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Abstract
The mammary gland is one of the best-studied examples of an organ whose structure and function
are influenced by reciprocal signalling and communication between cells and their
microenvironment. The mammary epithelial cell microenvironment includes stromal cells and the
extracellular matrix (ECM). Abundant evidence shows that the ECM and growth factors cooperate
to regulate cell cycle progression, and that the ECM is altered in breast tumors. In particular,
mammographically dense breast tissue is a significant risk factor for developing breast
carcinomas. Dense breast tissue is associated with increased stromal collagen and epithelial cell
content. In this article we overview recent studies addressing the effects of ECM composition on
the breast cancer cell cycle. While the normal breast ECM keeps the mammary epithelial cell
cycle in check, the ECM remodeling associated with breast cancer positively regulates the
mammary epithelial cell cycle. ECM effects on the downstream biochemical and
mechanosignalling pathways in both normal and tumorigenic mammary epithelial cells will be
reviewed.

Introduction
Breasts, or mammary glands, are derived from the epidermis and are a distinguishing feature
of mammals. As in all epithelial lined organs and glands, communication between mammary
epithelial cells (MECs) and their environment governs tissue morphogenesis during
development, homeostasis in the adult, and neoplastic progression in the cancerous state
(Kenny and Bissell, 2003; Zhan et al., 2008; Lyons et al., 2011). During mammary gland
development, the microenvironment is permissive for cell proliferation, branching, and
invasion through the stroma to promote organogenesis (Fata et al., 2004a). When proper
organ size, shape, and function are achieved, these behaviors cease. In the adult,
homeostasis is achieved through maintenance of the differentiated state, coupled with
epithelial cell renewal (Rizki and Bissell, 2004). During cancer progression, the tissue
microenvironment fails to exert control over epithelial proliferation and differentiation,
resulting in uncontrolled growth and invasion (Maffini et al., 2004). Several studies have
begun to elucidate the mechanisms by which the tissue microenvironment exerts direct
control over MEC proliferation, as well as the molecular basis for loss of proliferation
control in cancer.

The mammary gland is one of the best-studied examples of an organ whose structure and
function are influenced by reciprocal signalling and communication between cells and their
microenvironment. The mammary gland contains epithelium and stroma. Mammary
epithelial cells form collecting ducts, and during pregnancy and lactation, milk-secreting
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alveoli. The stroma includes stromal cells and the extracellular matrix (ECM). Abundant
evidence shows that the ECM, cytokines and growth factors cooperate to regulate MEC
survival, differentiation, migration, and proliferation, and that the ECM is altered in breast
tumors (Muschler and Streuli, 2010; Polyak and Kalluri, 2010; Lyons et al., 2011; Schedin
and Keely, 2011). Dense breast tissue is associated with increased stromal collagen and
epithelial cell content (Guo et al., 2001; Alowami et al., 2003; Gill et al., 2006), and
mammographically dense breast tissue is a significant risk factor for developing breast
carcinomas (Gill et al., 2006; McCormack and dos Santos Silva, 2006; Boyd et al., 2009b;
Boyd et al., 2010). In this article we overview recent studies addressing the effects of ECM
composition on the breast cancer cell cycle. The ECM remodeling associated with breast
cancer appears to be a positive regulator of the cell cycle in breast cancer cells, but not
always in nontumorigenic breast epithelial cells. This review will focus on the role of the
ECM, including its composition and mechanical properties, in proliferation control that
contributes to breast cancer.

