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Abstract
An intriguing set of neurodegenerative disease are the nine disorders caused by the expansion of a
unstable trinucleotide CAG repeat where the repeat is located within the coding of the affected
gene, i.e. the polyglutamine (polyQ) diseases. A gain-of-function mechanism for toxicity in polyQ
diseases is widely thought to have a major role in pathogenesis. Yet, the specific nature of this
gain-of-function is a matter of considerable discussion. The basic issue concerns whether toxicity
stems from the native or normal function of the affected protein versus a novel function induced
by polyQ expansion. For at least three of the polyQ disease considerable evidence is accumulating
that pathology is mediated by a polyQ-induced exaggeration of a native function of the host
protein.

Twenty years ago one of the first unstable nucleotide repeat mutations identified was the
CAG expansion causing spinal and bulbar muscular atrophy (SBMA/Kennedy disease) [1].
SBMA subsequently proved to be the first member of a group of nine progressive
neurodegenerative disorders now known as the polyglutamine (polyQ) diseases [2]. Along
with SBMA, the polyQ diseases include Huntington disease, dentatorubral-pallidoluysian
atrophy, and spinocerebellar ataxia (SCA) 1, 2, 3, 6, 7 and 17. As a group, the polyQ
diseases are one of the more common causes of inherited neurodegeneration.

Like most neurodegenerative diseases, the polyQ disorders are progressive and have the
accumulation of mutant protein aggregates as a pathological hallmark. The extent to which
these accumulations of mutant protein are pathogenic or protective has evolved over the
years and remains under considerable investigation and discussion [3]. While the polyQ
stretch alone can be toxic in vivo, for three of the polyQ disorders highlighted here recent
studies demonstrate that an expanded polyQ alone is not sufficient to induce
neurodegeneration, i.e. residues and regions of the host protein are also critical for
pathogenesis. These three disorders provide a strong connection between host protein
framework and induction of disease and, thus, argue that the native biochemistry and
function are relevant for understanding disease mechanism. Such a link between an affected
protein’s normal function and pathogenesis very likely is the basis for the fact that these and
other neurodegenerative disorders vary considerably in terms of the region of the CNS they
target.
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SBMA – The paradigm for linking normal function to pathogenesis
In SBMA the unstable polyQ is located within the androgen receptor (AR) gene located on
the X-chromosome [1]. SBMA is a late-onset progressive disorder in which motor neurons
in the brainstem and spinal cord in only males degenerate [4]. This latter point, that SBMA
is a disease essentially restricted to males, is accentuated by the finding that females
homozygous for mutant alleles of the AR have a subclinical presentation of mild symptoms,
clearly showing that the disease is influenced by sex-specific factors possibly levels of
circulating androgen [5].

Upon generation of SBMA animal models displaying the same male bias in presentation as
seen in human patients, it became possible to test directly whether the sex-specific factor
important in SBMA was indeed level of circulating androgen. In both a Drosophila and a
transgenic mouse model of SBMA, neurodegeneration is linked to the presence of
circulating testosterone as is normally present only in males [6,7]. Thus, along with an
expanded polyQ tract in the AR, the normal AR ligand is required for manifestation of
disease. Nedelsky et al. recently utilized Drosophila genetics to further dissect and
characterize the normal interactions and components of the AR/androgen pathway critical
for toxicity [8••]. These and earlier results provide a solid platform for exploring the
therapeutic potential of hormonal intervention for SBMA.

In contrast to many of the polyQ diseases where less is known about the native function and
biochemistry of the protein affected, the normal structure/function of AR is well
characterized. AR is a nuclear hormone that resides in the cytoplasm in an inactive form.
Upon binding androgen, the hormone-receptor complex translocates to the nucleus, binds to
DNA at specific recognition sites upstream of its target genes. Expression or repression of
these genes occurs through the interaction of two co-regulator regions of AR with other
transcription factors. As shown previously, Nedelsky and colleagues found that ligand
binding was necessary for expanded polyQ AR to cause degeneration of Drosophila adult
photoreceptors and larval motor neurons [8••]. They further showed that upon binding
androgen mutant AR had to translocate to the nucleus and bind to DNA to cause
degeneration. Lastly, it was found that one of the interaction regions of AR, the AF-2
transactivation domain, is required for toxicity and that several known AF-2 interacting
proteins are modifiers of degeneration in a genetic screen. The results of this study show that
the mutant AR pathogenic pathway induced by expansion of the polyQ tract overlaps
considerably with the normal AR-ligand binding pathway (Figure 1). Nedelsky et al. went
on to suggest that disease is induced by the amplification of a yet unidentified aspect of
normal AR function involving the AF-2 transduction domain. This idea is supported by their
observation that lies overexpressing wild type AR show some signs of disease [8••].

