 1 mM KH2PO4, 1 mM NaVO3, 50 mM NaF, 10 mM

NaPPi, and a protease inhibitor mixture (Roche, Complete
Mini) and 0.5% Nonidet P-40, homogenized with pipette tips
for cells or Ultraturax for muscles and incubated for 10 min at
4 °C. Nuclei and unbroken cells were removed by centrifuga-
tion at 10,000 � g for 10 min at 4 °C. Samples were incubated
with Laemmli sample buffer containing SDS and 2-mercapto-
ethanol for 3 min at 95 °C, electrophoresed on 10% SDS-poly-
acrylamide gels, and transferred onto nitrocellulose mem-
branes. Blots were incubated with rabbit anti-Myf5 (1:1000;
Millipore, Billerica, MA), rabbit anti-MyoD (1:500; Santa Cruz
Biotechnology), mouse anti-myogenin (1:250; Santa Cruz Bio-
technology), rabbit anti-phospho-Akt (1:500; Cell Signaling,
Danvers, MA), mouse anti-PKB/Akt (1:1000; Bioke, Leiden,
Netherlands), rabbit anti-phospho- and total p70S6K (1:1000;
Santa Cruz Biotechnology), rabbit anti-GAPDH (1:1000; Cell
Signaling, Danvers,MA). After incubationwith the appropriate
secondary antibody coupled to peroxidase (Dako, Heverlee,
Belgium), peroxidase was detected with ECL plus on ECL
hyperfilm (Amersham Biosciences, Diegem, Belgium). Protein
expressions were quantified by densitometry.

Real-time Polymerase Chain Reaction—Injured EDLmuscles
were homogenized in TRIzol (Invitrogen). Total RNA was
treated with DNase I and reverse-transcribed using qScript
Reverse Transcriptase (Quanta Biosciences, Gaithersburg,
ME). Gene-specific PCR primers were designed using Primer3.
The GAPDH housekeeping gene and the genes of interest were
amplified in parallel. Real-time RT-PCRwas performed using 5
�l of cDNA, 12.5 �l of qScript Reaction Mix (Quanta Biosci-
ences, Gaithersburg, MD) and 300 nM of each primer in a total
reaction volume of 25�l. Data were recorded on aDNAEngine
Opticon real-time RT-PCR detection system (Bio-Rad) and
cycle threshold (Ct) values for each reaction were determined
using analytical software from the same manufacturer. Each
cDNA was amplified in duplicate, and Ct values were averaged
for each duplicate. The average Ct value for GAPDH was sub-
tracted from the average Ct value for the gene of interest and
normalized to non-injected muscles. As amplification efficien-
cies of the genes of interest and GAPDH were comparable, the
amount of mRNA, normalized GAPDH, was given by the rela-
tion 2���Ct. MyoD, Myf5, and myogenin primers and GAPDH
and growth factor primers were designed as described previ-
ously (31, 32).
Immunoprecipitation Assay—Protein extracts were pre-

pared from C2C12 myoblasts cultured in differentiation
medium for 1 day or from TA muscles after 3 days of regener-
ation. One �g of mouse anti-phosphotyrosine antibody (BD
Biosciences) was incubated with 40 �l of Sepharose G beads
(Sigma) for 2 h at 4 °C and then incubated overnight with 300

FIGURE 1. Weight and tension of normal and regenerating muscle in Trpc1�/� and Trpc1�/� mice. A and B, animal and EDL muscle weights during the first
6 months of life (*, p � 0.05). C, maximal tension (force per cross-sectional area) measured after cardiotoxin-induced injury in EDL muscles at day 14 of
regeneration, stimulated during 300 ms and at 125 Hz. *, p � 0.05 versus Trpc1�/� (Student’s t test, n � 6). D, time course of muscle tension in regenerating EDL
muscles. Day zero is the day of cardiotoxin injection. Tension of regenerating muscle reported to that of contralateral noninjected muscle. *, p � 0.05 versus
Trpc1�/� (two-way analysis of variance followed by Tukey’s test for multiple comparison, n � 6 per day).
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�g of protein lysates. The lysates were removed, and the beads
were washed with lysis buffer containing anti-protease and
anti-phosphatase. Proteins were then eluted by boiling at 95 °C
for 3 min in 40 �l of twice-concentrated SDS sample buffer.
These samples were submitted toWestern blot analysis using a
rabbit anti-p85 PI3K antibody (1:1000; Cell Signaling).
C2C12 Cellular Culture—C2C12 mouse skeletal myoblasts