The mammary epithelial cell microenvironment
The mammary gland ECM

The mammary epithelium is bilayered, with inner luminal cells facing a central cavity and
surrounded by a basal layer of myoepithelial cells (Figure 1A). The ECM in contact with
this bilayer is the basement membrane, which separates the epithelium from the stroma.
Myoepothelial cells produce the basement membrane, a thin sheet composed of collagen IV,
laminins, entactin, and proteoglycans (Yurchenco and Patton, 2009). The stroma physically
supports the epithelium, providing structure, nutrients, blood, and immune defense.
Correspondingly, the stroma contains a variety of cells (including fibroblasts, adipocytes,
endothelial cells, smooth muscle, innate and adaptive immune cells, and nerve cells), as well
as ECM proteins (Shekhar et al., 2003; Stein et al., 2004). The stromal cells secrete
paracrine factors, growth factors and cytokines, influencing MEC function and development.
Stromal matrix components include collagens type I and III, which are the major structural
proteins, as well as proteoglycans, hyaluronic acid, fibronectin and tenascins. The
composition of the ECM varies during mammary gland development and pregnancy
(Schedin et al., 2004; O’Brien et al., 2010; Lyons et al., 2011). Cells adhere to the ECM
through several different receptors, with the best-studied being integrins (Hynes, 2002;
Katsumi et al., 2004). Integrins are αβ heterodimers, with specifc αβ subunit combinations
serving as receptors for different ECM components (Muschler and Streuli, 2010). In
particular, β1 integrins are implicated in maintaining normal MEC phenotype (White et al.,
2004; Taddei et al., 2008; Streuli, 2009; Streuli and Akhtar, 2009). Knockout of β1 integrin
disrupts proliferation, differentiation and alveolar development (Li et al., 2005a; Naylor et
al., 2005). Knockout of α2 integrin, a key receptor for collagens in the mammary gland,
leads to loss of branching complexity (Chen et al., 2002). Although much remains to be
discovered about how ECM receptors such as integrins link extracellular mechanical signals
to biochemical signals within the cell, accumulating evidence implicates these interactions
in the development and progression of breast cancer in response to alterations in the ECM
(Muschler and Streuli, 2011; Schedin and Keely, 2011).

Mechanical properties of the ECM
The influence of ECM on gene expression in MECs was described as early as 1981 (Bissell,
1981; Emerman et al., 1981; Bissell et al., 1982) and more recently it was shown that 3D
culture in Matrigel™ influences epigenetics, specifically histone modification patterns (Le
Beyec et al., 2007) The additional findings that functional differentiation depends on 3-
dimensional (3D) context (Hall et al., 1982; Hall and Bissell, 1986) and that MECs
differentiate and produce milk in 3D reconstituted basement membranes (Matrigel™) but not
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in 2D culture (Petersen et al., 1992; Howlett and Bissell, 1993) suggest that at least some of
these cellular responses are mediated via mechanosignaling. Mechanosignaling converts a
mechanical event into a biochemical event, such as in signal transduction.

Integrin-mediated focal complexes, which are assembled in response to mechanical stress
and stiffness, function as mechano-sensors (Katsumi et al., 2004; Katsumi et al., 2005).
Integrins undergo conformational changes upon ligand binding, and integrin-cytoskeletal
linkages are enhanced when force is exerted on integrins. These events suggest that binding
sites within the complex are exposed under strain (Choquet et al., 1997). The polarity of
MECs and their adherence via α6β4 integrin to the basement membrane at
hemidesmosomes, and the tight juctions and adherens junctions between cells, likely
contribute to mechanosignalling in MECs as they do in other cell types (Wozniak and Chen,
2009). Myoepithelial cells also likely participate in mechanical events within the mammary
gland that impact the behavior of the luminal cells. Despite this, the mechanical properties
of the basement membrane are yet to be described.

Mechanical properties of the stromal ECM, and more specifically its major structural
protein, fibrillar collagen, are under intense scrutiny for their role in regulating gene
expression as recently reviewed (Schedin and Keely, 2011), including regulation of the cell
cycle (Klein et al., 2009). Mechanics of the stromal ECM are regulated by growth factors,
which stimulate fibroblasts to deposit stroma and arrange collagen. Changes in ECM
composition, such as occurs during mammary gland development and tumor progression, is
characterized by increased ECM deposition and significantly changes the mechanical
environment of MECs. Part of this is due to increases in collagen V, which change the
structure of collagen I fibrils (Barsky et al., 1982; Wenstrup et al., 2004; Breuls et al., 2009);
and increases in fibronectin and proteoglycans, which affect the organization of the collagen
fibers. The cross-linking of collagen fibers and collagen arrangement increase matrix
stiffness and therefore change the mechanical properties of the ECM (Raub et al., 2008;
Raub et al., 2010) as do matrix proteases (Wolf and Friedl, 2009).

