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Abstract

The absolute stereostructure of sagittamide A (1), a O-hexacetyl long-chain hexahydroxy-α, ω-
dicarboxylic acid, was assigned using a progressive-convergent approach that integrates three
powerful regimens for stereochemical analysis of acyclic natural products: J-based analysis, 13C
NMR universal database comparisons and exciton coupling circular dichroism.

The structure of (–)-sagittamide A (1)1–an unprecedented polyacetoxy, long-chain α,ω-
dicarboxylic acid isolated from a tropical didemnid tunicate–was solved by application of
conventional 2D NMR spectroscopic methods, however, only partial stereochemistry could
assigned. Although configurations of the terminal amino acids (L-ornithine and L-valine)
were determined readily by conventional methods, the contiguous 5,6,7,8,9,10-hexol
hexaacetate in 1 represented a significantly more complex NMR problem, in part, because of
isolated stereohexad C5–C10 flanked by CH2 groups2 and equivocal interpretations of J
coupling.
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We now report the complete stereostructure of 1 using a progressive-convergent approach
that integrates three powerful regimens for stereochemical analysis of natural products: use
of Murata’s J-based analysis (3JHH and 2,3JHC),3 application of Kishi’s Universal Database4

(pairwise-comparison of 13C NMR chemical shifts with stereo-defined models) and highly
sensitive exciton coupling circular dichroism (ECCD).5 The integrated approach rapidly
converges upon a unique stereochemical assignment for 1 with internal validation.

A basis set of 3JHH and 2,3JCH values were obtained by 2D heteronuclear 2D NMR
experiments of 1 (COSY and HSQMBC, respectively, see Supporting Information) and used
to predict an all anti-relative configuration for C6–C9 for 1. Consequently, the number of
remaining possible diastereomers of 1 was reduced from N=32 to 4. A synthetic route to six
model compounds, representing permutations of the six stereocenters C5–C10 congruent
with those proposed for 1, was conceived and executed starting with D-xylose (see
Supporting Information).6 In order to address an equivocal C8 3JCH value in 1, a parallel set
of models 2–9 was also prepared from D-ribose as described below (Scheme 1).

Indium-promoted Barbier reaction of D-ribose with allyl bromide gave a 2:1 mixture of
epimeric homoallylic alcohols7 10 and 11 after protection. Each acetonide was deprotected
and hydrogenated (Pd/C, CF3CH2OH, 1 atm H2)8 followed by Swern oxidation to the
corresponding C9 aldehydes and homologation using two stereocomplementary methods (Z-
selective Wittig olefination using phosphonium salt 14 and E-selective Julia-Kocienski
olefination with tetrazole 159) to give 12 and 13.

Stereoselective OsO4 dihydroxylation10 of 12 gave diols 16 and 17. In this manner, E- and
Z-olefins were converted to diol diastereomers and purified by HPLC, prior to deprotection
to the hexaols. Peracetylation of each hexaol furnished the eight C7–C9 ribo-model
compounds 2–9 and six xylo-models (Supporting information). The correct relative
configuration of 1 emerged from 13C NMR comparisons with the model compounds (Figure
1).4

The 1H and 13C NMR spectra of each peracetate model were carefully assigned from COSY
and HMBC spectra. Pairwise comparisons of the differences of the 13C chemical shifts (Δδ)
for C4–C11 in model compounds and 1 clearly showed an excellent match for the C8 epimer
6 obtained from D-ribose, but an mismatch for the corresponding xylo-C8 epimer (e.g. C8:
Δδ = +0.05 and −3.93 ppm, respectively, see Supporting Information). A valuable object
lesson is revealed here that promotes a progressive-convergent approach to stereochemistry.
Although anomalous 3JCH’s in 1 predicted an erroneous xylo-configuration during J-based
analysis,11 this was readily rectified in the progressive 13C Δδ analysis allowing
reassignment of C8 configuration to that of 6.

The absolute stereochemistry of 1 was secured by transformation of the natural product, and
hexaol diastereomers corresponding to 6 and 7, to the per-benzoate ester derivatives, 18, 19
and 20, respectively,12 and comparison of their corresponding CD spectra (Figure 2). Since
the fingerprint Cotton effects observed in the CD spectra of 18 and 19 were equal in
magnitude but opposite in sign, the absolute configuration of 1 corresponds to ent-19 and is
related to L-ribose.12 Thus, the complete configuration of sagittamide A (1) is depicted as
(5S,6S,7S,8R,9R,10S).

In summary, we have deployed an integrated approach to solve the configuration of
sagittamide A (1). The power of this triple-combination of methodologies lies in judicious
interpretation of homonuclear 3J and heteronuclear 2,3J to provide partial stereochemical
information which is then used to inform correct choices for synthesis of model compounds
to be used in the next stage: 13C NMR comparative analysis.
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A significant advantage is gained by a requirement for only a limited sub-set of stereo-
model compounds without the necessity for synthesis of all 64 possible permutations. The
progressive-convergent approach succeeds where other singular methods based on NMR
may become irreducibly complex13 or rendered equivocal by second-order effects that
militate against reliable stereochemical assignments.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
13C NMR (125MHz, d6-DMSO, T=298 K) Δδ values (δC 1– δC model) of ribo-model
compounds 2–9
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Figure 2.
CD spectra of sagittamide A derivative 18 (—), together with models 19 (…) and 20 (-– -),
(CH3CN, c=10 μM).
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Scheme 1.
a) In°, allyl bromide, H2O; b) TrCl, pyridine, reflux 53% (2 steps); c) CSA, acetone,
CH3C(OCH3)2CH3 58%, 10:11 dr 2:1); d) SiO2-HPLC 1:19:EtOAc hexanes; e) H2, 1 atm,
Pd/C, CF3CH2OH, 35–69%; f) i. (COCl)2, DMSO, CH2Cl2, −78 °C ii. Et3N; g) i. 15, DME,
NaHMDS, −78 °C, ii. aldehyde, 25%, dr 3:1 (2 steps); h) i. 14, THF, NaHMDS, −78 °C, ii.
aldehyde, dr>19:1,16% 2 steps; i) OsO4, NMO, acetone, H2O; dr 1.7:1, 93%; j) K3Fe(CN)6,
K2OsO4, K2CO3 (DHQ)2PHAL, t-BuOH, H2O, CH3SO2NH2, dr 3.8:1, 86%; k) 2% TMS-
Cl, MeOH, ii. CH2N2, ether/MeOH, iii. Ac2O, pyridine 6h: 22% 3 (3 steps), 48%; 2 (3
steps), 44%, 6 (4 steps), 26%, 7 (4 steps).
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