were obtained from the American Type Culture Collection and
grown in Dulbecco’s modified Eagle’s medium (DMEM) (Invit-
rogen) supplemented with 10% fetal bovine serum and 1% non
essential amino acids, and maintained at 37 °C in a humidified
atmosphere of 5% CO2. To induce differentiation, myoblasts
were grown to 	50–75% confluence, the growth medium was
then replaced with differentiation medium, consisting of
DMEM supplemented with 1% horse serum. To test the role of
Ca2� in differentiation, we loaded cells with EGTA-AM 20 �M

for 3 h and kept them for 1 to 5 additional days in normal
differentiation medium. Alternatively, the short term effect of
Ca2� was investigated by differentiating cells for 4 h in DMEM
medium devoid of Ca2� and supplemented with 1% horse
serum and 200 �M EGTA.
Primary Myoblast Culture—One- to two-day-old Trpc1�/�

and Trpc1�/� mice were used simultaneously. Muscles were
harvested, minced with fine scissors, and centrifuged at 700

rpm for 3min. The supernatant was removed, and the pieces of
muscles were incubated with 5 ml of F12-DMEM medium
(Invitrogen) containing 0.1% of collagenase type I and 0.15% of
Dispase II (Sigma) in a shaking bath maintained at 37 °C for 5
min during the first dissociation process to eliminate damaged
fibers and then three times for 15min. The supernatants of each
dissociation were collected in 5 ml of F12-DMEM containing
30% FBS and 85 �g�ml�1 streptomycin and 85 units�ml�1 pen-
icillin and placed on ice to stop the digestion. The three frac-
tions of dissociation were then pooled in a 50-ml falcon tube
and centrifuged at 700 rpm for 3 min. Supernatants were fil-
tered using a 50-�mmesh nylon filter before preplating in Petri
dishes for 30 min. Nonadherent cells were plated on culture
flasks and incubated at 37 °C in a humidified atmosphere of 5%
CO2, 95% air. Differentiationwas induced at 70% confluence by
switching the proliferating medium to differentiation medium
containing DMEM supplemented with 2% horse serum.
Mn2� Quenching Measurements—Myoblasts were loaded

for 1 h at room temperature with the membrane-permeant
Ca2� indicator Fura-PE3/AM (1 �M). Cells were illuminated
through an inverted Nikon microscope (40 � magnification
objective) at 360 nm, and the fluorescent light emitted at 510
nm was measured using a Deltascan spectrofluorimeter (Pho-
ton Technology Intl.). To measure Ca2� influx into myoblasts,

FIGURE 2. Histological characteristics of regenerating muscles after cardiotoxin injection. A, hematoxylin/eosin staining of TA muscles from
Trpc1�/� and Trpc1�/� mice after cardiotoxin injection. B, detailed views of zones represented at day 10. Shown is a quantification of fiber size areas.
*, p � 0.05 versus Trpc1�/� (Pearson Chi square, n � 6 different mice). C, fiber size at day (D) 10 of regeneration related to contralateral noninjected
muscle (*, p � 0.05, n � 6 TA muscles from six different mice, 200 fibers counted per muscle). D, detailed views of zones represented at day 14. The
proportion of central nuclei is shown. Arrows indicate central nuclei. ***, p � 0.001 versus Trpc1�/� (n � 3 different mice, three microscopic fields per
muscle of each animal).