SCA – Unbalanced normal function leads to ataxia
Spinocerebellar ataxia type 1 (SCA1) is one of the polyQ disorders where the host protein,
Ataxin-1 (ATXN1), is a novel protein whose function was unknown. Subsequent to cloning
the SCA1 gene in 1993 [9], studies have identified several functional/structural motifs in
ATXN1. These include the AXH domain that folds into an OB-fold that consists of a
putative RNA-binding and a second ligand-binding surface [10], a nuclear localization
signal (NLS) [11] that overlaps with or is immediately adjacent to a 14-3-3 binding site [12]
and a UHM ligand motif (ULM) present in proteins associated with RNA splicing [13•]. Not
surprisingly, ATXN1 is reported to interact with RNA, several regulators of transcription,
and RNA splicing factors RBM17 and U2AF65 [13•,14••]. Interestingly, mutating the NLS
of ATXN1 such that transport of the protein to the nucleus of neurons is dramatically
reduced prevents ATXN1 with an expanded polyQ tract from causing disease [11].
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An important advance in understanding SCA1 pathogenesis came with the observation that
ATXN1 normally forms multimeric complexes with other proteins in the nucleus and that
expansion of the polyQ tract shifts the status quo by enhancing certain functional pathways
perhaps at the expense of others [14••]. At the center of the imbalance in complex formation
induced by mutant ATXN1 are the complexes it forms with the the splicing factor RBM17
(RNA-binding motif protein 17) and the transcription repressor Capicua (Cic). PolyQ
expansion in ATXN1 enhances its interaction with RBM17 [14••]. Furthermore, additional
evidence indicates that the RBM17/ATXN1 complex is toxic. The biological effect on Cic
of ATXN1 polyQ expansion is much more complex. First, in a fly model of SCA1
overexpresison of Cic was protective [15], while in mice partial loss of Cic prolonged life
span [16••]. It seems that for some Cic gene targets expanded ATXN1 causes a loss of
function while at other targets polyQ-expanded ATXN1 enhances Cic binding inducing a
state of hyper-repression. In the mouse, it is postulated that the hyper-repressive effect of
expanded polyQ ATXN1 is toxic [16••].

In addition to polyQ expansion, phosphorylation of the Ser residues at position 776 in
ATXN1 favors its interaction with RBM17 [14••]. Ser 776 is one of seven endogenous sites
of phosphorylation in ATXN1 [17,18]. Phosphorylation of Ser 776 stabilizes ATXN1 and,
in the cytoplasm, binding of 14-3-3 blocks dephosphorylation of Ser 776 as well as the
transport of ATXN1 to the nucleus [19]. Previous work showed that placing a
phosphorylation-resistant Ala at position 776 dramatically decreases the ability of ATXN1
with an expanded polyQ to cause neurodegeneration in vivo [17]. On the other hand a
potentially phospho-mimicking Asp at residue 776, a substitution that enhances wild type
ATXN1’s interaction with RBM17 [14••], enhances ATXN1 induced pathogenesis such that
even ATXN1 with a wild type, unexpanded polyQ becomes pathogenic [20•]. Together
these results indicate that phosphorylation of Ser 776 in ATXN1 as well as its subsequent
interaction with RBM17 has a critical role in pathogenesis.

Moreover, mild exercise likely involving the Cic pathway in the brainstem improves
survival in a mouse model of SCA1 in absence of improving the cerebellar motor
dysfunction [16••]. While more vigorous motor activity that engages the cerebellum might
restore motor function, it is intriguing to speculate that distinct ATXN1 complexes, i.e.
cellular pathways, contribute to disease in different regions of the CNS. Such a hypothesis is
supported by the ability of a partial loss of 14-3-3 to improve cerebellar phenotypes and not
brainstem phenotypes [21].

HD – Increased ciliogenesis?
Perhaps the more prevalent and widely known polyQ disorder is Huntington disease (HD)
where the unstable CAG repeat is located in first exon of the huntingtin (HTT) gene [21].
Clinically, the loss and dysfunction of neurons in the striatum and deep layers of the cortex
characterize HD. Symptomatically, HD patients suffer from cognitive, psychiatric, and
motor abnormalities. Over the years a number of cellular pathways and proteins have come
forward as targets of wild type and mutant Htt [23,24]. One of the first Htt interacting
proteins identified is the huntingtin-associated protein 1 (HAP1) [25]. Subsequently, Hap1
was found to interact the p150Glued subunit of dynactin and the pericentriole protein PCM1
[26]. A potential biological relevance of these interactions recently came to light with the
observation that Htt/HAP1, impact PCM1’s role in ciliogenesis raising the possibility that
HD is at least to some extent a ciliopathy [27••].

