Skip to main content
. 2012 Apr 30;7(4):e35807. doi: 10.1371/journal.pone.0035807

Figure 1. A novel mutation leads to an aspartate to histidine substitution at the N-terminus of Aβ.

Figure 1

(A) The upper part of the diagram presents the Aβ42 sequence with the location of the D7H mutation (red). As shown in the lower part of the diagram, processing of APP occurs via two pathways. Nonamyloidogenic processing of APP by á-secretase produces the C83 and sAPPα fragments; amyloidogenic processing of APP by â-secretase produces the C99 and sAPPβ fragments. Aβ is generated through subsequent cleavage of C99 by γ-secretase. (B) SPECT images of the index patient indicate hypoperfusion in the bilateral parietal cortices and the left temporal cortex. (C) Direct sequencing of APP exon 16 PCR products derived from the patient and from healthy controls revealed a GAC-to-CAC nucleotide substitution in Aβ region of the patient's APP gene (in 678th amino acid using APP770 numbering or in 7th amino acid using Aβ numbering).