Trpc1 Channel Modulates PI3K/Akt Pathway

APRIL 27, 2012 • VOLUME 287 • NUMBER 18 JOURNAL OF BIOLOGICAL CHEMISTRY 14527



500 �M MnCl2 was added to the Krebs medium, and the influx
of Mn2� was evaluated by the quenching of Fura-PE3 fluores-
cence excited at 360 nm (isosbestic point) (33, 34).
Wound Healing Assay—The wound healing assay was per-

formed as described previously (23). Briefly, proliferation of
primarymyoblasts at 70% confluence was stopped by switching
to differentiation medium for 24 h. Then, cells were scrapped
off to obtain a 600 �m wide acellular area and migrated myo-
blasts into this area were counted after 15 h using the ImageJ
program.
Chemicals—Cardiotoxin I isolated from Naja Naja Atra was

purchased from Sigma. Fura-PE3/AM, EGTA-AM, and wort-
mannin were obtained from Calbiochem, Darmstadt, Ger-
many. F12/DMEM, DMEM, serum, and streptomycin-penicil-
lin solutions were purchased from Invitrogen.
Statistical Analysis—Data are presented asmeans� S.E. Sta-

tistical significance was determined using t tests to compare
two groups or analysis of variance to compare many groups.
Analysis of the muscle cross-sectional area was performed
using a�2 Pearson test. The level of significancewas fixed at p�
0.05.

RESULTS

TRPC1�/� Mice Present Delay of Skeletal Muscle
Regeneration—We previously showed that TRPC1 protein
repression reduces C2C12 myoblast migration and differentia-
tion (23). We also observed that Trpc1�/� mice presented a
mild muscular hypotrophy consisting in smaller fibers size and
in reduced content in myofibrillar proteins without any other
sign ofmyopathy such as necrosis, central nulei, or fibrosis (27).
Here, we studied animal development during the first six
months of life and confirmed amoderate but significant default
of development (Fig. 1A) with in particular a reduced of muscle
weight progression (Fig. 1B).
To further investigate whether deletion of Trpc1 protein can

impair skeletal muscle development in vivo, we studied muscle
regeneration after cardiotoxin-induced injury in Trpc1�/� and
Trpc1�/� mice (35). EDL and TAmuscles were harvested after
different periods of time post-injury and were characterized
functionally and histologically. First, we measured muscle ten-
sion of regenerated Trpc1�/� and Trpc1�/� muscles at day 14
of regeneration when muscle repair is almost completed (35).
We observed that Trpc1�/� regenerating muscles presented
about 25% lower tension than Trpc1�/� muscles (114.47 �
13.18 in Trpc1�/� versus 155.78� 9.11mN/mm2 in Trpc1�/�;
p � 0.05) (Fig. 1C). To relate this difference of tension to a
deficit of regeneration, we performed muscles tension kinetics
in the two groups from the first to the fourteenth day of regen-
eration and related the tension produced by regenerating mus-
cle to that produced by contralateral non injected muscle. We
observed that one to 3 days after cardiotoxin injection, muscle
tension was dramatically but similarly decreased in both
Trpc1�/� and Trpc1�/� muscles (Fig. 1D). The importance of
this loss of tension (	10% residual tension) indicated that
degeneration was almost complete in both groups. Interest-
ingly, the time course of tension recovery between days 3 and 14
post-injury suggests that muscle regeneration is slower in
Trpc1�/� than Trpc1�/� mice (Fig. 1D).

The apparent delay of recovery observed in Trpc1�/� mus-
cles was corroborated results point to a delayed repair in
Trpc1�/� muscles in comparison with Trpc1�/� muscles: (i)
adult non regenerated Trpc1�/� muscle fibers present a
smaller cross-section area than Trpc1�/� muscles (1317 � 97
�m2 versus 1638 � 103 �m2, n � 3 different animals of each
type, 200muscle fibers counted permuscle, p� 0.05). Ten days
after cardiotoxin injection, this difference was more important
(1041 � 81 �m2 in Trpc1�/� versus 1638 � 110 �m2 in
Trpc1�/� n � 6 different animals of each type, 200 muscle
fibers counted permuscle, p� 0.05; Fig. 2B). Indeed, Trpc1�/�

muscle fibers had recovered a normal size (98% of nonregener-
ated fibers), whereas Trpc1�/� fibers remained significantly
smaller than fibers from the contralateral noninjected muscle
(Fig. 2C); (ii) at day 14 of regeneration, themajority ofTrpc1�/�

fibers were still centrally nucleated, whereas in Trpc1�/� fibers
most of the nuclei hadmigrated to the periphery (84.25� 2.30%
central nuclei in Trpc1�/� versus 23.53 � 7.55% in Trpc1�/�;