Differences in matrix stiffness change MEC cellular response, as shown by in vitro studies.
MECs cultured in lower concentration 3D collagen gels organize into polarized acinar and
ductal structures (Figure 1A), while those in higher concentration (stiffer) collagen gels, lose
polarization and are locally invasive (Figure 1B). An increase in collagen concentration
from 1.0 to 4.0 mg/ml represents a range from soft or pliable to a stiff matrix, with elastic
moduli ranging from ~170 to 1600 Pascals (Pa) when measured by compression, and 10 to
44kPawhen measured by tensional forces (Roeder et al., 2002; Paszek et al., 2005; Gehler et
al., 2009; Provenzano and Keely, 2009). A stiff matrix also provides traction for the cell to
proliferate. MECs cultured in stiffer matrices increase proliferation and change their overall
gene expression profiles (Wozniak et al., 2003; Paszek et al., 2005; Provenzano et al., 2009).

Cells sense stiffness of their environment in part by pulling against the ECM using
intracellular contractile mechanisms, derived from actin-myosin interactions. In a less stiff
matrix, cells pull the matrix towards them, while in a stiffer matrix, cells generate forces that
result in focal adhesions and stress fiber formation (Wozniak et al., 2003; Gehler et al.,
2009). The Rho-ROCK pathway has been linked to MEC response to matrix stiffness. Rho-
GTP is decreased by a compliant matrix (Wozniak et al., 2003), while activation of this
pathway by a stiff matrix results in phosphorylation and activation of the myosin regulatory
light chain (MLC) (Wozniak et al., 2003; Paszek et al., 2005; Wyckoff et al., 2006). MLC
can be phosphorylated by both ROCK and MLC-kinase (Amano et al., 1996), but the Rho-
ROCK pathway appear to be more important in MEC response to matrix stiffness (Wozniak
et al., 2003; Paszek et al., 2005; Wyckoff et al., 2006). The forces generated result in tension
across adhesion receptors and focal complexes. This in turn strengthens adhesion, recruits
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signalling molecules and results in focal adhesion signalling (Schedin and Keely, 2011).
Focal adhesion complex proteins implicated in mechanosensing include talin, vinculin,
FAK, Src, and p130Cas (Felsenfeld et al., 1999; Wang et al., 2001; Li et al., 2002; Giannone
et al.,2003; Jiang et al., 2003; Frame, 2004; Kostic and Sheetz, 2006; Sawada et al., 2006).

Regulation of normal cell cycle progression by the ECM
The cell cycle

Abundant evidence shows that the ECM and growth factors cooperate to regulate cell
proliferation in MECs, as well as in many other cell types. Soluble mitogens and ECM
proteins together regulate progression through G1-phase of the cell cycle via induction of
G1 cyclins, including D-type cyclins (D1, D2 and D3) and E-type cyclins (E1 and E2)
(Sherr and Roberts, 2004). The extracellular environment is best known to control cyclin D1
transcription in mid-G1, following induction of the transcription factor c-myc. Cyclin D
binds to and activates cdk4 or cdk6. Active cyclin D-cdk4/6 phosphorylates the G1
checkpoint protein Rb, resulting in the release of E2F, a transcription factor sequestered and
inhibited by Rb (Musgrove et al., 2011). E2F induces transcription of cyclin E and other
genes required for S-phase. Cyclin Ebinds to and activates cdk2 and the complex is imported
into the nucleus to phosphorylate proteins necessary to initiate DNA replication in S-phase.
Cyclin E also has roles in histone biosynthesis, centrosome duplication, S-phase
transcription, pre-mRNA splicing, oncogenic transformation and re-entry into the cell cycle
from quiescence (Caldon and Musgrove, 2010).