Cilia fall into two functional/structural groups; nonmotile primary cilia consisting of nine
outer microtubule pairs in a (9 + 0 axoneme) configuration and motile cilia with nine outer
microtubule pairs, inner and outer dynein arms, and a pair of central microtubules in a (9 + 2

Orr Page 3

Curr Opin Genet Dev. Author manuscript; available in PMC 2013 June 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



axoneme) configuration. In the brain, primary cilia are on all neurons and glia. On neurons,
primary cilia are located on the cell body or proximal portion of the dendrite where they are
believed to have a role in sensing the extracelluar environment and subsequent signal
transduction. Motile cilia in the brain are located on ependynmal cells lining the lateral
ventricles where they are crucial for maintaining proper flow of the cerebral spinal fluid.

Although formation of primary and motile cilia differs, the biogenesis of each form of cilia
depends on proper trafficking of proteins to the pericentriolar material (PCM). Specifically,
if the pericentriolar material protein 1 (PCM1) does not localize to the PCM ciliogenesis is
reduced. Keryer et al. made two key observations linking Htt function to ciliogenesis [27••].
First, they found that depletion of Htt in cultured striatal cells using RNAi resulted in a
dispersion of PCM1 away from the centrosome and a decease in the number of cells with
primary cilia. Moreover, Keryer et al. found that mice lacking Htt in ependymal cells also
had an altered distribution of PCM1 and hydrocephalus, a phenotype previously found in
mice having a disruption in ciliary function [27]. In contrast to decreased ciliary function
with loss of Htt, expression of Htt with an expanded polyQ resulted in hypermorphic cilia
and ciliary dysfunction. Again, in both cultured striatal cells and in mice mutant Htt had a
similar effect. With mutant Htt, localization of PCM1 was enhanced at the centriole and the
length of primary cilia was increased [27••]. Increased localization of PCM1 to the
ependymal zone of the lateral ventricle was found in HD patient brain material. Importantly,
this altered accumulation of PCM1 directly correlated with severity of pathology. Keryer et
al. went on to show that in HD mice CSF flow was altered using an organotypic preparation
that included the lateral ventricle. Intriguingly, in the brain of HdhQ111/Q111 mice migration
of neuroblasts was altered relatively to the lateral ventricle. In HD mice, alterations in
PCM1 and cilia seemed to be an early event with some abnormalities detected as young as 1
month of age.

These latter findings raise the intriguing possibility that in HD migration of developing
neurons is abnormal. If indeed HD proves to be a ciliopathy, having a developmental
component to pathogenesis would be in line with other ciliopathies [29]. There is suggestive
evidence of abnormal neurodevelopment in HD based on HD mutation carriers having a
reduced intracranial volume compared to non-carriers prior to onset of disease [30]. In a
mouse model of SCA1, data support a link between abnormal development and
neurodegeneration in the adult. Expressing a mutant allele of ATXN1 during early postnatal
development compromises Purkinje cell development that contributes to the severity of the
neurodegeneration in adult mice [31].

Concluding comments
The results for the three polyQ disorders outlined here illustrate the evidence in support of
the hypothesis that pathogenesis induced by polyQ expansion is linked to the native function
of the host protein, specifically an enhanced level of a normal function (Figure 2). That such
a pathogenic mechanism likely extends beyond these three disorders is suggested by the
observations that an increase in wild type gene number and presumably function underlies
some forms of Alzheimer and Parkinson disease [32,33]. Recently, Kratter and Finkbeiner
nicely outlined how this hypothesis might be envisioned at a protein conformation level
[34•]. First, likes many proteins, the polyQ host protein normally adopts multiple
conformations each associated with a particular function and/or set of protein interactions.
Normally the proportion of each confirmation is dynamically regulated by reversible post-
translational modifications such as phosphorylation. However, in the presence of an
expanded polyQ one confirmation becomes stabilized and, thus, the associated function(s) is
accentuated possibly at the expense of others. It is worth noting that a polyQ17 stretch in the
exon 1 fragment of HTT was found to assume multiple conformations, indicating that at
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least a wild type polyQ tract imparts conformational flexibility to a protein [35•].
Regardless, a hope is that as the native functions and pathways for each disease-associated
polyQ protein are identified this will lead to additional therapeutic targets.
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Figure 1. Schematic Depiction of the Minimum Elements of the Native Ligand-Dependent AR
Pathway Required for Pathogenesis
To induce pathogenesis AR with an expanded polyQ must (1) Ligand binds to AR inducing
a conformation change that releases the bound chaperone, uncovers the NLS and creates the
AF-2 binding surface. Presumably mutant AR forms a dimer prior to (2) AR and bound
ligand translocate to the nucleus. (3) AR and bound ligand bind to DNA targets sites. (4)
AF-2 interacting co-regulators bind. It remains unclear the extent to which if any
downstream events (depicted by dashed lines) such as target gene transcription and
subsequent steps contribute to pathogenesis.
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Figure 2. A Hypothesis in which the Consequence of Expanded PolyQ is to Enhance a Native
Function
Normally the polyQ host exists in a equilibrium of multiple conformations each of which
sub serves a native function. Upon expansion of the polyQ (red shaded portion) one native
conformation predominates and its associated function is now enhanced in a disease-specific
manner.
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