FIGURE 3. Assessment of the activity of myogenic transcription factors.
A, immunodetection of MHCd in TA muscles from Trpc1�/� and Trpc1�/�

mice, 3 days after injury. B, quantification of MHCd positive areas related to
total muscle cross-section area. **, p � 0.01 versus Trpc1�/� (Student’s t test,
n � 6 different mice per group). C, myogenic transcription factors activity
measured using a luciferase-based gene reporter, related to the quantity of
muscle protein content. *, p � 0.05 versus Trpc1�/� (Student’s t test, n � 6
different animals).
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p � 0.001) (Fig. 2D). Altogether, these results highlight a small
but significant delay of muscle regeneration in Trpc1�/� mice
compared with Trpc1�/� mice.
Expression and Activity of Myogenic Transcription Factors

Are Decreased in Trpc1�/� Regenerating Muscles—To investi-
gate the time course of regeneration, we measured the expres-
sion of developmental myosin heavy chains (MHCd) by immu-
nohistochemistry. MHCd expression was absent in non
regeneratingmuscles and began at day 3 of regeneration in both
Trpc1�/� and Trpc1�/� muscles, but interestingly, the num-
ber of cells expressing the protein wasmuch lower in Trpc1�/�

than in Trpc1�/� muscles (Fig. 3A). Quantification of the
MHCd-positive area related to total muscle section area
confirmed a significant decrease in MHCd expression in
Trpc1�/� in comparison with Trpc1�/� muscles (11.44 �
2.71% versus 28.48 � 6.47%, respectively) (Fig. 3B). The
expression of MHC and other structural proteins requires
the activation of their promoter by a group of myogenic basic
helix-loop-helix factors such as MyoD, Myf5, myogenin, and
MRF4, which act at multiple points in the myogenic lineage
to establish myoblast identity and to control terminal differ-
entiation (3, 28, 29). The activity of these myogenic tran-
scription factors was investigated using a luciferase plasmid
gene reporter assay. We chose a luciferase plasmid encoding
firefly luciferase under a promoter containing the binding
site of the MyoD gene family and transfected it into TA
muscles by electroporation. Luciferase expression revealed
by luminescence can therefore be correlated to the activity of
the myogenic transcription factor (37). The results pre-

sented in Fig. 3C indicate a significant decrease in the activ-
ity of these myogenic factors in Trpc1�/� regenerating mus-
cles at day 1 compared with wild-type controls.
We therefore studied the time course expression of Myf5,

MyoD, and myogenin. Quantitative PCR revealed a significant
decreased and/or delayed expression of the three genes in
Trpc1�/� muscles. This was also confirmed at the protein level
(Fig. 4). We also observed a significantly decreased expression
of p27, a well known cdk inhibitor, which in synergy with
MyoD, induces a withdrawal from the cell cycle and initiates
differentiation (38, 39).
Akt/mTOR/p70S6KPathway Is Down-regulated in Trpc1�/�

Regenerating Muscles—The Akt/mTOR/p70S6K pathway is a
crucial regulator of protein synthesis during muscle regenera-
tion (40). In particular, mTOR is well known to regulatemuscle
fiber size (41). We observed a smaller fiber size in regenerating
Trpc1�/� regenerating muscles in comparison with Trpc1�/�

and, in a previous work, also showed that adult Trpc1�/� skel-
etal muscles contain 	20% less myofibrillar proteins than con-
trols (27).We therefore investigated the activation of this path-
way in ourmodel bymeasuring the phosphorylation of Akt and
p70S6K, acting respectively upstream and downstreammTOR.
At the beginning of regeneration (day 3), we observed a very
large decrease in phosphorylation of serine residue 473 of Akt
(Fig. 5A) and of threonine residue 389 of p70S6K (Fig. 5B), in
Trpc1�/� muscles compared with Trpc1�/� muscles, indicat-
ing a clear down-regulation of this pathway in TRPC1�/�

regenerating Trpc1�/� muscles.