ECM regulation of the cell cycle
ECM proteins induce cyclin D1 expression and down regulate the cdk inhibitorsp21 and
p27by binding to and activating integrins (Assoian and Schwartz, 2001). In vitro studies
have shown that integrin-dependent signalling events upstream of cyclin D1 induction are
the activation of ERK MAP kinases, Rho family GTPases, and FAK(Assoian and Klein,
2008). If and how these pathways are activated in physiologically relevant mechanical
microenvironments was only recently studied (Klein et al., 2009). Integrin-regulated events
are typically studied in cultured cells after blockade of ECM-integrin binding (by incubating
cells in suspension or on poly-lysine coated dishes) or by preventing integrin clustering (e.g.
by disrupting the actin cytoskeleton with depolymerizing drugs or inhibitors of Rho GTPase
activation or signaling), both of which result in drastic changes unlikely to occur
physiologically. In addition, cells are usually cultured on non deformable substrata (culture
dishes or coverslips) unlike the compliant ECM that cells interact with in vivo. Relative to
cells grown on 2D ECM, proliferation of normal MECs is suppressed when cultured within
3D ECM composed of soft collagen I (Hotary et al., 2003) or Matrigel (Weaver et al.,
1997b; Wang et al., 2002). Some studies have used collagen gels to study the effect of
compliant matrixes on integrin signalling and the cell cycle. In cells other than MECs,
culture on free-floating or soft collagen gels results in high levels of cdk inhibitors,
unphosphorylated ERK, and no cyclin D1 expression (Koyama et al., 1996; Rosenfeldt and
Grinnell, 2000; Fringer and Grinnell, 2001; Wall et al., 2007). FAK autophosphorylation,
ERK activity, and Rho activation are also impaired when fibroblasts (Fringer and Grinnell,
2001) or MECs (Paszek et al., 2005) are cultured in soft collagen matrices or Matrigel™.
These studies suggest that changes in matrix stiffness recapitulate the effects seen upon
complete adhesion blockade. Although collagen gels (and Matrigel™) are often softer than
many physiological tissues:10–50 Pa vs. 100–10,000 Pa (Bao and Suresh, 2003; Willits and
Skornia, 2004), soft collagen I (1 mg/ml) has similar stiffness as normal mammary gland,
both about 170 Pa (Paszek et al., 2005).
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Similar to cyclin D1, cyclin E1expression is also responsive to extracellular signals
(Koyama et al., 1996; Henriet et al., 2000; Cho et al., 2005). Proliferation of a MEC line on
2D collagen was positively regulated via β1 integrin induction of c-myc through activation
of the Src and MAPK signaling pathways (Benaud and Dickson, 2001b). c-myc upregulated
cyclin E1 expression, downregulated p27, and increased phosphorylation of Rb by cyclin E-
cdk2 complexes (Benaud and Dickson, 2001a). Similarly, in normal primary human MECs,
α2β1 integrin interaction with a 2D collagen matrix stimulated expression of cyclin E1 and
cdk2 as well as cyclinE1-cdk2 complex formation (Klekotka et al., 2001). In contrast, when
cultured in a soft 3D collagen matrixas compared to on 2D collagen or tisue culture plastic,
MECs downregulate cyclin E1, arrest in G1 phase, and subsequently undergo apoptosis
(YW and RSH, unpublished observations).

ECM alteration in breast development and cancer
ECM alteration during mammary gland development

ECM composition changes during both mammary gland development and in breast cancer.
During mammary development, the main driver of ductal morphogenesis is epithelial cell
proliferation and migration at the endbud, both of which are dependent on cell-matrix
interactions. The endbud is covered with a thin basement membrane, which is remodeled as
the cells invade the adjacent stroma. Local growth factor interactions between the MECs and
stromal cells are required for proliferation. For example, stromal FGF and epithelial FGFR2
are required (Lu et al., 2008); while HGF-met also playsa key role (Liu et al., 2009). As
discussed above, β1 integrins are required for MEC cell proliferation in 2D or 3D cultures,
and function perturbing anti-β1 integrin antibodies eliminate most endbuds (Klinowska et
al., 1999). Integrins may influence expression of FGFR, or may directly cooperate with
FGFR to activate signalling and the cell cycle, thus advancing the endbud. Integrins may
also regulate c-met signalling by binding laminin within the basement membrane (Liu et al.,
2009). Matrix remodeling by matrix metalloproteinases (MMPs) is required for branching
and endbud progression as well (Page-McCaw et al., 2007). MMP-3 induces secondary and
tertiary branching of mammary ducts, while MMP-2 promotes endbud invasion into the
stroma by suppressing MEC apoptosis (Wiseman et al., 2003). Membrane bound MMPs,
including MT2-MMP in MECs, MT3-MMP in stromal cells, and MT1-MMP in both cell
types are also likely required for mammary morphogenesis (Klinowska et al., 1999).