FIGURE 4. Expression of myogenic transcription factors in regenerating muscles. A, expression of myogenic factors (Myf5, MyoD, and myogenin) and p27
assessed by Western blot analysis in TA muscles. B, mRNA quantification (quantitative RT-PCR) of myogenic factors in EDL muscles. �Ct was calculated by using
GAPDH as internal control, and ��Ct was related to the noninjected muscles in each group. *, p � 0.05 versus Trpc1�/� at day 1 (two-way analysis of variance
followed by Tukey’s test for multiple comparison, n � 4 different animals per day).
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Ca2� Entry through Trpc1 Channels Modulates PI3K/Akt/
p70S6K Pathway Activation During Muscle Regeneration—In
muscle regeneration, the Akt pathway is essentially regulated
by PI3K, which is recruited by IRS upon IGF stimulation (15).
To investigatewhether the decrease ofAkt pathway activitywas
due to a decrease of IGF expression in Trpc1�/� muscles, we
quantified by quantitative RT-PCR the expression of IGF1,
IGF2, and MGF (the earliest isoform of IGF expressed during
muscle regeneration) in the two groups of regenerating mus-
cles. Results showed a similar expression level of all these
growth factors (data not shown). In agreement with these
results, we observed that the phosphorylation level of IRS was
similar in Trpc1�/� and Trpc1�/� muscles, suggesting that the
diminished activity of the Akt pathway is not due to decreased
IGF stimulation (data not shown).
This prompted us to investigate the role of PI3K in the

activation of the Akt pathway and in particular the possible
role of Trpc1 in the activation of this pathway. To decipher
these mechanisms, we investigated two cellular models, the
ex vivo primary muscle culture and the C2C12 cell line,
allowing control of the ionic environment during muscle
development and to perform cellular biophysical measure-
ments more easily.
In our previous work, using a knockdown strategy with si-

and shRNAs targeted against Trpc1, we observed a decrease in
Ca2� influx in Trpc1 knockdown myoblasts and consistently a
decrease of myoblast migration and differentiation (23). Here,

we compared the amplitudes of Ca2� influx between Trpc1�/�

versusTrpc1�/� primarymuscle cultures usingMn2�-induced
quenching of Fura-PE3. We observed a similar level of Ca2�

influx at day zero of differentiation in the two groups, but after
24 h of differentiation, Ca2� influx increased in Trpc1�/� cul-
ture, and this was not observed in Trpc1�/� cultures (Fig. 6A).
As can be expected, this caused a defect in myoblast migration
(Fig. 6, B and C). In particular, we systematically observed that
Trpc1�/� myoblasts maintained in differentiation medium for
3 to 5 days did not line upwith each other like in Trpc1�/� cells
(Fig. 6D). All of these results confirmed our earlier results about
the involvement of Trpc1 in Ca2� homeostasis of differentiat-
ing myoblasts.
To investigate the impact of cytosolic Ca2� on Akt pathway

activation at the beginning of differentiation, we treated C2C12
myoblasts with EGTA-AM, an intracellular Ca2� chelator.
While under control conditions, Akt phosphorylation was
enhanced at day 1 of differentiation (Fig. 7A), it was decreased
by 40% in EGTA-AM-treated myoblasts (Fig. 7B). Moreover, 5
days after the beginning of differentiation, myotubes derived
from EGTA-AM treated myoblasts (treated at day 1) appeared
thinner than control myotubes (Fig. 7C). To discriminate
whether cytosolic calcium involved in Akt pathway stimulation
came from subcellular compartments or from the external
medium, differentiation was induced in the same differentia-
tion medium but devoid of Ca2� and supplemented with
EGTA. We observed that Akt phosphorylation was decreased

FIGURE 5. Akt pathway in regenerating muscles. The level of Akt and p70S6K phosphorylation was quantified in TA muscles at day 3 of regeneration using
Western blot analysis and was related to total Akt and p70S6K proteins contents, respectively. **, p � 0.01 versus Trpc1�/� (A); *, p � 0.05 versus Trpc1�/� (B);
Student’s t test (n � 6 different animals).
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significantly, suggesting that the effect of Ca2� on Akt results
from an influx from the extracellular compartment (Fig. 7D).
Finally, we obtained similar results by comparingTrpc1�/� and
Trpc1�/� myoblasts in primary culture, suggesting that Trpc1
protein is involved in the influx of calcium and the consecutive
phosphorylation of Akt (Fig. 7E). Akt phosphorylation was also
inhibited by wortmannin, a well known inhibitor of PI3K
(Fig. 7F).
We therefore hypothesized that Ca2� entry through the

Trpc1 channel could contribute to activation of PI3K, which in
turn, would activate the Akt/mTOR/p70S6K pathway. The rate
of PI3K activation, i.e. the rate of its recruitment on tyrosine-
phosphorylated IRS, was evaluated by immunoprecipitation
assay. Phosphotyrosines residues were immunoprecipitated
and p85, the regulatory subunit of PI3K, was detected by immu-
noblot. As shown in Fig. 8A, treatment of C2C12 myoblasts by
EGTA-AM decreased the activation of PI3K, suggesting the
involvement of Ca2� in PI3K activation in cultured myoblast
differentiation. To confirm that this mechanism did also oper-
ate in vivo, we compared PI3K activation in regenerating
Trpc1�/� and Trpc1�/� regenerating muscles. We observed a
decrease of pP85 subunit recruitment onto phosphotyrosine
residues in Trpc1�/� muscles, suggesting that Ca2� entry
through Trpc1 channels modulates PI3K activation during
muscle regeneration (Fig. 8B).

DISCUSSION

Activation of the PI3K pathway is well known to induce
skeletal muscle hypertrophy defined as an increase in pre-
existing fiber size as opposed to fiber number. Duringmuscle

regeneration, the prohypertrophic effect of IGFs is depen-
dent predominantly on the PI3K/Akt signaling pathway. Akt
induces protein synthesis through the activation of p70S6K
and blocks the up-regulation of two key mediators of muscle
atrophy, the E3 ubiquitin ligases MuRF1, and atrogin 1 (42,
43). The PI3K pathway seems also to be required in myoblast
differentiation and may act downstream or in parallel with
MyoD (44–47).
Previously, we showed that, at the beginning of muscle dif-

ferentiation, Trpc1 was overexpressed and that this was
responsible for the increased Ca2� entry observed at day 1 of
differentiation. In the present study, we observed a concomi-
tant increase of Akt phosphorylation, suggesting that the entry
of Ca2� entering through Trpc1 plays a role in the activation of
this pathway. In myoblasts derived from Trpc1�/� mice, the
increased entry of Ca2� and the phosphorylation of Akt were
both inhibited. The latter effect also was mimicked when
cytosolic Ca2� transients were buffered by EGTA-AM or
whenmyoblast differentiation was initiated in the absence of
extracellular Ca2�. Similarly, regeneration of cardiotoxin-
injected control muscles was accompanied by a phosphory-
lation of Akt and of its downstream target p70S6K. This was
largely reduced in Trpc1�/� muscles (Fig. 5). As suggested
by the effect of wortmannin (Fig. 7D), Akt is essentially
under the dependence of PI3K at this stage of differentiation.
We found that IGF mass or activity were not altered in
regenerating Trpc1�/� muscles as compared with control
muscles. However, PI3K activity was decreased in Trpc1�/�

versus Trpc1�/� at the beginning of differentiation, to an

FIGURE 6. Involvement of Trpc1 in calcium-mediated primary myoblast differentiation. A, calcium influx in Trpc1�/� and Trpc1�/� primary myoblasts
estimated by using Mn2�-induced Fura-PE3 quenching technique. D0 represents proliferation condition, and D1 represents the first day of differentiation. **,
p � 0.01 versus DO in Trpc1�/� myoblasts; §, p � 0.05 between D1 Trpc1�/� and D1 Trpc1�/� myoblasts (two-way analysis of variance followed by Bonferroni
test for multiple comparison). B, wound healing assay performed in primary cultured myoblasts obtained from Trpc1�/� and Trpc1�/� mice and maintained
24 h in differentiation medium (DM). C, number of migrating myoblasts 15 h after wounding (related to Trpc1�/� migrating myoblast). ***, p � 0.001 versus
Trpc1�/� (Student’s t test, representative data of three independent experiments). D, representative examples of Trpc1�/� and Trpc1�/� myoblasts main-
tained in differentiation medium for 4 days.
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extent similar to the one when myoblasts were treated with
EGTA-AM. This suggests that entry of Ca2� through Trpc1
channels modulates PI3K activity.
As the PI3K/Akt/p70S6K pathway plays a major role in