Basement membrane evasion
Changes in cell-matrix interactions are also integral to the development and progression of
cancers (Bissell and Radisky, 2001). Early breast cancer lesions develop in the context of an
intact basement membrane. The basement membrane suppresses tumorigenesis by
controlling tissue architecture, including epithelial polarity (Weaver et al., 2002; Zhan et al.,
2008). The basement membrane also retains in situ carcinomas within its boundaries (Chin
et al., 2004; Hwang et al., 2004; Allred et al., 2008). Mechanisms controlling invasion
through the basement membrane include increased activity of MMPs, altered cell adhesion,
and ECM signaling (Mercurio et al., 2001; Hood and Cheresh, 2002). Increased MMP
activity can occur via increased MMP activation or a change in the ratio of MMPs to their
inhibitors (tissue inhibitors of metalloprotenases or TIMPs), with the MMP/TIMP ratio
altered during both breast cancer progression and normal breast development (Baker et al.,
2002; Fata et al., 2004b; Figueira et al., 2009). Other factors that drive cancer progression
include changes in myoepithelial cells and alteration of the stromal cell population including
cancer associated fibroblasts, macrophages, and other infiltrating leukocytes, as well as
changes to the stromal matrix (Orimo and Weinberg, 2006; Hu and Polyak, 2008; Butcher et
al., 2009; Qian et al., 2009; Lyons et al., 2011).
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Stromal alteration during breast cancer development
Once the basement membrane has been evaded, breast cancer cells encounter the changed
stromal matrix, characterized by increased cellularity and ECM deposition, a process known
as “desmoplasia.” Collagen V is increased in desmoplasia (Barsky et al., 1982), which
mechanically changes the structure of collagen I fibrils (Wenstrup et al., 2004; Berendsen et
al., 2006; Breuls et al., 2009). Proteins such as fibronectin and proteaglycans bind to
increased collagens and affect collagen fiber organization while increased lysal oxidase
activity mediates collagen cross-linking, both of which affect mechanical properties of the
ECM (Levental et al., 2009). Increases in collagen production, organization and cross-
linking produce a stiffer matrix that imparts distinct biochemical and mechanical influences
that contribute to malignancy (Levental et al., 2009). Increased collagen deposition and
stiffness of the stromal matrix may be linked to increased breast density, which is a
significant risk factor for breast cancer (Li et al., 2005b; Martin and Boyd, 2008).
Mammographic density, expressed as either a percentage of the area of the breast (PMD) or
as the area of dense tissue (cm2) in a mammogram are both positively associated with risk of
breast cancer, but PMD is the stronger association (Byrne et al., 1995). PMD has a
consistently strong influence on breast cancer risk, is independent of other risk factors, has a
larger gradient in risk than most other risk factors, has an increased risk that extends for at
least 10 years after the mammogram used to classify density, and carries a risk not explained
by masking (Boyd et al., 2009a).

Evidence for the potent influence of stromal organization and function on invasion,
metastasis, and proliferation of breast tumors is growing (Boyd et al., 2001; McCormack
and dos Santos Silva, 2006; Boyd et al., 2009a; Lyons et al., 2011). Several studies have
shown that MMPs are highly expressed in breast cancers, and that invasive breast cancer
growth is preceded by an increase in MMP activity (Duffy et al., 2000). Furthermore,
invasive breast cancer cells are partially growth suppressed in pliable 3D collagen culture
(Hotary et al., 2003; Wu et al., 2011), suggesting that the presentation of an intact ECM is at
least one mechanism to control both invasion and MEC proliferation. Recent studies
corroborate these finding by showing that tumor adjacent but histologically normal tissues
from breast adenocarcinoma patients show signs of fibrosis and ECM remodeling, including
increased collagens I and VI, MMP2 and TGFβ3, among other changes in gene expression
(Trujillo et al., 2010). In addition, gene expression profiling of patient matched stroma from
both normal tissue and tumors, show ECM components including collagens and
fibronections, MMPs, and cell-cycle genes are highly upregulated in tumor-associated
stroma (Ma et al., 2009). Although these studies are based on a limited number of patient
samples, the findings support the association between increased matrix density, malignancy,
and upregulation of proliferation, as discussed below.

Effects of ECM alteration on the breast cancer cell cycle
Stiff matrices positively influence the cell cycle