muscle regeneration and development, its down-regulation
in the absence of Trpc1 channels may account for the
delayed muscle mass and force recovery of Trpc1�/� regen-
erating muscles. In regenerating Trpc1�/� muscles, we also
observed a decrease in the expression and the activity of
intrinsic myogenic regulatory factors of the MyoD family, in
particular MyoD, Myf5, and myogenin. The PI3K/Akt path-
way has been shown to increase the transcriptional activity
of MyoD (48–50). Indeed, it has been demonstrated that
activated Akt specifically interacts with prohibitine 2, com-
peting with its binding to MyoD and thus increasing MyoD
transcriptional activity (45). Inhibition of the PI3K/Akt
pathway observed in Trpc1�/� muscles could therefore
explain the reduced level of myogenin and MHCd, the
expression of which depends on MyoD. Consequently, mus-
cle cell maturation is delayed in Trpc1�/� mice after injury

(Fig. 2C) as well as in normal myoblasts cultured after treat-
ment with EGTA-AM.
In addition, Trpc1 also seems to be able to stimulatemyogen-

esis independently of the PI3K/Akt pathway. Indeed, it has been
reported that Trpc1 interacts with the inhibitor of the myo-
genic family, Imf-a. This competes with the binding of Imf-a to
myogenin and causes releases of active myogenin, triggering
myogenesis (36).
Finally, in a previous paper, we showed that siRNA-mediated

knockdown of Trpc1 protein impairedmyoblast differentiation
(23). This was due to a default in of migration and in of align-
ment of myoblasts, which are important steps for myoblast
fusion into myotubes. The default of alignment was also clearly
observed in primarymyoblasts derived fromTrpc1�/�muscles
primary culture (Fig. 6D), confirming the effect of the channel
in cell migration. In regenerating muscles, we observed that
MyoD and p27 expression was lower in Trpc1�/� than in
Trpc1�/� regenerating muscles. These two proteins seem to
induce cell cycle arrest in response to cell-cell contact and to
promote myoblast differentiation (38, 39). We therefore pro-

FIGURE 7. Ca2� modulation of Akt activation. A, immunodetection of Akt phosphorylation in C2C12 myoblasts maintained in proliferation medium
(day 0) or cultured 1 day in differentiation medium (day 1). B, immunodetection of phosphorylated Akt in C2C12 myoblasts treated 24 h with 20 �M

EGTA-AM or vehicle only (dimethyl sulfoxide; DMSO), as a fraction of total Akt contents. *, p � 0.05 versus dimethyl sulfoxide; Student’s t test (n � four
different cultures). C, morphology of C2C12 myotubes after 5 days of differentiation; left panel, myoblasts treated with vehicle only; right panel,
myoblasts treated at day 1 with 20 �M EGTA-AM. D, immunodetection of phosphorylated Akt in C2C12 myoblasts maintained 4 h in differentiation
medium with or without Ca2� (200 �M EGTA), as a fraction of total Akt contents. *, p � 0.05 versus control (Student’s t test, n � 3 different cultures).
E, comparison of phosphorylated Akt at day 1 of differentiation in Trpc1�/� and Trpc1�/� primary myoblasts. F, immunodetection of phosphorylated
Akt of Trpc1�/� primary myoblasts cultured (PC) in proliferation medium (D0) and after 1 day in differentiation medium in the absence (D1) or in the
presence of 100 nM wortmannin.
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pose that the decreased expression ofMyoD and p27might be a
consequence of the delayed alignment and cell-cell contacts of
Trpc1�/� myoblasts.
In conclusion, this study shows that Trpc1 channels play a

role in skeletalmuscle development in vivo and in vitro bymod-
ulating the PI3K/Akt/mTOR/p70S6K pathway.
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