The ECM remodeling associated with breast cancer appears to be a positive regulator of the
cell cycle in MECs, primarily due to mechanical signalling stimulated by increased ECM
stiffness (Provenzano and Keely, 2011). As discussed earlier, 3Dculture studies emphasize
the importance of matrix compliance for normal tissue differentiation and imply that matrix
stiffness regulates cell fate by modulating growth factor signalling and Rho GTPase
function. Rho activity is often upregulated in “stiff” tumors (Fritz et al., 1999) and activating
ROCK induces tumor dissemination (Croft et al., 2004). Tumors are rigid because they have
a stiff stroma, and elevated Rho-dependent cytoskeletal tension associated with stiff stroma
drives focal adhesions, disrupts adherens junctions, pertubs tissue polarity, enhances
proliferation, and hinders lumen formation in 3D cultures of MECs (Paszek et al., 2005).
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Matrix stiffness results in integrin clustering, which enhances EGF-dependent ERK
activation and increases ROCK-generated contractility and focal adhesions. Thus, ERK and
Rho appear to be part of an integrated mechanoregulatory circuit that functions to link
physicalcues from the stromal ECM through integrin adhesions to molecular pathways that
control cell growth. A chronic increase in cytoskeletal tension such as that mediated by
matrix stiffness could drive the assemby and or stabilization of focal adhesions to enhance
growth and perturb organization and promote malignant transformation (Paszek et al.,
2005).

MECs cultured in stiffer matrices have increased proliferation and changes in gene
expression compared to cells in less stiff matrices (Wozniak et al., 2003; Paszek et al., 2005;
Provenzano et al., 2009), as do other cell types (Chen et al., 1997; Wang et al., 2000;
Discher et al., 2005). MECs in a stiffer matrix upregulate proliferative signals including
cyclin D1 (Klein et al., 2009) and an entire set of genes identified as a proliferation signature
in human breast carcinoma (Provenzano et al., 2009). This pathway is linked to a FAK-Rho-
ERK pathway, as ERK inhibition reverses expression of the prolferation signature induced
by rigid substrates (Assoian and Klein, 2008; Provenzano et al., 2009).

β1 integrin positively regulates MEC proliferation both in vitro and in vivo (Taddei et al.,
2003), and is necessary for formation of mammary tumors in murine models (White et al.,
2004). Disruption of β1 integrin function decreases MEC proliferation in a transgenic mouse
model (Faraldo et al., 1998) and in both 2D and 3D tissue culture models (Pasqualini and
Hemler, 1994; Wang et al., 1998), as well as decreases proliferation of invasive MDA-
MB-231 breast cancer cells cultured on 2D collagen or in 3D Matrigel™ (Park et al., 2006;
Wu et al., 2011) and reverts the malignant phenotype of HMT3522-T4-2 breast cancer cells
(Weaver et al., 1997a). In contrast, nontumorigenic MECs that form acini-like structures in
Matrigel™, are resistant to β1 integrin inhibition (Park et al., 2006). Neither inhibiting
apoptosis nor enhancing proliferation blocks lumen formation in these epithelial structures,
indicating that nontumorigenic MECs and breast cancer cells exert different mechanisms to
maintain their phenotype in the same environment (Debnath et al., 2002).

Pliable collagen inhibits cell cycle progression
In contrast to 3D Matrigel™ and stiff collagen gels, culturing breast cancer cells within
pliable3D collagen inhibits proliferation and blocking β1 integrin function rescues this
inhibition (Wu et al., 2011). The mechanism is at least partly via direct regulation of cyclin
E1, as β1 integrin inhibition restores cyclin E1 expression as well as expression of c-myc
and phosphorylation of Rb without influencing cyclin D1expression. These studies implicate
c-myc in transcriptional regulation of cyclin E1in addition to its established regulation of
cyclin D1. Results similar to these were reported for arterial smooth muscle cells, which
arrest in G1 inpliable collagen I and proliferate on monomer collagen (Koyama et al., 1996).
In this study, the cdk inhibitorp27 was induced and suppressed cyclin E1-cdk2 without
changing cyclin E1 level. 3D collagen likewise arrested glomerular mesangial cells at G0-G1
phase (Tsuboi et al., 2000), associated with downregulation of E2Fand its targets, including
c-myc, and dephosphorylation of Rb. Thus in pliablecollagen gels, β1 integrin interaction
with collagen I can lead to negative regulation of the cell cycle via direct regulation of
cyclin E1. Interestingly, cyclin D1 relocalizes from the nucleus to the cytoplasmin response
to culture in pliable3D collagen. At the G1-S boundary, cyclin D1 is usually phosphorylated
by GSK3β followed by nuclear export to the cytoplasm, for ubiquitination and degradation
by the 26S proteasome (Barbash et al., 2008). Thus, cyclin D1 may be phosphorylated by
GSK3β in response to pliable3D collagen, resulting in its inactivation by nuclear export.
Cyclin D1 overexpression in cancer is often caused by disruption of its degradation (Pontano
and Diehl, 2008), which has been shown to accelerate mammary carcinogenesis.
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Summary
Mechanosignalling and the MEC cell cycle

An increasing number of studies show that mechanical signaling regulates MEC entry into
and progression through the cell cycle. Three-dimensional culture systems suggest that
changes in this signaling, due to increased rigidity caused by collagen deposition and other
changes in the ECM, likely enhance proliferation via upregulation of cyclin D and
contribute to tumorigenesis (Figure 2A). In contrast, in a less rigid3D environment
composed of pliable collagen I, the cell cycleis inhibited due to E2F inhibition by Rb
(Figure 2B). This regulation is through β1 integrin-activated signaling pathways, with ERK
and Rho functioning downstream to link physical cues from the stromal ECM to the
molecular circuitry of the cell cycle. The downstream signaling pathways as well as the
control of β1 integrin function in differentially affecting proliferation need to be further
elucidated, as do the inherent differences in breast cancer matrix rigidity and their effect on
β1 integrin function and signalling.

Future perspectives
Previous reports have highlighted that, to overcome contact inhibition of cell proliferation,
levels of epidermal growth factor (EGF) have to exceed a certain threshold (Kim et al.,
2009). It was recently shown that ECM stiffening lowers this threshold nearly 100-fold
(Kim and Asthagiri, 2011). With increased substratum stiffness, cells shift from contact-
inhibited to contact-independent growth at lower EGF concentrations. Furthermore, this
effect involves attenuating the efficiency with which cell–cell contacts inhibit cell cycle
entry. The increased stiffness disrupts maturation of these cell–cell contacts by reducing the
recruitment of E-cadherin and ZO-1 to cell junctions. Consistent with existing evidence,
these results suggest that it is the interplay between the three types of environmental cues –
growth factors, cell–cell contacts and ECM – that regulates cell proliferation (Figure 3). This
observation has important implications for cancer development and progression, and
therefore for developing effective therapies to prevent its development and hinder
progression. The importance of understanding cancer as a context-dependent pathology
where tumor cells not only interact with but also respond to their microenvironment is
gaining widespread recognition. This is evidenced by the update of Hanahan and
Weinberg’s “Hallmarks of Cancer” review (Hanahan and Weinberg, 2000) recently
published in Cell (Hanahan and Weinberg, 2011). This review notes that the tumor
microenvironment contributes to the acquisition of hallmark traits of cancer, one of which is
sustaining proliferative signaling. The full extent of microenvironmental effects on the cell
cycle, as well as other hallmark cancer traits remains to be determined.
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Figure 1.
Model of a mammary epithelial cell duct in a compliant versus stiff collagen matrix. (A) In a
compliant matrix, MECs organize into polarized acini and ductal structures. (B) A collagen
dense matrix promotes MEC proliferation and migration.
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Figure 2.
Model for cell cycle regulation of mammary epithelial cells by increased ECM density/
stiffness. (A) As cells encounter increased resistance to contractility from stiff matrices such
as a collagen dense stroma (blue lines), they respond by integrin clustering (red), which
leads to phosphorylation and activation of focal adhesion kinase (FAK). This activates a
FAK-ERK-Rho signaling loop that induces transcription factors such as c-myc, which
stimulate transcription of G1 cyclins (cyclins D and E). Cyclin D (cyc D) and cyclin E (cyc
E) activate cdks and facilitate progression through G1 into S phase. Phosphorylation of
myosin light chain downstream of Rho-GTP increases cellular contractility, generating
tension that is also required for proliferation. (B) In a pliable stroma, integrin clustering is
not induced thus downstream signalling pathways are not activated.
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Figure 3.
Integration of environmental cues including growth factors, cell–cell contacts and ECM
regulates proliferation. (A) A compliant ECM and contact with neighboring cells impose
constraints on epithelial cell proliferation. (B) Increased ECM stiffness reduces the threshold
amount of EGF needed to override contact inhibition and stimulates proliferation. Loss of
contact inhibition coincides with disruption of cell-cell contacts, change in localization of
EGFR and ZO-1, and enchanced ERK signalling (Kim and Asthagiri, 2011). MECs also
respond to increased matrix stiffness in a FAK-dependent manner by developing mature
focal adhesions, upregulating a FAK-Rho signalling loop and ERK activation, which
stimulates contraction, migration and proliferation.
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